
This is a repository copy of The theory of classification part 8: classification and
inheritance.

White Rose Research Online URL for this paper:
http://eprints.whiterose.ac.uk/79273/

Version: Published Version

Article:

Simons, A.J.H. (2003) The theory of classification part 8: classification and inheritance.
Journal of Object Technology, 2 (4). 55 - 64. ISSN 1660-1769

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse

Unless indicated otherwise, fulltext items are protected by copyright with all rights reserved. The copyright
exception in section 29 of the Copyright, Designs and Patents Act 1988 allows the making of a single copy
solely for the purpose of non-commercial research or private study within the limits of fair dealing. The
publisher or other rights-holder may allow further reproduction and re-use of this version - refer to the White
Rose Research Online record for this item. Where records identify the publisher as the copyright holder,
users can verify any specific terms of use on the publisher’s website.

Takedown

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

mailto:eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

JOURNAL OF OBJECT TECHNOLOGY
Online at www.jot.fm. Published by ETH Zurich, Chair of Software Engineering ©JOT, 2003

Vol. 2, No. 4, July-August 2003

Cite this column as follows: Anthony J.H. Simons: �The Theory of Classification � Part 8:
Classification and Inheritance�, in Journal of Object Technology, vol. 2, no. 4, July-August 2003,
pp. 55-64. http://www.jot.fm/issues/issue_2003_07/column4

The Theory of Classification
Part 8: Classification and Inheritance

Anthony J H Simons, Department of Computer Science, University of
Sheffield, U.K.

1 INTRODUCTION

This is the eighth article in a regular series on object-oriented type theory, aimed

specifically at non-theoreticians. In earlier articles, we explored the view that a

programmer's class in C++ or Java corresponds in some way to a type in the formal

model, and that a compatible subclass therefore corresponds to a subtype [1, 2]. In the

last article, simple subtyping was found to be inadequate to express systematic

relationships between recursive types [3]. Instead, we found that a second-order model

with type parameters was needed. In this model, a programmer's class corresponds to a

bounded polymorphic type, representing a family of similar types which share a minimum

common structure and behaviour. The family likeness was expressed using a constraint,

known as a function bound or F-bound [4] on the type parameter, which ensured that the

parameter could only be replaced by types having at least the structure and behaviour

specified in the F-bound.

This opens up a completely different formal notion of class, and consequently of

inheritance. Whereas before, we thought of a class as a type, clearly it is now the pattern

for a family of related types. Likewise, whereas inheritance was formerly the simple

extension of a type, in the new model it is the extension of a general pattern. In this

article, we explore further the differences between classes and types, developing the

alternative formal model of classification and inheritance, which is quite different from

subtyping [5].

2 SPECIFICATION VERSUS IMPLEMENTATION

So far in the Theory of Classification, I have been seeking to show how the intuitive

notion of class in object-oriented languages has a strictly formal interpretation that is

more general than the simple notion of type. At this point, I usually come up against a

long-held prejudice among practically-minded programmers that the "real" difference

http://www.jot.fm
http://www.jot.fm/issues/issue_2003_07/column4

THE THEORY OF CLASSIFICATION, PART 8: CLASSIFICATION AND INHERITANCE

56 JOURNAL OF OBJECT TECHNOLOGY VOL. 2, NO. 4

between a class and a type is that a class is merely a programming language construct,

whereas a type is the formal description of this. In other words, there is out there the

entrenched view that "type = specification" and "class = implementation". In the

following, I hope to show that this view is a red herring in our thinking about

classification in object-oriented languages.

In the early days, we struggled to understand the formal nature of novel object-

oriented language features, especially inheritance, which could sometimes be used in a

strict way, to derive a family of related types, and sometimes in an opportunistic way, to

extend implementations [6]. This led some to believe that objects have class and type

independently [7, 8], asserting that an inheritance hierarchy was merely a convenience for

describing shared implementation, whereas a separate type hierarchy was necessary to

describe the subtyping relationships between the same objects. In some cases, the

"classes" and "types" for the very same objects could be linked in different orders (see

figure 1).

Shape

Ellipse Rectangle

move(x, y : Integer)

drawOn(c : Canvas)

Circle Square

Point

Circle Square

Ellipse Rectangle

x, y : Integer

r : Integer w : Integer

p, q : Integer h : Integer
s : Integer

{f1 = f2, r = s} {w = h}

f1, f2 : Point

w, h : Integer

o : Point

r, s : Integer

Figure 1: Sharing type (left) and implementation (right)

Now, while this is an interesting issue, it relates to conceptual design more than it relates

to type theory and the notions we have been discussing here. The left-hand hierarchy

expresses the conceptual family of Shapes, while the right-hand hierarchy expresses how

you might conveniently derive extended records by adding variables, although it leads to

conceptual nonsense: a Circle is not a kind of Point, for example. Nonetheless, it is quite

possible to define a strange Circle type that is genuinely a subtype of Point - in the theory

of subtyping, this would be perfectly legitimate for many definitions of Circle and Point,

so long as you obeyed the rules [2]. The real issue here is one of discipline versus

opportunism in conceptual design, and is not really related to types and subtyping.

Another blow to the "class = implementation" viewpoint is that programming

languages like Pascal and C had types with concrete implementations long before the

object-oriented notion of class was popular - nothing necessarily forces "class" to mean

SPECIFICATION VERSUS IMPLEMENTATION

VOL. 2, NO. 4 JOURNAL OF OBJECT TECHNOLOGY 57

implementation. In Computer Science, we have always talked in terms of abstract and

concrete types. Abstract types are formal, described in terms of operation signatures and

axioms; concrete types have a representation in a programming language. So, why not

extend this notion to classes, which can also be both abstract (formal and typeful) and

concrete (practical and implemented)?

Modern object-oriented languages, like C++ and Eiffel, link the type hierarchy

directly to the implementation hierarchy. Some allow further expression of type

compatibility apart from the main implementation hierarchy, like Objective C and Java,

which have separate interfaces to express common type relationships that cut across the

main divisions in the class hierarchy. Earlier languages like POOL-T [8] developed

completely independent implementation- and type-hierarchies, in the hope of preserving

"pure subtyping" in a language with multiple, variant implementations. However, even

the separate subtype hierarchy of POOL-T is defeated by recursive types and inescapably

suffers from the same restrictions and lack of expressiveness that we identified previously

for subtyping [3].

3 CLOSED VERSUS OPEN

A more satisfying way of distinguishing object-oriented classes from traditional simple

types is to realise that a type is closed, in the sense of being complete, whereas a class is

open-ended, in the sense of being subject to arbitrary subdivision and further

specialisation. In older object-based languages like Modula-2 and Ada (pre-95, before the

addition of inheritance), the type of an object is expressed exactly by its interface. In later

object-oriented languages with polymorphic inheritance, the class of an object is

understood to express only the minimum interface which members of the class must

satisfy. This subtle difference between exact and minimum interfaces is what

characterises the essential difference between a traditional programmer's type and a

modern class. Taxonomic classification in biology also follows this pattern: a mammal is

defined as something with (at least) warm blood and hair that bears and suckles live

young. This is not a complete or finished definition - biologists don't exclaim: "Look,

there's an instance of a mammal!", but rather identify dogs, cats or gerbils and show that

these belong to the class of mammals, by virtue of having the four essential mammalian

properties.

Mathematically, we can capture the same distinction between simple, closed types

and open-ended polymorphic classes. In the previous article [3], we showed that a basic

class of Numbers may be expressed using the F-bound:

∀(τ <: GenNumber[τ]), where: GenNumber = λσ.{plus : σ → σ}.

According to this definition, the parameter τ may range over all kinds of numeric types,

so long as they have at least a plus method with the specified signature. By contrast, the

exact Number type is a recursive type, created from first principles as the least fixed point

of the generator GenNumber (see earlier article [1] for a full explanation):

THE THEORY OF CLASSIFICATION, PART 8: CLASSIFICATION AND INHERITANCE

58 JOURNAL OF OBJECT TECHNOLOGY VOL. 2, NO. 4

Number = Y [GenNumber] = GenNumber[GenNumber[GenNumber[...]]]

 ⇒ {plus : Number → Number}, at the limit of recursion.

This is a very general numeric type with only a plus method - we are unlikely to use

direct instances of this type (like mammal, above), but instead we will want to use

instances of Integer, Real, or Complex.

Note that exact types, like Number, are fixed, whereas classes are open-ended and

flexible. If we say n : Number, we assert that n is a variable that can only receive objects

of exactly the Number type. On the other hand, if we say x : ∀(τ <: GenNumber[τ]), we

assert that x is a variable that can receive objects of any numeric type in the class of

Numbers, even types having more than the minimum required methods. This is the

difference between monomorphism (exact typing) and bounded polymorphism

(constrained flexible typing). In the following, types are always exact and classes are

always polymorphic.

4 RELATING CLASSES AND TYPES

There is an interesting relationship between classes and types. It turns out that the exact

Number type is the least type which is still a member of the polymorphic Number class.

In other words, it has just enough fields to satisfy the F-bound constraint:

Number <: GenNumber[Number],

which unrolls (on the left) and evaluates (on the right) to give:

{plus : Number → Number} <: {plus : Number → Number}

from which it is clear that both sides are equal. In fact, for this one case alone, we could

rewrite the subtyping condition as a type equivalence:

Number = GenNumber[Number],

and the reader may recall that this is exactly the same formula that identifies Number as

the fixpoint of the generator GenNumber, that is, a type which is unchanged by the

application of the generator [1]. From this, we know that there is exactly one type which

"only just" satisfies the conditions for class membership - and this is always the recursive

type created from the generator that is used to express the F-bound constraint.

We can visualise this in figure 2 by drawing the Number class as a cone-shaped

bounded volume, representing a space of possible numeric types that satisfy the F-bound,

and the corresponding "least type" Number, which is only just a member of this class, as

the point at the apex of this cone. There are many other numeric types which belong to

the Number class, which have more than the minimum required methods: figure 2 also

shows the Integer type as a point in the space enclosed by the Number cone.

RELATING CLASSES AND TYPES

VOL. 2, NO. 4 JOURNAL OF OBJECT TECHNOLOGY 59

type Number

type Integer

class Number

class Integer

classes are nested volumes

in the space of types

types are points at the apex

of each bounded volume

Figure 2: Classes as volumes containing types as points

Can we demonstrate this mathematically? Recall that the exact Integer type is given by:

Integer = µσ.{plus : σ → σ, minus : σ → σ, times : σ → σ, divide : σ → σ},

⇒ {plus : Integer → Integer, minus : Integer → Integer,

 times : Integer → Integer, divide : Integer → Integer},

after unrolling the recursion. We then apply the test for class membership, manipulating

the expression on both sides, by unrolling the recursive type (on the left) and applying the

type generator (on the right) to yield a comparison between record types:

Integer <: GenNumber[Integer] ⇒

{plus : Integer → Integer, minus : Integer → Integer,

 times : Integer → Integer, divide : Integer → Integer}

<: {plus : Integer → Integer}

which is true by the record subtyping rule [2]. We have therefore shown that the Integer

type is indeed in the class of Numbers. As well as the least type Number, we may expect

many more numeric types like Integer, which have more than the minimum required

methods, to be members of this class. Such numeric types could include Real, Complex,

Fraction and any numeric type with at least a plus method. This expresses exactly the

object-oriented notion of class membership.

5 A MODEL OF CLASSIFICATION

Figure 2 also visualises how we would expect a class of Integers to nest inside the class

of Numbers. This is drawn using "stacking cones" to show that the volume occupied by

the Integer class is contained within the Number class. Intuitively, we ought to be able to

partition (divide up) the space of Numbers into sub-spaces, corresponding to the spaces

THE THEORY OF CLASSIFICATION, PART 8: CLASSIFICATION AND INHERITANCE

60 JOURNAL OF OBJECT TECHNOLOGY VOL. 2, NO. 4

occupied by the more specific numeric classes; however, we have yet to demonstrate this

idea mathematically.

The Integer class is constructed in the same way as the Number class, first by

defining a type generator, a type function which accepts the self-type as an argument:

GenInteger = λσ.{plus : σ → σ, minus : σ → σ, times : σ → σ, divide : σ → σ}

then by expressing the polymorphic Integer class using an F-bound constructed using the

same generator:

∀(τ <: GenInteger[τ])

This constraint ensures that the parameter τ may range only over those numeric types

which have at least the methods: plus, minus, times and divide with the specified

signatures. It should be clear now that the exact Integer type is the least member of this

class:

Integer <: GenInteger[Integer], because Integer = GenInteger[Integer].

How can we show that the Integer class nests inside the Number class? Intuitively, the

purpose of classification is to show that objects which belong to specific classes also

belong to the more general classes. We therefore want to be able to show that, if any

actual type satisfies the constraint for the Integer class, it will also satisfy the constraint

for the Number class. In other words, we seek the condition under which:

τ <: GenInteger[τ] ⇒ τ <: GenNumber[τ]
Intuitively, this holds true for these two particular generators, because GenInteger defines

strictly more methods than GenNumber and otherwise it has an identical plus method. So,

any type satisfying τ <: GenInteger[τ] is bound to satisfy τ <: GenNumber[τ]. If

GenInteger had not defined a plus method with a matching signature, then no types could

satisfy both constraints. The condition we seek therefore depends on the structure of one

generator including all the structure of the other generator.

This sounds somewhat similar to a record subtyping rule [2], except that the

generators are not record types, they are type functions with distinct self-type arguments.

Though we cannot make a rule to compare the generators directly, we can do this

indirectly using a rule that compares instantiations of the generators, since this yields

proper record types. In fact, we want to compare all possible instantiations of the two

generators with the same type. This is known as a pointwise subtyping condition, which

we write as:

∀τ . GenInteger[τ] <: GenNumber[τ]

We read this as: "For all types τ, the record type you get by instantiating GenInteger with

τ is always a subtype of the record type you get by instantiating GenNumber with τ".

Literally, the constraint expresses two things:

A MODEL OF CLASSIFICATION

VOL. 2, NO. 4 JOURNAL OF OBJECT TECHNOLOGY 61

• the subclass generator must have a larger interface than the superclass generator

• the self-types must be made to refer to the same type when making any

comparison

and this is the condition under which the GenInteger generator stands in a subclass-to-

superclass relationship with the GenNumber generator.

Abstracting away from numeric types, we obtain the subclass rule relating any two

generators, which we shall name (arbitrarily) GenSub and GenSuper:

 ∀τ . GenSub[τ] <: GenSuper[τ]
 [Subclass]
 ∀t . t <: GenSub[t] ⇒ t <: GenSuper[t]

"If the generators GenSub and GenSuper stand in a pointwise subtyping relationship, then

any type which satisfies the Sub-class constraint will also satisfy the Super-class

constraint". This is the rule which describes how classes are nested inside each other.

From this, we may derive another rule, which allows us to infer how types which belong

to one class also belong to more general classes:

 t <: GenSub[t], ∀τ . GenSub[τ] <: GenSuper[τ]
 [Classify]
 t <: GenSuper[t]

"If t is a member type of the Sub-class, and the Sub-class is nested inside the Super-class,

then t is also a member type of the Super-class." These are two of the most important

rules in the theory of classification describing the subclass relationship and transitive

class membership.

6 A MODEL OF INHERITANCE

In our presentation, we want to distinguish carefully the notions of classification and

inheritance. Classification describes the way in which exact types belong to classes and

the way in which classes are nested inside one another. Inheritance describes an extension

mechanism for defining more specialised classes incrementally. That is, inheritance is

merely a short-hand. This means that any class we could develop incrementally using

inheritance must look the same as if we had defined it as a whole, from first principles.

As a challenge, we shall attempt to derive the Integer class from the Number class.

Previously, we adopted a simplistic model of inheritance, using record type

extension [3]. In this approach, a record type is considered to be a set of fields, which can

be extended using the set union operator ∪ to create a larger record type, which is

THE THEORY OF CLASSIFICATION, PART 8: CLASSIFICATION AND INHERITANCE

62 JOURNAL OF OBJECT TECHNOLOGY VOL. 2, NO. 4

therefore a subtype of the original record [2]. The basic model for record type extension

is:

Subtype = Basetype ∪ Extension

However, we found an anomaly when extending recursive record types, which is that

fields obtained from the base type were fixed with the wrong types when combined in the

extended record type [3]. If we derive an Integer type naïvely from a Number type, we

find that the plus method for Integer ends up with intuitively the wrong type signature:

Number = µσ.{plus : σ → σ},

⇒ {plus : Number → Number}, after unrolling the recursion;

Integer = µσ.(Number ∪ {minus : σ → σ, times : σ → σ, divide : σ → σ})

⇒ {plus : Number → Number, minus : Integer → Integer,

 times : Integer → Integer, divide : Integer → Integer}

Essentially, the reason why this doesn't work is because we are extending simple types

using a subtyping model and are hitting the limits of subtyping in the context of

recursion. The self-types of Number and Integer are fixed independently, such that after

record union, there is no single, uniform self-type, resulting in a kind of "self-type

schizophrenia".

The insight offered by Cook and others [5] is that inheritance should not be modelled

as the extension of simple types, but rather it is the extension of the patterns described by

their generators. With generators, we are better able to control the binding of the self-

types, so that these refer uniformly to the same type in the combined result. Starting with

the GenNumber generator, we shall derive a GenInteger generator incrementally from it,

but also rebind the self-type of the base generator at the same time:

GenNumber = λτ.{plus : τ → τ}

GenInteger = λσ.(GenNumber[σ] ∪

{minus : σ → σ, times : σ → σ, divide : σ → σ})

= λσ.({plus : σ → σ} ∪ {minus : σ → σ, times : σ → σ, divide : σ → σ})

= λσ.{plus : σ → σ, minus : σ → σ, times : σ → σ, divide : σ → σ}

This yields exactly the GenInteger that we hoped for, equivalent to the generator that we

defined from first principles in section 5. Note how the inherited plus method is typed in

terms of σ, the self-type of GenInteger, rather than in terms of τ, the old self-type of

GenNumber. All the methods of GenInteger are uniformly typed in terms of σ, solving

the "self-type schizophrenia" problem.

The trick at the heart of this derivation is the type-instantiation of the GenNumber

generator, obtained through the application: GenNumber[σ]. Recall that GenNumber is a

type-function, with a formal argument τ. When GenNumber is applied to σ, we substitute

A MODEL OF INHERITANCE

VOL. 2, NO. 4 JOURNAL OF OBJECT TECHNOLOGY 63

{σ/τ} throughout in the body. The result of the application is a base record of method

types: {plus : σ → σ} which is subsequently unioned with the extension record to yield

the result.

To obtain the exact Integer type, we may take the fixpoint of the GenInteger

generator that we have just derived, to bind the self-type argument recursively:

Integer = Y [GenInteger] = GenInteger[GenInteger[GenInteger[...]]]

 ⇒ {plus : Integer → Integer, minus : Integer → Integer,

 times : Integer → Integer, divide : Integer → Integer}, at the limit.

This has the type signature that we desire, namely one that is uniformly typed in terms of

the Integer self-type, rather than one which is schizophrenic. This seems therefore to be a

more satisfactory model for explaining incremental derivations in a class hierarchy.

7 CONCLUSION

We have exposed the heart of the theory of classification, using Cook's F-bounded

quantification to express the idea that a class is a family of types that share a minimum

common structure. By contrasting the notion of type in older object-based languages with

the notion of class in newer object-oriented languages with inheritance, we have argued

that extensibility and polymorphism are what properly characterise classes apart from

traditional programmer's types. Thereafter, we have used class to refer to a polymorphic

family and type to refer to one member of this family.

We developed a second-order model of class membership, in which recursive types

with similar structure could be shown to belong in the same class. We extended this to a

model of subclassing, based on a pointwise relationship between generators, to show how

classes are nested hierarchically. Finally, we showed how generator adaptation provided a

more satisfactory model of incremental inheritance, avoiding problems of schizophrenic

self-reference. The languages Smalltalk and Eiffel adopt this more sophisticated model of

inheritance, in which inherited references to self and the self-type are redirected to refer

uniformly to the subclass.

While we dispelled one myth about classes and implementation, it is clear that we

have only covered the typeful aspects of classes here. We defer a treatment of the

concrete aspects of classes, especially the inheritance of implementation, to a later article.

This will help us further in understanding the differences between the classification

model of Smalltalk and Eiffel, and the subtyping model of Java and C++.

THE THEORY OF CLASSIFICATION, PART 8: CLASSIFICATION AND INHERITANCE

64 JOURNAL OF OBJECT TECHNOLOGY VOL. 2, NO. 4

REFERENCES

[1] A J H Simons, �The theory of classification, part 3: Object encodings and

recursion�, in Journal of Object Technology, vol. 1, no. 4, September-October

2002, pp. 49-57. http://www.jot.fm/issues/issue_2002_09/column4

[2] A J H Simons, �The theory of classification, part 4: Object types and subtyping�,

in Journal of Object Technology, vol. 1, no. 5, November-December 2002, pp.

27-35. http://www.jot.fm/issues/issue_2002_11/column2

[3] A J H Simons, �The theory of classification, part 7: A class is a type family�, in

Journal of Object Technology, vol. 2, no. 3, May-June 2003, pp. 13-22.

http://www.jot.fm/issues/issue_2003_05/column2

[4] P Canning, W Cook, W Hill, W Olthoff and J Mitchell, �F-bounded

polymorphism for object-oriented programming�, Proc. 4th Int. Conf. Func.

Prog. Lang. and Arch. (Imperial College, London, 1989), pp. 273-280.

[5] W Cook, W Hill and P Canning, �Inheritance is not subtyping�, Proc. 17th ACM

Symp. Principles of Prog. Lang., (ACM Sigplan, 1990), pp. 125-135.

[6] M Sakkinen, �Disciplined inheritance�, Proc. 3rd European Conf. Object-

Oriented Prog., (Nottingham: British Computer Society, 1989), pp. 3-24.

[7] A Snyder, �Encapsulation and inheritance in object-oriented programming

languages�, Proc. 1st ACM Conf. Object-Oriented Prog., Sys., Lang. and Appl.,

pub. ACM Sigplan Notices, 21(11), (ACM Sigplan, 986), pp. 38-45.

[8] P America , �Designing an object-oriented language with behavioural

subtyping�, Proc. Conf. Foundations of Object-Oriented Lang., (1990), pp. 60-

90.

About the author

Anthony Simons is a Senior Lecturer and Director of Teaching in the

Department of Computer Science, University of Sheffield, where he

leads object-oriented research in verification and testing, type theory

and language design, development methods and precise notations. He

can be reached at a.simons@dcs.shef.ac.uk.

http://www.jot.fm/issues/issue_2002_09/column4
http://www.jot.fm/issues/issue_2002_11/column2
http://www.jot.fm/issues/issue_2003_05/column2
mailto:a.simons@dcs.shef.ac.uk

