This is a repository copy of The theory of classification part 15: mixins and the superclass
interface.

White Rose Research Online URL for this paper:
http://eprints.whiterose.ac.uk/79268/

Version: Published Version

Article:
Simons, A.J.H. (2004) The theory of classification part 15: mixins and the superclass
interface. Journal of Object Technology, 3 (10). 7 - 18. ISSN 1660-1769

Reuse

Unless indicated otherwise, fulltext items are protected by copyright with all rights reserved. The copyright
exception in section 29 of the Copyright, Designs and Patents Act 1988 allows the making of a single copy
solely for the purpose of non-commercial research or private study within the limits of fair dealing. The
publisher or other rights-holder may allow further reproduction and re-use of this version - refer to the White
Rose Research Online record for this item. Where records identify the publisher as the copyright holder,
users can verify any specific terms of use on the publisher’s website.

Takedown
If you consider content in White Rose Research Online to be in breach of UK law, please notify us by
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

\ White Rose o
| university consortium eprints@whiterose.ac.uk
WA Universiies of Leeds, Sheffield & York https://eprints.whiterose.ac.uk/

mailto:eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

ff——

JOURNAL OF OBJECT TECHNOLOGY

Online at http://www.jot.fm. Published by ETH Zurich, Chair of Software Engineering ©JOT, 2004

Vol. 3, No. 10, November-December 2004

The Theory of Classification
Part 15: Mixins and the Superclass
Interface

Anthony J H Simons, Department of Computer Science, University of
Sheffield, U.K.

1 INTRODUCTION

This is the fifteenth artiel in a regular series on objewiented type theory for non-
specialists. Earlier adies have built up.-calculus models of objéx [1], classes [2],
inheritance [3, 4] and generic template types [5]. These features are common to a number
of popular object-oriented languages, suchCas-, Eiffel and Jaa (which now has
templates in the latest versijo In this article, we loolat a less well known, but once
popular construct in objedriented languages calledraxin.

Mixins were first proposed in the langudgiavors [7]. A mixin isbest described as
a freestanding component extension, somethiagishintended tde added onto another
class using the inheritance mechanism. Aimcan be combined with many different
base classes, to yield different extendeaks¢s which contain the combined base and
mixin features. Some mixingrovide orthogonal functionalitthat can be added to any
class. Other mixins expect the class withich they are combined to provide certain
operations, because the mixin’s own methddpend on them. In other words, a mixin
has a superclass interface, désog the kind of class fronwhich it expects to inherit.
By examining mixins formally, we can den more about thdéype constraints on
inheritance.

2 FLAVORS AND MIXINS

Flavors [6, 7] was an important early objedeated language, developed at MIT in the
late 1970s. It was thirst to introducemultiple inheritance, the idea that a child class
may have more than one parent class amdbawe all the inherited features in some
principled way. As legend has it, this ideaswaspired by the presence of several famous
ice-cream parlours in the vigty of MIT. When visitingthese emporia, you could choose

Cite this column as follows: Anthony J.H. Simons: “The Theory of Classification, Part 15: Mixins
and the Superclass Interface”, in Journal of Object Technology, vol. 3, no. 10, November-
December 2004, pp. 7-18. http://www.jot.fm/issues/issue 2004 11/columnl

http://www.jot.fm
http://www.jot.fm/issues/issue_2004_11/column1

o THE THEORY OF CLASSIFICATION, PART 15: MIXINS AND THE SUPERCLASS INTERFACE

your basic vanilla ice-cream and therix in one of several other flavodrssuch as
pistachio or strawberry. Bwnalogy, the root class ithe new language was called
“Vanilla Flavor” and other classes were ex®mns of this. The idea of a “mixin” was
inspired by the extra sauces and toppings ymldcadd to your ice-cream. A mixin is not

itself a whole class, but rather a package of optional features that you can choose to add
to a class. It is “mixed in” in the send®at, through the mechanisof inheritance, the
mixin's features may becomet@mwoven with the features dfie class with which it is
combined. Mixins were the first attempt to prawiflexible solutions to some of the same
problems that are currently addressed usiggects in aspect-oriented programming,
which are woven together in a similar way.

A simple example of a mixin might be antension that adds a coordinate position
to any other object. The classes in a library meist without reference to any coordinate
position, for example, a Truck class might ddsetthe intrinsic propées of trucks, and
might be just one of many Vehicle subclassEhen, for a given simulation application, it
is desired that some of these classes bedblmatvithin a coordina system. In Flavors
you could create the extended types quicklycbynbining the canonical types with a
Locatable mixin, to yield locatébdversions of each class:

(defflavor simulation-truck () (truck locatable-mixin))

The syntax of Flavors may not be familta many readers. The language was built on
top of Lisp. To construct a @da, you called the Lisp functiatefflavor and provided it
with a list of attribués (methods were defined separgtelf this class inherited from
other classes, they were supplied irreomnd list. The syntax looked something like:

(defflavor class-name (var-1, var-2, .. var-n)

(super-1, super-2, .. super-n))

where the variousuper classes are the names of other classes to be “mixed in” with the
new class. There was no real syntactic disitom between a classd a mixin, merely a
naming convention, whereby mixin names atweended in “-mix”. Folding in a
number of mixins required thinearisation of their propeds — in fact, this was no
different from the general problem of multipleheritance. In Flavors, the inheritance
algorithm combined features from the sigh@sses in left-to-ght order, merging
identically-named attributes, provided tredt the recursive orderings declared by the
superclasses could be preserved [7].

! with apologies to US readers, | and my spe#iatter prefer British spetiy, but proper names like
“Flavors” are allowed to remain in their proprietary form!

8 JOURNAL OF OBJECT TECHNOLOGY VoL. 3, NO. 10

TEMPLATES AND ABSTRACT SUBCLASSES O?L_/

3 TEMPLATES AND ABSTRACT SUBCLASSES =

To illustrate the idea of mins in another way, we may use the template mechanism in
C++ to define “abstract subclasses”. Thecatable mixin described above might be
simulated in C++ as the following “abstract subclass”:
template <class Anys>
class Locatable : public Any {
public:
Locatable() ;
void moveTo (int x, int y);
Point position() const;
private:
Point point; // my position
}i

template <class Anys>
Locatable: :Locatable() : Any(), point (0, 0) {}

template <class Anys>
void LocatableMixin: :moveTo(int x, int y) {
point.moveTo (x, V) ;

template <class Anys>
Point Locatable::position() const {
return point;

Listing 1: C++ definition of an “abstract subclass”

Locatable is defined like a C+subclass, but inherits fromtgpe parameter Any, which
has the effect of delaying the combinationlatal features with the (as yet unknown)
inherited features from some eventual base class. Locatable versions of the various
Vehicle subclasses may be constiedoon the fly, in the style:

Locatable<Car> carl;

Locatable<Bus> busl;
at which point the Any parameter is bound to the specific types Car and Bus,
respectively. Any C++ class which inheriftom a type parameter is an “abstract
subclass”. The parameter helps to underline how it expects to be combined with some
unknown base class.

4 MIXINS VERSUS ABSTRACT SUBCLASSES

The difference between this “abstract dabs” approach and the earlier “mixin”
approach is that Flavors defines each misomponent independently, as a freestanding
extension. Combining mixins is more like mulépnheritance in €+ (with virtual base

VoL. 3, NO. 10 JOURNAL OF OBJECT TECHNOLOGY 9

o THE THEORY OF CLASSIFICATION, PART 15: MIXINS AND THE SUPERCLASS INTERFACE

classes), in which the programmer desiva new subclass which “mixes” all the
components. The abstract subclass apprasamore like a wrapper function, which
expects to be applied teome base object denotirsyper, and then combines the
additional fields with the baseefds yielding the subtype directly.

Bracha and Cook described a mixin as “abstract subclassbr “a subclass
definition that may be applied to different superclasses” [8]. Here, we would prefer a
slightly more careful use of the term “mixirsince we want to draw a formal difference
between a subclass and a mixin, which we itastrate using the model of inheritance
from earlier articles [3, 4]Recall that inheritance is modelled as the combination of
records using th® union with override operator:

derived = basé extra

In this, base is the parent object anderived is the subclass object, constructed by
combiningbase with a record ofextra fields. It is clear thatlerived is the result of the
combination, a whole subclass object, rathantjust an extension. On the other hand,
theextra record of additional fields is exactlyhat we mean by a mixin. The notion of an
abstract subclass should theref be modelled as a function:

absub =\b.(b® extra)
derived = absub(base)

and this illustrates the difference : the abstract subclass is a function which includes the
inheritance operator, whereas the misisimply a record of extra fields.

5 MIXINS AS EXTENSION TYPES

Most object-oriente languages don’t enurage the specification of mixims isolation,

but instead, records of extra fields are typycdeclared within the scope of a complete
subclass definition (like the example in sect®babove). The reasons for this have to do
with self-reference and the tyyg of inheritance. When aventional object subtype is
defined (in the style of Java or C++), refazes to the self-type in the extension are
equivalent to the eventual subtype [2], eatlthan the type of the extension. We can
illustrate this with a Point subtypleat extends an Object base type:

Object =poc.{identity : —» o}
= {identity : — Object}, after unrolling.

Point =pc.(Objectu {x :— Integer, y - Integer, equal s — Boolean})
= {identity : - Object, x > Integer, y - Integer,
equal : Point> Boolean}, after unrolling
Note that the extension record hasegual method accepting the self-typewhich after
unrolling the recursionis equivalent to Point. This is becauses recursively bound

10 JOURNAL OF OBJECT TECHNOLOGY VoL. 3, NO. 10

MIXINS AS EXTENSION TYPES O?L_/

outside the union of base fieldsid extra fields, to the resudt the union. The self-type in
the extension record is therefore nudependent, but refers to the subtype. -

If Java or C++ allowed the programmerdeclare mixins as freestanding records of
extra fields to be added to any class, theeald have an indepenadeself-type of their
own:

PointMixin = uo.{x :— Integer, y - Integer, equal s — Boolean}
= {X :— Integer, y - Integer,
equal : PointMixin—> Boolean}, after unrolling

Point = Objectu PointMixin
= {identity : - Object, x > Integer, y - Integer,
equal : PointMixin—> Boolean}, after unrolling

Note how the self-type of the PointMixin is bound ingeendently, to refer recursively
to the PointMixin type. After combination withe Object type, this yields a Point type in
which self-type reference is nely schizophrenic [3]: thénherited self-type is Object,
and the extension self-type is PointMixin, mawhere is the self-type equivalent to the
Point type! So, for this reason, languageseolaon subtyping wouldave trouble dealing
with self-referencdf they wished to admit freestanding types as mixins.

6 MIXINS AS EXTENSION GENERATORS

Flavors is a language, like Shtalk and Eiffel, in whichself is rebound during
inheritance to refer to the subclass ins@anAccordingly, the self-type evolves during
inheritance to refer to the subclasdige. In earlier arties, we found thatype
generators could be used to deribe this kind of flexibilityin the self-type [2, 3]. The
type of a mixin can be expressed using a type generator, instead of a fixed type:

GenPointMixin =Ac.{X : — Integer, y +> Integer, equals — Boolean}

In this, the self-typ& is a parameter introduced byand is not yet bouhto any specific
type. Given a similar generator for the Objggie, we can constrti@a generator for the
Point type, by unifying the self-types dhe base and mixin generators in the
combination:

GenObject s\c.{identity : —» o}

GenPoint =\t.(GenObjectf] U GenPointMixink])
= At.{identity : — 1, X ‘= Integer, y -> Integer,
equal T — Boolean}

VoL. 3, NO. 10 JOURNAL OF OBJECT TECHNOLOGY 11

o THE THEORY OF CLASSIFICATION, PART 15: MIXINS AND THE SUPERCLASS INTERFACE

Point = (Y GenPoint)
= {identity : — Point, x :> Integer, y - Integer,
equal : Point> Boolean}, after unrolling.

Here, the subclass generator GanPintroduces a new self-typeand propagates this
into both the base generator GenObject #uedextension generator GenPointMixin (by
applying them to the new typego creating two record types which refer to the same self-
typet. After the union of fieldst refers homogeneously to teelf-type. After fixing the
recursiong is bound to the desired Point type.

7/ BOUND AND FREE MIXINS

We characterise mixins as eiti@mund or free, to denote whether or not they depend on
their superclass. The GenPointMixin typengetor above was defined as though it were
the type of a free mixin, capi@bof being combined wittany other object, since its
methods were assumed not to interact \&itly superclass behaviour. To examine this in
more detail, we can build aobject generator to represent the implementation of the
mixin [4]:

freePointMixin =Aself.{ x— 2, y+> 3,
equal— Ap.(self.x = p.xa self.y = p.y)}
The body of the implementation has no dependency on any super-object, illustrating the
independence of the mixin. One possivkakness in this design is that #geial method
can only compare the localandy values. If this were “mixed in” with some other base
object with anequal method, the inherited method would be overridden by the mixin’s
version.

To illustrate this, we introduce the object generator genSquare, representing a
geometric square with its ovade andequal methods:

genSquare #self.{sider 5, equal> As.(self.side = s.side)}

We may seek to combine the genSquare feeePointMixin generats by inheritance;
the resulting generator genLocSquegpresents a locatable square:

genLocSquare %self.(genSquare(sel freePointMixin(self))

= Aself.({side— 5, equal> As.(self.side = s.side)P
{xX— 2,y 3, equal> Ap.(self.x = p.xa self.y = p.y)})

= Aself.{sider> 5, X 2, y> 3,
equal> Ap.(self.x = p.xa self.y = p.y)}

Although two versions oéqual are present before record combination, the opefator
prefers fields from the right-hand side, refihgcany identically-named fields on the left.

12 JOURNAL OF OBJECT TECHNOLOGY VoL. 3, NO. 10

BOUND AND FREE MIXINS O?L_/

The inherited version afqual is therefore overriddeand the version adqual obtained
in the result is insufficient, because we can no longer compasaésef squares.

Sinceequal is a common method and is likely éxist in most classes, we would
prefer our mixin to adapt thequal method of its base classther than replace it
wholesale. In an earlier aate [9] we showed how inherilemethods could be adapted
by method combination, in which a redefined version d¢ie method calls the original
version through theuper variable. To make inherited th@ds available to a mixin, we
have to supply it witla variable standing for treeiper-object. The following is anbject
generator for a bound mixin, whose implementation depends on bathand super
variables. Theuper variable will be bound later to a superclass instance:

boundPointMixin =Aself. Asuper.{x— 2, y+> 3, equal> Ap.(super.equal(p)
self.x=p.x A self.y = p.y)}

The dependency on the super-object is evident in the revised bodyegjugthenethod,

which callssuper.equal(p) before comparing the respectiveandy values. Note how a
bound mixin generator must alwaysve an extra argumeritsuper, to bind to the

eventual base object.

Once again, we combine the genSqugenerator with the boundPointMixin
generator to obtain a genenafor the locatable square, genLocSquare. Note in passing
how self is reintroduced outside dhe record combinatiorand how both generators
accept this new value o$ef, to ensure uniformself-reference. In addition, the
boundPointMixin receives an actual argumgaiSguare(self), representing the value of
super; in fact this same expression denoteshiige object on the left-hand side of record
combination:

genLocSquare %self.(genSquare(sel)
boundPointMiself, genSquare(self)))

= Aself.({sider 5, equal> As.(self.side = s.side)lp {x — 2,y 3,
equal- Ap.((As.(self.side = s.side) p)self.x = p.xA self.y = p.y)})

= Aself.{sider> 5, X 2, y> 3,
equal— Ap.(self.side = p.side self.x = p.xa self.y = p.y)}
After simplification, the result has exactly the desired imgletation of a generator for a
locatable square object. Thsuper.equal(p) expression is »@anded during this
simplification to yield the body of the inhtgd method, which is combined using logical
and with the further parts of the redefinegual method.

8 THE SUPERCLASS INTERFACE

We now want to add types to the bound miknplementation desdred above. In this,
we shall need to provide polymorphic types $aif and forsuper. The typing ofself is

VoL. 3, NO. 10 JOURNAL OF OBJECT TECHNOLOGY 13

o THE THEORY OF CLASSIFICATION, PART 15: MIXINS AND THE SUPERCLASS INTERFACE

relatively straightforward, but the typing sfiper is shown below to be much more
difficult. 1t is particularly desirald to try to establish the type @fper, since this captures
exactly thesuperclass interface of a mixin, describing the type of object with which it
expects to be combined. However, the typesupkr is made more complex by the fact
that the eventuakelf- and super-types must stand in aulstyping relationship. So,
although these two types would appear on the surface to be indepé¢hegrare in fact
related. Other treatments of typed mixind][have expressed this by introducing the
super-type first, then a dependent self-ty@eir novel approach reverses the order of
dependency, introducing tiself-type first, thera dependent super-type.

Previously, we showed how the typesalff in an object generator could be given by
an F-bound constructed from the correspondiype generator [10]. All combinations
with the boundPointMixin forna class with at least the y andequal methods in their
interface. The type generator GenPointMixin (from section 6) already describes this
interface:

GenPointMixin =Ac.{X : — Integer, y -> Integer, equals — Boolean}

such that we may give a polymorphic typdor self ranging over all those types with (at
least) these methods:

V(o <: GenPointMixinf]) . self :c

What is unusual about this is that it does not depend on the tgppeofin any way. We
would normally have expected to usetype generator of two arguments,and t,
reflecting the two-argumentrstture of the object generator. The reason why we can
ignore thesuper-typet is because mever appears in the public interface of the class — it
is irrelevant! This allows us to introduce the self-tgpmdependently, using the simpler
type generator.

The polymorphic type of super may now be expressed agange of types within
certain bounds. The lower bound is the typef self (becauseself : o must eventually
stand in a subtyping relationship wisbper : t), which gives rise to the lower bound
condition:

V(o <: GenPointMixinf]) . V(t |o <: 1) . super x
The upper bound is expressed in terms of a minimum type, determined by examining the
methods that are invoked on thaper variable, then constructing an interface which
supports at least these methods. We can @althis by internal ispection of the object
generator implementation. In the example above, the boundPointMixin expestpdhe
object to have at least agual method. Accordingly, we magonstruct a type-generator
representing the interface alf objects possessing (just) tégpial method:

GenEqual sit.{equal :1 — Boolean}
and from this creatthe upper bound condition:

14 JOURNAL OF OBJECT TECHNOLOGY VoL. 3, NO. 10

THE SUPERCLASS INTERFACE O?L_/

V(o <: GenPointMixinf]) . V(t <: GenEqualf]) . super =

What is different here is thateghconstraint is not expressed ass: GenEqualf], but S
rather in terms of the self-type This is because, at thene the super-type is bound, all

generator-types will be adigal to the current self-type Combining the lower and upper
bound constraints on thsaper-type yields the range:

V(o <: GenPointMixinf]) . V(t | o <: 1 <: GenEqualf]) . super

This, finally, is the type of the superclass ifdee! It is quite complicated, but intuitively
expresses the idea that the eventual typsumdr is a supertype afelf and a subtype of
the interface providing thegual method.

9 TYPED MIXIN COMBINATION

We may now observe the interplay of typelsen we combine a typed version of the
boundPointMixin with a typed vemn of the canonical square. First, we attach types to
the mixin, as determined above:

boundPointMixin ¥ (c <: GenPointMixinf]) .
V(t | o <:t <: GenEqualf]) . c »> T — GenPointMixinp]
= M(o <: GenPointMixinf]). A(t | o <: 1t <: GenEqualf]).
A(self ;o). A(super 1).{X > 2, y— 3,
equal> A(p : o).(super.equal(p)
self.x=p.x A self.y = p.y)}
The typed version of the canonical square is given in the usual way by:

GenSquare #oc.{side : — Integer, equal s — Boolean}

genSquareY(oc <: GenSquare]]). c > GenSquare]
= Mo <: GenSquare]]). A(self : o).
{sidet> 5, equal> A(s :c).(self.side = s.side)}

The typed locatable square is to be detiby adding the point mixin to the canonical
square. First, we establish the resulting type generator, GenLocSquare:

GenLocSquare %c. (GenSquaref] v GenPointMixing])

= Lo .{ side :— Integer, x — Integer, y — Integer, equals — Boolean }
The typed locatable square is tlggwen by the “mixed in” combination:

genLocSquareY(c <: GenLocSquare]). c - GenLocSquarej]
= Mo <: GenLocSquare]). A(self : o) .
(genSquare(sel® boundPointMixin(selfgenSquare(self)))

VoL. 3, NO. 10 JOURNAL OF OBJECT TECHNOLOGY 15

o THE THEORY OF CLASSIFICATION, PART 15: MIXINS AND THE SUPERCLASS INTERFACE

= Mo <: GenLocSquare]). A(self :c) {sider> 5, x> 2,y 3,
equal> A(p : o).(self.side = p.side self.x = p.xA self.y = p.y)}
The result is a typed object generatorddocatable square, exactly as desired.

We now want to check whether the typenstraints of the typed mixin generator
were properly observed. In the combipatithe mixin generator was called with:

e the new value ofelf, having the reintlduced self-types < GenLocSquare
e the value okuper, genSguare(self), having the adapted type: GenSquale[

The self-typec was expected to satisfy/(c <: GenPointMixinf]). This holds by the
rule of classification [3]. Since the twgenerators stand in a pointwise subtyping
relationship:

V1 . GenLocSquare] <: GenPointMixinf]
then ifo <: GenLocSquarej then it follows thait <: GenPointMixing].

The super-type GenSquas¢was expected to satisfy¥(t | o <: t <: GenEqualf]).
We can check this by theubstitution of {GenSquare] / t} to see if both the lower and
upper bound conditions hold. Firstlye examine the lower bound:

V(o < GenLocSquare]) . o <: GenSquarej]
This holds, because the two generataadin a pointwiseubtyping relationship:

V1t . GenLocSquare] <: GenSquare]

therefore ifo <: GenLocSquare] then it follows thaic <: GenSquarej]. Secondly, we
examine the upper bound:

V(o < GenLocSquaref) . GenSquaref] <: GenEqualf]

Again, we can show that the two generatend in a pointwissubtyping relationship
for all possible types:

V1 . GenSquare] <: GenEqualf]

therefore they still stand in this relationship for some subset of tyges. So, we have
demonstrated that mixins can be typed gouliad to base classegich properly satisfy
the superclass interface.

10 CONCLUSION

We started this article by presenting tleneept of a mixin. A mxin is a freestanding
record of extra fields, intended to be congainwith any other object. In some sense,
mixins are the primitive building blocks inriguages with inheritance-like mechanisms.
Bracha and Cook revived interastmixins when they demonstrated how the models of
inheritance in languages as diverse as|failg Beta and CLOS could all be mapped

16 JOURNAL OF OBJECT TECHNOLOGY VoL. 3, NO. 10

CONCLUSION O#—/

onto a simpler model based on the compositiomodns [8]. Howeve, the typing they
gave was based on simple first-order typesjlting in fragmented self-types after record
combination. This is why mixins don’t receige much attention in Java and C++, and
one reason why multiple inheritance is lessfulsin languages like C++ which are based
on simple subtyping.

Mixins are much more interesting ihase languages which modify self-reference
and the self-type during inliance. They then haveome of the power adispects in
aspect-oriented programming, since they w@ave in extra attributes and methods and
even adapt the course of an inheritedhod through method combination. However, the
formal characterisation of mixins was prewsly thought difficult. In particular, it was
thought that the type of theuperclass interface was impdsito express without going
to higher order logics. This is becausper apparently ranges overset of classes, so
quantification should have to rangeer sets of generators (tyfunctions), rather than
just over sets of simple types. In earkavrk by Harris and otherd 1], the higher-order
type ofsuper was introduced first, and then the typesaf, which depended on the type
of super. Here, we showed how it is possiliéeprovide a second-order type &uper, by
reversing the order in which the self-typelauper-type are introdad. This provided an
elegant typing for mixins, which was checked using an example of typed mixin
combination.

REFERENCES

[1] A J H Simons: “The theory of clagsation, part 3: Ofect encodings and
recursion”, inJournal of Object Technology, vol. 1, no. 4, September-October
2002, pp. 49-5Mttp://www.jot.fm/isses/issue_2002_09/column4

[2] A J H Simons: “The theory of classifitan, part 7: A class is a type family”,
in Journal of Object Technology, vol. 2, no. 3, May-June 2003, pp. 13-22.
http://www.jot.fm/issues/issue_2003_05/column2

[3] A J H Simons: “The theory of caification, part 8:Classification and
inheritance”, inJournal of Object Technology, vol. 2, no. 4, July-August
2003, pp. 55-64http://www.jot.fm/isses/issue 2003 07/column4

[4] A J H Simons: :The theory of clafisation, part 9: Inheritance and self-
reference”, inJournal of Object Technology, vol. 2, no. 6, November-
December 2003, pR5-34.http://www.jot.fm/issues/issue_2003_11/column2

[5] A J H Simons: “The theory of classification, part 13: Template Classes and
Genericity”, in Journal of Object Technology, vol. 3, no. 7, July-August
2004, ppl5-25.http://www.jot.fm/isses/issue 2004 _07/column?2

[6] H Cannon, Flavors, Technical Report (Cambridge: MIT Al Laboratory,
1980).

VoL. 3, NO. 10 JOURNAL OF OBJECT TECHNOLOGY 17

http://www.jot.fm/issues/issue_2002_09/column4
http://www.jot.fm/issues/issue_2003_05/column2
http://www.jot.fm/issues/issue_2003_07/column4
http://www.jot.fm/issues/issue_2003_11/column2
http://www.jot.fm/issues/issue_2004_07/column2

o THE THEORY OF CLASSIFICATION, PART 15: MIXINS AND THE SUPERCLASS INTERFACE

[7] D A Moon, “Object-orientedprogramming with Flavors”Proc. 1% ACM
Conf. Object-Oriented Prog. Sys., Lang. and Appl., pub. ACM Sgplan
Notices, 21(11), (ACM Sigplan, 1986), 1-6.

[8] G Bracha and W Cook, “Min-based inheritance”Proc. 5" ACM Conf.
Object-Oriented Prog. Sys., Lang. and Appl. and Proc. 4" European Conf.
Object-Oriented Prog., pub. ACM Sgplan Notices, 25(10) (ACM Sigplan,
1990), 303-311.

[9] A J H Simons: “The theory of daification, part 10: Method combination
and super-reference”, lournal of Object Technology, vol. 3, no. 1, January-
February 2004, pp. 43-5Bttp://www.jot.fm/issues/issue 2004 _01/column4

[10] A J H Simons: “The theory of cla§isation, part 11: Addig class types to
object implementations”, idournal of Object Technology, vol. 3, no. 3,
March-April 2004 pp. 7-19. http://www.jot.fm/issues/issue 2004 03/
columnl

[11] W Harris, Typed Object-Oriented Programming: ABEL Project Posthumous
Report, Hewlett-Packard Laboratories (1991).

About the author

Anthony Simonsis a Senior Lecturer and Director of Teaching in the
Department of Computer Scienddniversity of Sheffield, where he
leads object-oriented research irrifreation and testing, type theory
and language design, developmenthuds and precise notations. He
can be reached atsimons@dcs.shef.ac.uk

18 JOURNAL OF OBJECT TECHNOLOGY VoL. 3, NO. 10

http://www.jot.fm/issues/issue_2004_01/column4
http://www.jot.fm/issues/issue_2004_03/column1
http://www.jot.fm/issues/issue_2004_03/column1
mailto:a.simons@dcs.shef.ac.uk

