This is a repository copy of The theory of classification part 12: building the class
hierarchy.

White Rose Research Online URL for this paper:
http://eprints.whiterose.ac.uk/79266/

Version: Published Version

Article:
Simons, A.J.H. (2004) The theory of classification part 12: building the class hierarchy.
Journal of Object Technology, 3 (5). 13 - 24. ISSN 1660-1769

Reuse

Unless indicated otherwise, fulltext items are protected by copyright with all rights reserved. The copyright
exception in section 29 of the Copyright, Designs and Patents Act 1988 allows the making of a single copy
solely for the purpose of non-commercial research or private study within the limits of fair dealing. The
publisher or other rights-holder may allow further reproduction and re-use of this version - refer to the White
Rose Research Online record for this item. Where records identify the publisher as the copyright holder,
users can verify any specific terms of use on the publisher’s website.

Takedown
If you consider content in White Rose Research Online to be in breach of UK law, please notify us by
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

\ White Rose o
| university consortium eprints@whiterose.ac.uk
WA Universiies of Leeds, Sheffield & York https://eprints.whiterose.ac.uk/

mailto:eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

ff——

JOURNAL OF OBJECT TECHNOLOGY

Online at http://www.jot.fm. Published by ETH Zurich, Chair of Software Engineering ©JOT, 2004

Vol. 3, No. 5, May-June 2004

The Theory of Classification
Part 12: Building the Class Hierarchy

Anthony J H Simons, Department of Computer Science, University of
Sheffield, U.K.

1 INTRODUCTION

This is the twelfth articlan a regular series on objeatiented type theory for non-
specialists. Readers following the seriedl Wy now have gained some experience in
theoretical models and theirses. Previous articles hageadually built up models of
objects [1], types [2] and classes [3] in thealculus. Inheritace has been shown to
extend both type schemes [4] and implememtati®]. The most rece article combined
the type and implementation aspects of rithece [6], introducing the typed notation
that will be used in the rest of this & The theoretical mokdbas already revealed
some interesting differencé®tween the notions ¢ype andclass. We have shown that
one group of languages, exemplified by C++ and Java, subbgping [2, 3, 5] as the
basis for type compatibility, whereas anatgeoup, exemplified by Smalltalk and Eiffel,
usessubclassing [3, 4, 5], which is a distincformal relationship in theTheory of
Classification.

In this article, we review the whole model fsm, to demonstrate more of its formal
modelling power. The theoretical model is atderepresent the whole spread of object-
oriented concepts, such as objects, typessetasabstract classes and interfaces. It can
handle the notion of objectreation, class extensiothrough inheritance, type
compatibility and interface matching. We shall build up a simple model of a class
hierarchy, demonstrating all of these concepitst, we shall briefly review the elements
of the model.

2 SIMPLE OBJECTS AND TYPES

Objects are modelled as simple records, whosds are values, representing attributes,
or functions, representing netds. Types are modelled as nettypes, whose fields are

Cite this column as follows: Anthony J.H. Simons: “The Theory of Classification, Part 12: Building
the Class Hierarchy”, in Journal of Object Technology, vol. 3, no. 3, May-June 2004, pp. 13-24.
http://www.jot.fm/issues/issue 2004 05/column2?

http://www.jot.fm
http://www.jot.fm/issues/issue_2004_05/column2

v#—/ THE THEORY OF CLASSIFICATION, PART 12:
o BUILDING THE CLASS HIERARCHY

the corresponding type signatures of the attributes or methods. The following introduces a
simple co-ordinate typend an instance of the type:

Coord = {x : Integer, y : Integer}

coord : Coord ={¥> 2, y— 3}

We use capitalisation to indicate type nanend lower case for object names. The above
coordinate is a specific instance of Coordtha location (2, 3). To construct such an
instance, we can define the constructor-functmakeCoord:

makeCoord : Integer Integer— Coord
=A(a, b : Integek Integer).{x— a, y+—> b}

This accepts a pair of argumemtsb, and returns a record@prresponding to a Coord
instance. We can then creat®rd from first principles by the constructor-call:

coord = makeCoord(2, 3 {X+— 2,y 3}

We access its fields using the “dot” syntacoord.x = 2, coord.y = 3. The fieldsx, y
have fixed values once the object is constdic¥e can think of these fields either as
constant public attributes, or else we canktof them as “unary methods”, functions that
accept no argument and access an encapsulated. WAlaetypically take the second
view, so that all record fieldsan be thought of as functions.

3 RECURSIVE OBJECTS AND TYPES

Objects are frequently recursive, @nmethods may invoke further methodssalf, the
current object. Types are also recursive¢aimethods may accept or return arguments of
the same type as tlself-type. These two kindsf recursion are related, but independent.
We use a standard technique in ihealculus to introduce and bind the recursion, called
fixpoint finding [1] and separate fixpoints are neddat the object-level and the type-
level. The technique involves the usegeherators (also calledfunctionals), which are
functions of the self-value (or self-typeJhe following introduces type- and object-
generators for a more sophcated Cartesian poinyde, which has a recursigual
method:

GenPoint S\c.{X : Integer, y : Integer, equak: - Boolean}

genPoint v (t <: GenPointf]). T —> GenPointf]
= AM(t <: GenPointf]).A(self : 7).
X 2,y 3, equal> A(p : 1).(self.x = p.xa self.y = p.y)}

!t is possible to think of simple fieldss functions accepting an empty argument,»>egEmpty — Integer,
and think of all method invocations as supplying the empty watugomatically, eg:coord.x(s) = 2.

14 JOURNAL OF OBJECT TECHNOLOGY VoL. 3,NO. 5

ff—

The type generatddenPoint is not yet a record typdut rather a function af (the self-

type parameter) that returns a record type. We construct the recBositetype by N
binding ¢ recursively to the function body, using the fixpoint findte(see [1] for full

details):

Point =Y[GenPoint]
= {X : Integer, y : Integer, equal : Poit Boolean}
In this way, we build the recursivoint type from first principles. Note how, once the

definition is complete, we maynroll Point (denoted by the evaluation step) to a
record type containing recursive reference toRbiet type.

Likewise, the object generatgenPoint is not yet an objeanstance, but rather a
function that returns this iretce. It accepts two argumentstands for ta self-type and
self for the self-value. To create a point-instafroen this generatonyve need to supply a
suitable type for and then bingelf recursively over the resf the function body. In the
first step, we choose to supply the tyRaint, and the returned result is a generator, a
simple function ofdlf:

genPoint[Point] =A(self : Point).{x— 2, y 3,
equal—> A(p : Point).(self.x = p.x self.y = p.y)}
In the second step, this simple generator may be recursively fixedYusing

point =Y (genPoint[Point])
= {X b 2,y 3, equal> A(p : Point).(point.x = p.x point.y = p.y)}
to bind self over the rest of the body. Noteaag how, after unrolling, the defingmbint

instance contains recursive referencegdmt. If we consider that the typeoint was
itself the result of a fixpoint opetian, we could equally defingoint in the style:

point =Y (genPointly GenPoint])

illustrating how it takes two fixpoints to bind thecursions at object- and type-level in
each instance. From a theoretician’s poinviefv, this presents some challenges. Bruce
and Mitchell [7] were the first to show th¥texisted both at both the type- and object-
levels, and prove that fixpoindperations converged at inifiy, provided that objects
were records of functions. ¢@vergence fails if an object has a field which directly
returns self; however, we can always convert tidentity method into a function
accepting an empty argument — see the earlier fodjnote

4 CONSTRUCTING OBJECT INSTANCES

In the previous article [6], we settled ors@gle for defining allclasses using type- and
object-generators, as illustrated above. It tautsthat this is most useful, because we can
create subclasses by adapting generators]j4jn a style that mimics inheritance.

VoL. 3,NO. 5 JOURNAL OF OBJECT TECHNOLOGY 15

v#—/ THE THEORY OF CLASSIFICATION, PART 12:
o BUILDING THE CLASS HIERARCHY

However, the exact process of constructuiigtinct object instances was not fully
described. In factgenPoint is a generator for gpecific instance, withpoint.x = 2 and
point.y = 3. To make this function more gerlgparpose, we should force it to accept
extra initialisation arguments:

initPoint : V(t <: GenPointf]). (Integerx Integer)— t — GenPointf]
= A(t <: GenPointf]).A(a, b : Integek Integer)A(self : 1).
{X+ a, y— b, equal> A(p : 7).(self.x = p.xA self.y = p.y)}
Here,initPoint is an extended version génPoint, which accepts a type then a pair of

Integer arguments, b, then the usual value faelf. This function can be used to
construct objecthaving distincix, y field values in the following style:

pl =Y (initPoint[Point](4, 5))
= {X > 4,y 5, equal> A(p : Point).(pl.x = p.x pl.y = p.y)}

p2 =Y (initPoint[Point](6, 7))
= {X 6,y 7, equal> A(p : Point).(p2.x = p.x p2.y = p.y)}
Note the order of application in the creatiorpdf first we supply the precise typeoint;
then we supply the initialisation values (4, 5). This returns a simple object generator,
having the form(self : Point).{ ... }, which we can fix usiny to bindself recursively
over the rest of the generator body.

If we wanted, we could define a simple object constructakePoint, in the same
style agmakeCoord (see section 2), which uses the extended funatitiPoint internally:

makePoint : Integex Integer— Point
=M@, b : Integek Integer).Y (initPoint [Y GenPoint] (a, b))

pl = makePoint(4, 5)
p2 = makePoint(6, 7)

In this, you can think o as taking a fixed snap-shot thie flexible type-structure and
object-structure represented by the two gewesa Constructors irpractical object-
oriented languages always creatpacific instance of a specific type.

5 INVOKING OBJECT METHODS

Having created two distinct instancesRdint, we can simulate their behaviour in the
theory, by evaluating expressions eg@nting method invocations, such as:

pl.equal(p2)
= Mp : Point).(pl.x = p.x pl.y = p.y) (p2)- by selectirgyual from pl
= pl.x = p2.xA pl.y = p2.y - by substitutingp®/p: Point}

16 JOURNAL OF OBJECT TECHNOLOGY VoL. 3,NO. 5

=4 =p2.XxA ply = p2y - by selectingfrom p1

= 4=6Aply=p2y - by selectingfrom p2 N
= falsen pl.y = p2.y - bynteger.=

= false - by Boolean.A

The steps shown above are mostly single etialuateps in the calculus, showing on the
right which rule applied in each case. In jgaitar, we use the reod selection rule to
access the methods fequal andx, and the function applicatiorule when applying the
result of pl.equal to the argumenp2. The details of primitivdnteger and Boolean
operations are omitted here. We assume that suitable definitions exist for these types.

6 ROOTING A CLASS HIERARCHY

Within the theory, we can model the notionaotlass hierarchy, stamg with a root class
of all objects. We shall later derive othelasses by extending the root class. In this
example, we shall assume that thetrdass only defines a single methegljal, and that
the default implementation of this methoddentity of reference, represented by ==.

GenObject sic.{equal :c — Boolean}

genObject ¥(t <: GenObjectf]). T —> GenObjectf]

=Mt <: GenObjectf]). A(self : 7). { equal— A(0 : 7).(self == 0)}
The type generatoGenObject describes the type-shape thfe most general kind of
object, saying that it has aqual method. The object generatgenObject provides the
default implementation of thegual method, and restricts the ajgability of this method
to arguments of the typg(o : t), wheret ranges over the family of types expressed by
the constraintV(t <: GenObject[t]). In earlier articles [3, 4] we described how this
expresses exactly the notion afclass, a family of relatetypes. This constraint [8]

accepts all record types that have at leastgaal method, with a type signature —»
Boolean.

The Point from section 3 above appears to matds plattern. It igossible to derive
Point’s generators fronDbject’s generators, in the styldnat mimics the operation of
inheritance in object-orieatl programming. Recall tha® is union with override,
creating an extended record by combining a aserd with a record of extra methods

[5]:

GenPoint 5\t.(GenObject[t] U {X : Integer, y : Integer})
= At.{equal :t — Boolean, x : Integer, y : Integer}

initPoint : V(o <: GenPointf]). (Integerx Integer)—» ¢ —» GenPoint]
= Mo <: GenPoinif]).A(a, b : Integek Integer)a(self : o).

VoL. 3,NO. 5 JOURNAL OF OBJECT TECHNOLOGY 17

v#—/ THE THEORY OF CLASSIFICATION, PART 12:
o BUILDING THE CLASS HIERARCHY

genObject[c](self) @
{xX+— a, y— b, equal> A(p : 0).(self.x = p.xr self.y = p.y)}

= Mo <: GenPoinif]).A(a, b : Integek Integer)o(self :).
{X a, y— b, equal> A(p : c).(self.x = p.xA self.y = p.y)}

The bold highlights indicate how the old typengrator and object-generator are reused
in the definition of the new, extended functioAs the type-level, wadded the types of
the x, y fields. At the object-level, we addeimplementations for these, and also
redefinedequal to compare the, y field values, rather thatest for reference identity.
The right-handed preference ®fcauses the new versionagjual to override the default
version provided in the root class, when the extra record is combined with the base record
[5].

To establish that thePoint- and Object-classes are in a proper hierarchical
relationship, we need to show that tReint-interface is compatible with th@®bject-
interface. This is done formally using tBkassify rule [4], in which we have to compare
the two type-generators for a ptwise subtyping relationship:

V1 . GenPointf] <: GenObjectf]
We can show that the relationshigdsfor a single dummy exemplar type

for some t, GenPoint[t] <: GenObject][t]
= {X : Integer, y : Integer, equal — Boolean}
<:{equal : t— Boolean}
= true - by record subtyping [2].

and by generalisingto all typesvt, assert that the relatidnp holds everywhere. As a
result, we maintain thatll types belonging to th€oint-class will also belong to the
Object-class.

7 INTERMEDIATE ABSTRACT CLASSES

We can also define the notion of an abstract class. This is expressed by a pair of
generators in which full type information géven in the type-generator, but some of the
implementation information is left undefined in the object-generator. Earlier, welused

to represent thandefined value [1]. InA-calculus, any expression which simplifieslto

is the formal equivalent of raising axception in gpractical programming language.

This is also quite suitable foepresenting abstract methodsics! it is an \or to invoke

them (instead, you would expect the abstraethods to be overridden in a concrete
subclass).

We seek to define &hape-class, the abstract ancestor of geometric shapes, such as
Circle and Rectangle, which provides a concretarigin method, indicating its screen

18 JOURNAL OF OBJECT TECHNOLOGY VoL. 3,NO. 5

ff—

coordinates, but an abstracea method, for which no implementation can yet be given.
Furthermore, we define this class by extension from theObjett-class above. -

GenShape #t.(GenObjectf] U { origin : Point, area: Integer })
= At.{equal ;1 — Booleanorigin : Point, area: Integer }

initShape V(o <: GenShape]]). Point— ¢ — GenShape]
= Mo <: GenShape]]). A(p : Point).A(self : o).
genObjectf](self) @ { equal — A(s: o).(self.origin.equal(s.origin)),
origin— p,arear> L }

= Mo <: GenShape]]). A(p : Point).A(self : o).
{ equal > A(s: o).(self.origin.equal(s.origin)), origin — p, areatr> L }

In the type-generatoGenPoint, the extra type-information is highlighted in bold. The
object-functioninitShape is written in the same style astPoint, with extra initialisation
arguments, since we want to hble to supply the initigPoint coordinatep at which a
Shape is to be located. Given this argum@ntwe can defin@rigin to returnp, and can
redefineequal to compare therigins of two Shapes — this in turn uses thegqual method
defined earlier folPoints. Note the use at in the body of therea method, indicating
that this is so far undefined.

To demonstrate what happens in thedel when you try to invoke an abstract
method, we exceptionally provide a simple candtr for abstract Shapes, so that we can
create an instance and involtee abstract method (norftya no constructor would be
provided, since the class is abstract):

makeShape : Poirb Shape
=M(p : Point).Y (initShape Y GenShape] (p))

pl = makePoint(4, 5 ... - detail omitted for clarity
sl = makeShape(pt»

{ equal— A(s : Shape).(s1.origin.equal(s.origin)), originpl, area—> L }
sl.origin = pl - concrete, by selectinggin in sl
sl.area= L - abstractpy selectingarea in sl

The result of attempting to select almstract method is the undefined valyesquivalent
to raising an exception.

8 FINAL CONCRETE CLASSES

We now seek to derive a concrdectangle-class as a subclass of the abst@eipe-
class, with an implementation of iésea method. The type-generator declares the extra
signatures for thewidth and height fields, while the object-function supplies

VoL. 3,NO. 5 JOURNAL OF OBJECT TECHNOLOGY 19

v#—/ THE THEORY OF CLASSIFICATION, PART 12:
o BUILDING THE CLASS HIERARCHY

implementations for these, and also provides a concrete implementation faredhe
method, and re-implements tbgual method to compareidth andheight, in addition to
origin:

GenRectangle #c.(GenShapef] U { width : Integer, height : Integer })
= Ao.{equal :c — Boolean, origin : Point, area : Integeidth : I nteger,
height : Integer }

initRectangle ¥(t <: GenRectangle]).
(Pointx Integerx Integer)— t — Genlinteger]
= M(t <: GenRectangle]). A(p, w, h : Poink Integerx Integer).A(self : 7).
initShapet] (p) (self) @ { arear» (self.width x self.height),
equal - A(r : 1).(self.origin.equal(r.origin) * self.width = r.width
N self.height = r.height),
width — w, height — h }

= A(t <: GenRectangle]). A(p, w, h : Poink Integerx Integer).A(self : 7).
{ origin > p, area~> (self.width x self.height),
equal - A(r : 1).(self.origin.equal(r.origin) A self.width = r.width
N self.height = r.height),
width — w, height —» h'}

By the usual operation oP, the right-hand, concrete version afea is preferred,
overriding the abstract veos inherited from the&hape-class; likewise, the new version
of equal is preferredreplacing the inhdted version. TheRectangle-class is now fully
defined, with suitable implementations for all of its methods.

In the object-functiomnitRectangle, the initialisation-value is of a different type than
the argument supplied taitShape, since we need to initialisserectangle with (all of) its
origin, width andheight values. Formally, this initialisés a single value, a tuple of the
product type Poink Integerx Integer, whose projectionge access implicitly. Notice
how the initialiser passed back itotShape in the inheritance-expression (on the left of
@) is just thep : Point value, the first projection from the current initialiser. This models
the notion of passing back some domstion arguments to a superclass.

We can provide a simple constructor Rectangle objects, in the usual way, which
fixes the object- and type-level recursiongsmstruct an instana# this exact type:

makeRectangle : Poistintegerx Integer— Rectangle
=Mp, w, h : Poink Integerx Integer).
Y (initRectangleY GenRectangle] (p, w, h))

and with this, we may consitt a number of distind®ectangle instances:

20 JOURNAL OF OBJECT TECHNOLOGY VoL. 3,NO. 5

pl = makePoint(4, 5 ... - detail omitted for clarity
rl = makeRectangle(pl, 2, 3)
{ origin > p1, area— (rl.widthx rl.height),
equal— A(r : Rectangle).(rl1.agin.equals(r.originh
rl.width = r.widtha rl.height = r.height),
width— 2, height— 3 }
r2 = makeRectangle(pl, 6, #
{ origin — p1, area— (r2.widthx r2.height),
equal- A(r : Rectangle).(r2.agin.equals(r.originh
r2.width = r.widtha r2.height = r.height),
width— 6, height— 7 }

The instancesl, r2 : Rectangle have different values for thewidth andheight fields,
although they happen to share thairgin in this example. Also, themsrea andequal
methods invoke further methods (recurspyyen the same instance, as intended.

9 TYPE COMPATIBILITY AND INTERFACE MATCHING

The Rectangle instances should be type-compatible with $hape-class interface, and
transitively with theObject-class interface. Methods defthdor these general classes
should be type-correct when appli® instances of the speciftectangle type. One way
of checking this is to see whetheectangle is included in the type-family of each class
[4]. First, we want to see Rectangle is in the class dhapes:

Rectangle <: GenShape[Rectangle]
= {equal : Rectangle> Boolean, origin : Point, area : Integer,
width : Integer, height : Integer}
<: {equal : Rectangle> Boolean, origin : Point, area : Integer}
= true, - by record subtyping [2];

and secondly, wheth&ectangle is in the class oDbjects:

Rectangle <: GenObject[Rectangle]
= {equal : Rectangle> Boolean, origin : Point, area : Integer,
width : Integer, height : Integer}
<: {equal : Rectangle> Boolean}
= true, - by record subtyping [2].

In both cases, the answer is yes, becd&eptangle extends the interface provided by
each superclass. In particular, tgpial method was originally declared in tii¥ject-
class, with the typev(t <: GenObject[t]). T.equal : T — Boolean, so applying this to a
Rectangle instance simply produces the substitutiolRediangle/t} and yields the
specifically-typed versionRectangle.equal : Rectangle — Boolean. Similarly, thearea
method was originallydeclared in theshape-class with the typeY(tr <: GenShape[t]).

VoL. 3,NO. 5 JOURNAL OF OBJECT TECHNOLOGY 21

v#—/ THE THEORY OF CLASSIFICATION, PART 12:
o BUILDING THE CLASS HIERARCHY

t.area : Integer, so applying this to Rectangle instance produces the same substitution:
{Rectangle/t} and yields the specifically-typed versioRectangle.area : Rectangle —
Integer.

Looking at the unrolled version of thHeectangle type above, we can see that the
redefined versions of these methddwe exactly the same types. Bectangle matches
all the expected superclass mfiaees, as intended. These nfdees were defined as part
of the type-information associated with @sd. However, some practical programming
languages allow the definition of interfaces thgg not associated with any class.

In the theory, the concept of an independetarface may be represented exactly by
a type-generator, without a corresponding obgestterator. If we wanted to specify (for
example) d_ocatable interface for all object types providing argin method, we could
do so using just the type generator:

GenLocatable #c.{origin : Point}

and then givd.ocatable variables the polymorphic typ&(t <: GenLocatable[t]). It is
clear that both thé&hape and Rectangle classes satisfy this terface, by the pointwise
subtyping condition expected ihe Classify rule [4]:

Vvt . GenShape] <: GenlLocatable]
Vvt . GenRectangle] < : GenlLocatable]

and the interested reader is encouragegrdoe this, using the same kind of strategy as
demonstrated in section 6 above.

10 CONCLUSION

This article has focused on two main arda®swy to construct specific object instances,
and the development of a simple class h@rmar The overall aim was to demonstrate how
the Theory of Classification can model a variety of objeotiented concepts, including
objects, types, classes, abst classes and interfaces.

Regarding object construction, we showmaolv generators can be extended into
flexible object-creation functions with initisation arguments. Furthermore, initialisation
values may be passed back to the superélessions, mimicking the behaviour of real
object-oriented languages. From a formal pecsive, creating a unique instance of an
exact type always involvesking a double fixpoint, one fdahe type-generator and one
for the object-generator.

Regarding class hierarchy development,gage examples of recognisable classes,
with mixtures of default, abstract and cogte methods. Note especially how the type-
and implementation-aspects were ableetwlve independently, according to need. A
class may introduce a new method, may de@arabstract method, or may re-implement
an existing method, replacing it with a moggeopriate version. All of this is handled

22 JOURNAL OF OBJECT TECHNOLOGY VoL. 3,NO. 5

ff—

uniformly within the theory. Furthermoreye have shown that classes derived by
inheritance (using generatorgive rise to object constructors, which create objects of N
exact types (after fixpoints ataken). These exact types ntatbe expected interfaces of

their superclasses, and also of separatetfared interfaces, where appropriate. The

matching condition Glassify [4]) is exactly the same in both cases, demonstrating the

economy of the theory.

REFERENCES

[1] A J H Simons, “The theory of clagsation, part 3: Object encodings and
recursion”, inJournal of Object Technology, vol. 1, no. 4, September-October
2002 pp. 49-57 http://www.jot.fm/isses/issue_2002_08/column4

[2] A J H Simons, “The theory of clasgiition, part 4: Objedlypes and subtyping”,
in Journal of Object Technology, vol. 1, no. 5, November-December 2002, pp. 27-
35. http://www.jot.fm/issues/issue_2002_11/column2

[3] A J H Simons, “The theory of classificati, part 7: A class is a type family”, in
Journal of Object Technology, vol. 2, no. 3, May-June 2003, pp. 13-22.
http://www.jot.fm/issues/issue_2003_05/column2

[4] A J H Simons, “The theory of classification, part €lassification and
inheritance”, inJournal of Object Technology, vol 2, no. 4, July-August 2003, pp.
55-64.http://www.jot.fm/issues/issue_2003_07/column4

[5] A J H Simons, “The theory of cladisation, part 9: Inheritance and self-
reference”, inJournal of Object Technology, vol. 2, no. 6, November-December
2003, pp25-34.http://www.jot.fm/isses/issue_2003_11/column2

[6] A J H Simons, “The theory of classiftoan, part 11: Addinglass types to object
implementations”, inJournal of Object Technology, vol 3, no. 3, March-April
2004, pp. 7-1%ttp://www.jot.fm/issues/issue_2004 03/columnl

[7] K Bruce and J Mitchell, “PER modelsf subtyping, recursive types and higher-
order polymorphism”Proc. 19" ACM Symp. Principles of Prog. Langs., (1992),
316-327.

[8] P Canning, W Cook, W Hil, W f{hoff and J Mitchell, “F-bounded
polymorphism for object-oriented programmingtoc. 4th Int. Conf. Func. Prog.
Lang. and Arch. (Imperial College, London, 1989), 273-280.

VoL. 3,NO. 5 JOURNAL OF OBJECT TECHNOLOGY 23

http://www.jot.fm/issues/issue_2002_08/column4
http://www.jot.fm/issues/issue_2002_11/column2
http://www.jot.fm/issues/issue_2003_05/column2
http://www.jot.fm/issues/issue_2003_07/column4
http://www.jot.fm/issues/issue_2003_11/column2
http://www.jot.fm/issues/issue_2004_03/column1

OPA_J THE THEORY OF CLASSIFICATION, PART 12:

BUILDING THE CLASS HIERARCHY

About the author

Anthony Simons is a Senior Lecturer and Director of Teaching in the
Department of Computer Scienddgniversity of Sheffield, where he
leads object-oriented research irrifreation and testing, type theory
and language design, developmenthuds and precise notations. He
can be reached atsimons@dcs.shef.ac.uk

24 JOURNAL OF OBJECT TECHNOLOGY VoL. 3,NO. 5

mailto:a.simons@dcs.shef.ac.uk

