The
University
o Of

= -n,‘-_“ u}:_.'!?- Bhe&i{“:ld.

This is a repository copy of The theory of classification part 11: adding class types to
object implementations.

White Rose Research Online URL for this paper:
http://eprints.whiterose.ac.uk/79265/

Version: Published Version

Article:
Simons, A.J.H. (2004) The theory of classification part 11: adding class types to object
implementations. Journal of Object Technology, 3 (3). 7 - 19. ISSN 1660-1769

Reuse

Unless indicated otherwise, fulltext items are protected by copyright with all rights reserved. The copyright
exception in section 29 of the Copyright, Designs and Patents Act 1988 allows the making of a single copy
solely for the purpose of non-commercial research or private study within the limits of fair dealing. The
publisher or other rights-holder may allow further reproduction and re-use of this version - refer to the White
Rose Research Online record for this item. Where records identify the publisher as the copyright holder,
users can verify any specific terms of use on the publisher’s website.

Takedown
If you consider content in White Rose Research Online to be in breach of UK law, please notify us by
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

\ White Rose o
| university consortium eprints@whiterose.ac.uk
WA Universiies of Leeds, Sheffield & York https://eprints.whiterose.ac.uk/

mailto:eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

ff——

JOURNAL OF OBJECT TECHNOLOGY

Online at http://www.jot.fm. Published by ETH Zurich, Chair of Software Engineering ©JOT, 2004

Vol. 3, No. 3, March-April 2004

The Theory of Classification
Part 11: Adding Class Types to Object
Implementations

Anthony J H Simons, Department of Computer Science, University of
Sheffield, U.K.

1 INTRODUCTION

This is the eleventh article in a regulseries on object-oriented type theory, aimed
specifically at non-theoreticians. In tfibeory of Classification, we have so far considered
the typeful aspect of classes [1, 2] andrtlmiplementation aspe¢B, 4] separately. We
have been concerned to point out how tlmtion of classification has a fully formal
interpretation [2], in which, at the typeful levelglass is distinct from aype [1]. Likewise,

we have explored the implementation leviel, order to understal the operation of
inheritance on objects [3] and give a&@ise meaning to ¢hpseudo-variableself [3] and
super [4] in different object-oriented languages.

Eventually, we must link the type and irapientation aspects together, since this is
how type rules are properly presented [5]. Ig@etrule, the aim is to be able to derive the
resulting type of some expression, givere ttypes of the values that make up this
expression. We would like to shovor example, that the reswf extending arobject with
extra fields is itself a well-typed expression. dmthis, we must somehow attach the class-
type information to the object-values. Fhetmore, we introduced a special oper&oto
model inheritance [3]. We muatso show that inheritancesdif is a well-typed operation.
This will involve examining the types of the objects that we pass as opera@gsvtoch
was defined in a polymorphic way.

We started with a calculus cofass-types [1, 2] and ddeped a separate, but related,
calculus of object-values [3, .4]n this article, we seek to develop a calculusypkd
objects, in which the type informathn is attached tthe object information. With this, we
shall be able to infer the types of etj definitions creatkvia inheritance.

Cite this column as follows: Anthony J.H. Simons: “The Theory of Classification, Part 11: Adding
Class Types to Object Implementations”, in Journal of Object Technology, vol. 3, no. 3, March-April
2004, pp. 7-19. http://www.jot.fm/issues/issue 2004 03/columnl

http://www.jot.fm
http://www.jot.fm/issues/issue_2004_03/column1

9#_/ THE THEORY OF CLASSIFICATION, PART 11:
o ADDING CLASS TYPES TO OBJECT IMPLEMENTATIONS

2 LINKING VALUES AND SIMPLE TYPES

To introduce the new typed calculuze shall review the different-calculus styles
presented so far. Imagine a functional langu@dige Lisp, ML, or the functional subset of
C) in which we want define our owmegate function to flip the sign of a number. In the
untyped A-calculus, we can defingegate as follows:

negate \X.(-x)
since it takes an argumenand returns a body, in whishis negated using primitive minus
“” (which we assume exists already). What is tiipe of this function? So far, this is not
specified — we could be negagi an Integer, a Real or evarNatural (ungned!) number,
or worse still, something which is not evemamber. Let us furthesssume that we want
negate to apply to Integers, rathéhan any of the other types. To assert this, we give
negate a type signature and attatgipe information to the iplementation of the function:

negate : Integer> Integer

= M(x : Integer).(-x)
The type declaration says th@pate takes an Integer and retgran Integer result. On the
next line, the implemeation is given in thesmply typed A-calculus, in whichi(x :
Integer) declares agn that the argumeritis of the Integer type. In this style of writing, we
don’t bother to annotate the type of the fimt body explicitly, since the result type was
declared beforehand. It could also be infesthg other type rules for “-”, which are not
shown here.

The main thing to note is the style of deat#on. A typed function is always declared
by giving its type signature, ¢in defining its implementation, iwhich type information is
attached to the argument variables. We tirstussed this in the earlier article [1].

3 LINKING VALUES AND POLYMORPHIC TYPES

We now want to gemalise the typing ohegate, to indicate that it caflip the sign of all
kinds of numeric types. Thpolymorphic typed A-calculus allows us to define functions
that accept both type- and value-arguments. ddi@ld define a very general version of
negate as follows:

negate ¥t.1 —>1
=AMt A(X 1 1).(-X)
This is rather more general than we actually want. In the type signature, it sayeg#bat

is defined forall types t, then accepts an argument in this typend returns a result of the
same type. We shall fix this later, so thefjate only applies to signed, numeric types. For

8 JOURNAL OF OBJECT TECHNOLOGY VoL. 3, NO. 3

LINKING VALUES AND POLYMORPHIC TYPES O?L_/

the moment, note how the implementation isfiged with an extra type parameter:.
This says thahegate accepts an actual type argumeiotlowed by a value in this type. N
This means that we have to appbgate to two arguments, first gpe, then a value of that

type:

negate [Integer] (3 : Integeey -3
negate [Real] (2.1 : Realpy -2.1

To distinguish type-application from valupgdication, we conventnally use [] to supply
type arguments and () toupgply value arguments. Type-afaition is euivalent to
instantiating the type of the function. This follows naturally from the rules.-@&lculus:

by applyingnegate to a type Integer, you substitute the actual type for the parameter:
{Integerk} in the function body. The body is everything to the rightvof So, the value
returned after type-application is identicalacssimply-typed versionf the function (like

that shown above):

negate [Integerl= A(x : Integer).(-x)

negate [Reall> A(x : Real).(-x)
in which the type ok is now fixed. This typed functiomay now be applied to a value of
the appropriate type.

In the theoretical model, we always haweesupply the desired type of the function,
before we can apply it to a value of thygpe. We cannot perform type-inference in the
style:negate (3 : Integer), because this breaks the convention on the ordering of arguments
in the declaration. The main thing to notdahat the type parameter is always introduced
before the value argument, so these arguments are always supplied in this order. We first
discussed this idea in [1].

4 TYPE PARAMETERS AND KINDS

Since we are now dealing with typed calculus, what is the “type” of the parame®er
Technically, type variables likealso have a meta-type, known adral. This is the “next
level up” in the type system. We cdukhow the meta-type of variables like by
introducing them in a style which the kind is expliciti(t :: TYPE), to indicate that is a
type parameter which can range over all types in the set TYPE. However, sisetige
order, polymorphic typed A-calculus only has one main kindét set of all simple types,
TYPE), we shall later omit nméioning TYPE explicitly. Fora discussion of orders of
calculus, see the earlier article [1].

Above, we noted that we wanted to restrict the type ohégate function, such that it
applied only to the signed, numeric types. T¢das be done by filtering the set of possible
types in TYPE to those of interest. Let us assume that there is a type-filtering function
Filter-Signed that returns true only if the tylgsea numerical, signed type. We can define a
signed, numerical subset of all types:

VoL. 3, NO. 3 JOURNAL OF OBJECT TECHNOLOGY 9

9#_/ THE THEORY OF CLASSIFICATION, PART 11:
o ADDING CLASS TYPES TO OBJECT IMPLEMENTATIONS

SIGNED = {t :: TYPE | Filter-Signed }

This defines SIGNED as “all those typedor which Filter-Signed]] is true”. It should be
clear that SIGNELR: TYPE. We can then express the typaegate as:

negate ¥(t :: SIGNED).t —> 1

=Mt :: SIGNED)A(X : 1).(-X)
In the definition ofnegate, the type variable ranges only over those types in the SIGNED
subset. Restrictions like this are extremes$eful in object-oriemd programming, where

we wish polymorphic methods to apply only totaer sets of types. A set of types sharing
some common structure i<kass [1, 2] in our Theory of Classification.

5 GENERATORS USED AS CLASS TYPE-FILTERS

In earlier articles [1, 2yve introduced the notion offanction bound, often abbreviated to
F-bound [6, 7], to describe a sifar restriction. Literally, ébound means a restriction, and
afunction bound is a restriction expressed usinguadtion. Let us define a type function, a
record type generator, for a simplasd of two-dimensional Cartesian Points:

GenPoint 2o .{Xx : — Integer, y — Integer, equals — Boolean}

This expresses the interface of a family oinRtike types that have at least the three
methodsx, y and equal. The generator parameterises the self-tgpavhich eventually
could stand for different types ®oint, such as a Point3D [4] or a HotPoint (a selectable
Point, see below). We can use this type gmioe as a filter to restrict the polymorphic
application of these methods to only those $ymhich could be considered at least “some
kind of Point”.

Recall that the typeful notion ofchass is a group of (possiblsecursive) types sharing
a minimum common structure. We may expressiass of Points as:V(t <: GenPointf]),
because it restricts the types over whiatean range to those types which are a subtype of
the instantiated gerator GenPoint]. Earlier, we found that aextended interface is a
subtype [2, 8], so this captures precisely the object-oriented notion of families of object-
types that share a minimucommon set of methods. We may now give the metkpgs
andegual a type signature which restricts thapplicability to the class of Points:

V(t <: GenPointf]). t.x : — Integer
V(t <: GenPointf]). t.y : — Integer
V(t <: GenPointf]). t.equal :t — Boolean
These type signatures say that the methods are selmdteérom those types which

satisfy the membership criteria of the Point class. Note in passing hegudienethod is
a binary method, accepting another argument of the sagpe as the owning object itself.

10 JOURNAL OF OBJECT TECHNOLOGY VoL. 3, NO. 3

GENERATORS USED AS CLASS TYPE-FILTERS O?L_/

We shall be interested to see how the tgpa binary method evolves, when inheritance
comes into play. -

Formally, an F-bound is always expsed using a subtym constraint¥(t <: G[t]),
for some type generator function G. For congmar with the previous section, this can be
thought of as a type filtering constraind(z | F[t]), where F is defined as: F &=.(t <:
Glr)).

6 LINKING OBJECTS AND CLASS-TYPES

We are about to definetgped object generator for a class of Points. We introducgbe
generators in [1] and object generators in [3]. This time, we are going to attach type
information to the object generator for a Point instance at the co-ordinate <2, 3>. We
proceed exactly as in the sections above, by dieslaring the type signature, then giving
the full typed definition:

genAPoint V(T <: GenPointf]) . t > GenPointf]
= A(t <: GenPointf]). A(self :1).
{x 2,y 3, equal> A(p : 7).(self.x = p.xa self.y = p.y) }
At first sight, this may look rather daunting! flact, it is no more complex than the style of

typed definitions given above. To motivate tlsisucture, we shall build up to it more
slowly.

Recall that an untyped objectrggrator [3] is a function adelf, whose body is a record
describing the method implementations of @ject instance. Our first version of the
generator (omitting all detailof the actual methods) is:

gen = Aself.{...}

If we wish to add types to this, we must prefix the value-argurhssit with a type-
argumentio, whereo stands for the type aElf. We shall also attach thetype explicitly
to theself-variable. Our second versiondsuniversally-typed generator:

gen = Ac.A(self :0).{...}
in which o still ranges over all types in the unige of types. We want to restrigtso that
it ranges over only those types in the classeldf To do this, we must have a separate type
generatorGen, which has a type-shape matching #adue-shape of thebject generator,
gen. We can then use it as a filter on the type parametgiving a third, F-bounded
version of the generator:

geny =A(oc <: Genp]).A(self :0) {...}

This is now in the same form as the typed object genegatéPoint, above. To see the
correspondence, note how the setdine in the definition ofenAPoint introduces first a
self-type parametei(t <: GenPointf]), then theself-argumenti(self : 1), followed on the

VoL. 3, NO. 3 JOURNAL OF OBJECT TECHNOLOGY 11

v#—/ THE THEORY OF CLASSIFICATION, PART 11:
o ADDING CLASS TYPES TO OBJECT IMPLEMENTATIONS

third line by the record-bodygepresenting the implementation of the Point instance. This
follows the general form of second-order tgpéefinitions: first,we introduce the type
parameter, then the value paramettgen the body of the function.

The type signature fogenAPoint also deserves some discussion. It says that
genAPoaint is well-defined for all types in the class of Points/(t <: GenPointf]), and
then that it accepts a value (ie an actual value forsétieargument) in the type and
returns a record-body having the type GenPdinthis does in fact accurately describe the
type of the record body. If we supply some stangaliPint as theself-argument, we get a
result with the type: GenPoint[Point]f we supply some more more specifizHotPoint
as theself-argument, we get a result with theuticated” type: Gergint[HotPoint]. By
“truncated”, we mean a typlat looks like a HotPoint, butith only those methods that
were listed in the Point-interface.

! Readers following this series wittcall that GenPoint[Point] is a fixpoinf the generator, ie that Point =
GenPoint[Point], so we could equally say that the result is of the exact type Point.

7/ STRONGLY TYPED INHERITANCE

To study the workings of inheritance when ty@ee added, we shall attempt to extend the
typed object generator for a Point to yield ayped object generator for a HotPoint, a
selectable kind of point. As before, we shall first providgpa generator for the HotPoint
type (we shall need this later to eegps F-bounds). GenHotPoint can be defined by
extension, based on the GenPoint type generélbar.additional fields include the types of
the new methodelected and redefined methoegual (which, in a HotPoint, must also
compare selected states):

GenHotPoint sit.(GenPointf] U { equal :1 — Boolean, selected—» Boolean })

The simplified form of this type generatsr well-formed, aftercomputing the union of
fields:

=Mt.{X: — Integer, y — Integer, equalt — Boolean, selected-» Boolean }

The only interesting consideratios what happens with GenPoitjt[This causes a
substitution of type parameters in the body of GenPoi&}{ and has the consequence
that all references to the s&fpe are uniformly changed to before the union of fields is
computed. This means that the identically-typgaal method type appears twice, once on
either side of they operator, but only one copyristained after the union.

We are now about to define a typed objectegator for an instance of HotPoint, at the
coordinate <2, 3> and whoselesed state = true. We shall attempt to derive this by
inheritance, in accordance withe model given irthe earlier article$3, 4]. This time,
however, we shall be careful to attach type information, in the style presented above, to all

12 JOURNAL OF OBJECT TECHNOLOGY VoL. 3, NO. 3

STRONGLY TYPED INHERITANCE O?L_/

parts of the definition. Firstwe give the type declarati, then the full definition of
genAHotPoint: -

genAHotPoint V(o <: GenHotPoinif]). c — GenHotPoini]
= Mo <: GenHotPoint]). A(self :c). (A(super : GenPoind]).
(super® {equal— A(q:o).(super.equal(q) self.selected = g.selected),
slected i true })
genAPoint §] (self))

This looks fabulously complicated! Howevdryou mentally put on one side the whole
body expression inside the bold parentheses, the prequel leading up to it is in exactly the
same form as all our other defioitis. First, theyipe signature oflenAHotPoint is given.

Then, on the second line, its full definition is given, starting with the type paramatet

value parameterself, followed by the body (everythg contained within the bold
parentheses).

Looking now at the body expression, thisesactly the construction we used to
explain super-method combination in the previauicle [4], except that types have now
been attached to all value parameters. The ®dynested function application that first
bindssuper, then performs a record combination using&heperator [3]. We shall want to
simplify this {iz evaluate the combination expression), to assure ourselves that we have in
fact defined a suitable generator for a HotP@istance. However, we must first establish
whether the body expression is properly typed.

8 TYPE SOUNDNESS OF SUPER

We first want to satisfy osgelves that the binding dduper is type-sound. From the
previous article [4] we learned thatper is an adapted form of éhparent object, in which
self-reference is redirectetb refer to the chifd Does our typed model reflect this
faithfully?

The type and binding of super

At the start of the body, theuper variable is declared with the typé:(super :
GenPointf]). So, the type ofuper is structurally “like” the ype of the parent Point, except
that, within this structure, the self-type is replacedsbyhich is the neveelf-type of the
child. GenPointf] is a “truncated type” in which thself-type refers to a HotPoint, but
which offers only those methods availableatd’oint. You can think of a generator as a
mask, and GenPoint[HotPoint] “masking out” thié methods of HotPointhat were not in
the interface of a Pointig in the body of the G&Point-generator). This the appropriate

2 We restrict ourselves in this article to explaining the more sophisticated model of inheritance, in which self
and the self-type evolve. This &fter all, the more interesting, relatively novel concept that needs
explanation.

VoL. 3, NO. 3 JOURNAL OF OBJECT TECHNOLOGY 13

v#—/ THE THEORY OF CLASSIFICATION, PART 11:
o ADDING CLASS TYPES TO OBJECT IMPLEMENTATIONS

type to give tosuper, since it captures exactly the typea “mofidied parent instance” in
which self is redirected to refer to the child [4].

To understand what is happening insttie body expression above, notice how it
consists of a super-functioi(super : GenPointf]).(...) which is appied to an object,
denoting the value to bind soiper, given right at the end dhe body expression (mentally
skip over the body of theuper-function, which consists of the record-combination
expression). This super-objecigizven at the end by the expressigenAPoint [o] (self).

The next question we must ask is: doesdlper-variable receive an object-value of
the right type? We need to work out the type of the expreggnAPoint [c] (self) and see
if this corresponds to somethingthithe declared type: GenPotsit[The super-object is
clearly constructed fronthe typed object generatgenAPoint, after supplying a type
arguments and a value argumesélf : o. The result of this is a record, the body of the
generatoigenAPoint (see section 6 above). The typetlué result was deated in the type
signature¥(t <: GenPointf]). T - GenPointf], which says that, by supplyirgandself :
o, we obtain a result having the type: GenPeint[This is exactly the type of object
expected fosuper, above.

However, before we assume this happy aueowe should check first whether it is
actually type-safe to apply the generator to the type paramesed value parametself :
o Are these suitable types and values for this generator?

Rebinding type parameters

We will look at the type substitution first. The generag@APoint was declared to be safe

with all types satisfyingr <: GenPointf]. Technically, the applicatiogenAPoint[c] is

simply a matter of substituting omgpe parameter for anothers/}. All type parameters

have the same kind, TYPE, so this shouldb®t problem. However, a more subtle thing

iIs happening. By substitutings{t}, we are changing the restriction on the types which
may instantiate the parameter. The parameters implicitly carry attached type constraints
(from the F-bounds), so we have to worlyoat whether changing these makes a formal
difference.

Although we cannot compare two type paramsetbrectly, we can make a judgement
about all the types which coufibssibly instantiate the respwe parameters. Fortunately,
it turns out that any fye we could supply fos will also satisfy the type constraint an
This is because of the poinise subtyping condition betweé¢he two type generators:

Vo .o <: GenHotPointf] = o <: GenPoinif]

which lies at the basis of tli@assify rule in [2]. Because the type generators GenHotPoint
and GenPoint stand in the right structurdtienship, we can safely replace the self-type
of the parent class by the self-typ®f the child class.

14 JOURNAL OF OBJECT TECHNOLOGY VoL. 3, NO. 3

TYPE SOUNDNESS OF SUPER Otﬂ#—/

Rebinding value parameters

We will now look at the value substitution. The second argumegenifAPoint [c] (self) is

a self-reference that refers toHmtPoint instance, with the typeelf : . The generator
genAPoint was originally declared to accept a value parameter having thesgfpet <:
GenPointf]. However, we have just replacedy a new parametes: <: GenHotPoint],

by applying the generator to this tygenAPoint[c]. From section 3 above, we know that
this has the effect of re-typing the bodytleé function. All former references toare now
replaced byc, so the value parametseelf : t has been modified teelf : 6. We may
therefore supply an actual argem of this type, directly.

9 TYPE SOUNDNESS OF INHERITANCE

We now want to satisfy ourselves thhé record combination expression wéith which
models the extension of an object by inhexggns itself type sound. This expression is the
whole body of thesuper-function, which we skipped over, above:

super @ { equal » A(q : o).(super.equal(g)n self.selected = qg.selected),
slected - true }

in which super is now bound, and refers to tisaper-object described in the previous
section. Alsoself refers to theself : o introduced as the value parameter in the generator
genAHotPoint. In order to understanathether the operat@ is being applied to values of
suitable types, we need to simplify the left-hand and right-hand operands until they have
the form of object records.

The base record

The left-hand operand # is super, and this is bound to the objeggnAPoint [c] (self),
which simplifies to a record, afterandself : c have been supplied as arguments:

super = { x— 2, y— 3, equal> A(p : c).(self.x = p.xa self.y = p.y) }
To see where this came from, refer baokthe body of theyped object generator
genAPoint, given in section 6 abové&he only difference is thate have substituteds{t}
and (selfs/selft} as a result of instantiating the generator. One interesting thing to notice
Is that, in the “inherited” version @qual, bothself and the compared argumgnare now
of the child-typeg.

The extension record

The right-hand operand t® is a record of extra methodsr a HotPoint, the fields
contained in the braces {...}. Thedi is a redefinition of thequal method; the second is
the newselected method (returningrue for the instance we are defining). The body of

VoL. 3, NO. 3 JOURNAL OF OBJECT TECHNOLOGY 15

v#—/ THE THEORY OF CLASSIFICATION, PART 11:
o ADDING CLASS TYPES TO OBJECT IMPLEMENTATIONS

equal contains a super-method invocation. Weuld like to satisfy ourselves that this
equal is in fact equivalent to a regularethod, by simplifying the super-method invocation.

The super-invocation has the formuper.equal(g). We know thatq : o from the
immediately preceding declaratiok(q : o). Fortunately, theequal method selected from
the body of the super-object (giv above) expects an argumpntc of exactly the same
type. After substituting {@s/p:c} in the body, we obtain the simplified result:

super.equal(qse) = self.x =q.xA self.y =q.y

Checking this out, we know already thsalf : o, so we are comparinggeand aself which
have the same type. Now, we subs#tthis into the body of the redefinequal, in place
of the original super-invocation (which weveanow simplified away altogether [4]), to
yield the form of a regular record of methods:

{equal— A(q :0).(self.x = q.xA self.y = g.y self.selected = g.selected),
<lected - true }

in which self andq are uniform throughout the body edual, referring to different child-
instances, and are both oétkame type, the child-type

The record combination

The record combination expsesn, modelling the extension ah object byinheritance,
has now been reduced to the form:

{x 2,y 3, equal> A(p :0).(self.x = p.xr self.y =p.y) } &
{equal— A(q :0).(self.x = q.xA self.y = g.ya self.selected = g.selected),
<lected - true }

and it only remains to simplify®. This was declared as a rather liberally-typed
polymorphic operator [3], in the style @inction override, accepting any two maps with
the same domain-type, and yielding a map whie domain-type and a derived codomain-
type that was the union of the arguments’ codomains:

Va, B,y .®D: (a—>p) x (a—>y) = (a—>Puy)
= MF:a—p).A(g:0—).
{k—v| (ke dom(f)u dom(g))A
(k € dom(g)= v =g(k)) A
(k ¢ dom(g)= v =1(k)) }
In a later article, we will reconsider this typgnature, to betteroostrain the “legitimate”
types of record arguments supplied in inheritance expressions.eHmothent, let us note
that the domain-type will be bound to the type Label, from which we draw all the names
of methods. The range-tyfewill be bound to a union of all the method-signature types of
the base record; likewiseis a union of all the methodeggiature types of the extension
record. This seems to “lump together” all the different types in each union. However, the

16 JOURNAL OF OBJECT TECHNOLOGY VoL. 3, NO. 3

TYPE SOUNDNESS OF INHERITANCE O?L_/

definition of the operatof® explains how individual fiels are overridden, so we may
obtain the detail from this. N

So, on the left-hand side, we have a basertewith the (moreletailed, record) type:

{x: — Integer, y — Integer, equal s — Boolean}
and on the right-hand side, we havesatension record with the type:

{ equal :c — Boolean, selected-» Boolean }

and after combining the base and ex&eords according to the definition &f, we seem
to obtain, experimentally speak, a record with the type:

{x: — Integer, y — Integer, equals — Boolean, selected-» Boolean}

Looking at the pooled method types: {Integer»> Boolean, Boolean} in the result, this
does seem to be a union of {Integer» Boolean}u {c — Boolean, Boolean}, as the
type-signature ofd declared. So, this is at least cstent, even if it is not yet very
informative.

The result of record combination isetiefore the body of an extended generator,
suitable for a HotPoint instance, in whietual is re-typed in terms of the child’s self-type
o, and the extra methalected is included. It is as if we had definganAHotPoint from
first principles, without inheritace, with the (simplified) form:

genAHotPoint ¥(c <: GenHotPoinif]). c - GenHotPoinif]
= Mo <: GenHotPoint]). A(self :6). {x — 2,y 3,
equal—> A(q :o0).(self.x = g.xA self.y = gq.ya self.selected = g.selected),
slected — true }

so demonstrating that stronglyped inheritance is just ahart-hand for defining larger
objects by extension, but with all théeneant type information attached.

10 CONCLUSION

We have presented a model of strongly-typégect generators, in which the class-type
information is attached tthe object-information. We magow formally claim to have
defined the notion oflass from both the implementatioand type perspectives, combined.
A class is, from a concrete perspectivefamily of objects that share a similar (but
overridable) implementation strategy and, fromadnstract perspective, family of types
that share a similar (minimum common)thred interface. This provides a good foundation
for developing further model interetations of other object-orieed concepts, such as class
hierarchies, abstract classes and interfaces.

We also used the new typed calculus to gmeés model of strongltyped inheritance.
This combined two aspects of the sopb&ted model of inheritance put forward
previously in theTheory of Classification. Firstly, when a class inherits methods from its

VoL. 3, NO. 3 JOURNAL OF OBJECT TECHNOLOGY 17

9#_/ THE THEORY OF CLASSIFICATION, PART 11:
o ADDING CLASS TYPES TO OBJECT IMPLEMENTATIONS

parent, object self-reference nsdirected to refer to a itth instance [3, 4]. Secondly, the
type signatures of inherited methods adapt, shahmethods that refed to a parent-type
now refer to a child-type [1, 2]This is important in languagdike Smalltak and Eiffel,
where binary methods likequal or plus may evolve under inheritance, but always apply to
objects of the appropriate specifype. Attaching the self-type parameterto any other
variable in the model exactly explains thevel typing constructio in Eiffel, where a
variable is declared to have the type “like caottelt anchors the type of the variable to the
type of self. This is an extremely satisfying wayj providing types for binary methods,
which expect to receive anothaject with the same type saf.

We also fulfilled a formal obligation to demstrate that aspects of inheritance were
type-sound. Super-method invocation was shdwrbe well-typed, yielding results as
expected. We shall have to return to the typin@®pin order to restrict the legitimate types
of extra methods added to an object durmeritance, but our liberally-typed versiond®f
works as intended with the object implementations shown. Technically, the definition given
for @ is an abbreviation of a more comglelefinition in the polymorphic typedcalculus,
in which both type parameters and value paaters are supplied explicitly. We can think
of our operator as a short-hand for expressingpe-instantiated vaon of the full-length
combine function:

combine =hc.At.A(base o).A(extra :1).(...)
® ap = combine [A, B]

which is instantiated for each pair of rectydes A, B that we wish to combine.

REFERENCES

[1] A J H Simons, “The theory of classificati, part 7: A class is a type family”, in
Journal of Object Technology, vol. 2, no. 3, May-June 2003, pp3-22.
http://www.jot.fm/issues/issue_2003_05/column2

[2] A JH Simons, “The theory of classificati, part 8: Classificaitn and inheritance”, in
Journal of Object Technology, vol. 2, no. 4, July-August 2003, ppp. 55-64.
http://www.jot.fm/issues/issue_2003_07/column4

[3] A JH Simons, “The theory of classification, part 9: Inheritance and self-reference”, in
Journal of Object Technology, vol. 2, no. 6, November-December 2003, pp. 25-34.
http://www.jot.fm/issues/issue_2003_ 11/column2

[4] A JH Simons, “The theory of classifitan, part 10: Method combination and super-
reference”, inournal of Object Technology, vol. 3, no. 1, January-February 2004,
43-53.http://www.jot.fm/issues/issue 2004 _01/column4

18 JOURNAL OF OBJECT TECHNOLOGY VoL. 3, NO. 3

http://www.jot.fm/issues/issue_2003_05/column2
http://www.jot.fm/issues/issue_2003_07/column4
http://www.jot.fm/issues/issue_2003_11/column2
http://www.jot.fm/issues/issue_2004_01/column4

CONCLUSION O#—/

[5] A JH Simons, “The theory of classificati, part 2: The scratdbhuilt typechecker”, in
Journal of Object Technology, vol. 1, no. 2, JubAugust 2002, pp. 47-54. .
http://www.jot.fm/issues/issue_2002_07/column4

[6] P Canning, W Cook, W Hill, W Olthoffrad J Mitchell, F-bounded polymorphism for
object-oriented programmingiroc. 4th Int. Conf. Func. Prog. Lang. and Arch.
(Imperial College, London, 1989), 273-280.

[7] W Cook, W Hill and P Canningnheritance is not subtypingroc. 17th ACM Symp.
Principles of Prog. Lang., (ACM Sigplan, 1990), 125-135.

[8] A JH Simons, “The theory of classifiban, part 4: Objectypes and subtyping”, in
Journal of Object Technology, vol. 1, no. 5, November-December 2002, pp. 27-35.
http://www.jot.fm/issues/issue 2002_11/column2

About the author

Anthony Simons is a Senior Lecturer anDirector of Teaching in the
Department of Computer Science, Usisity of Sheffield, where he leads
object-oriented research in verifizan and testing, type theory and
language design, development methoadd precise notations. He can be
reached ah.simons@dcs.shef.ac.uk

VoL. 3, NO. 3 JOURNAL OF OBJECT TECHNOLOGY 19

http://www.jot.fm/issues/issue_2002_07/column4
http://www.jot.fm/issues/issue_2002_11/column2
mailto:a.simons@dcs.shef.ac.uk

