This is a repository copy of The theory of classification part 20: modular checking of
classtypes.

White Rose Research Online URL for this paper:
http://eprints.whiterose.ac.uk/79263/

Version: Published Version

Article:
Simons, A.J.H. (2005) The theory of classification part 20: modular checking of classtypes.
Journal of Object Technology, 4 (7). 7 - 18. ISSN 1660-1769

Reuse

Unless indicated otherwise, fulltext items are protected by copyright with all rights reserved. The copyright
exception in section 29 of the Copyright, Designs and Patents Act 1988 allows the making of a single copy
solely for the purpose of non-commercial research or private study within the limits of fair dealing. The
publisher or other rights-holder may allow further reproduction and re-use of this version - refer to the White
Rose Research Online record for this item. Where records identify the publisher as the copyright holder,
users can verify any specific terms of use on the publisher’s website.

Takedown
If you consider content in White Rose Research Online to be in breach of UK law, please notify us by
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

\ White Rose o
| university consortium eprints@whiterose.ac.uk
WA Universiies of Leeds, Sheffield & York https://eprints.whiterose.ac.uk/

mailto:eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

ff——

JOURNAL OF OBJECT TECHNOLOGY

Online at http://www.jot.fm. Published by ETH Zurich, Chair of Software Engineering ©JOT, 2005

Vol. 4, No. 7, September-October 2005

The Theory of Classification Part 20:
Modular Checking of Classtypes

Anthony J H Simons, Department of Computer Science, University of
Sheffield, UK

1 INTRODUCTION

This is the final article iran informal series on th&heory of Classificationwhich has
considered the theoretical notions tgpe and classin object-orieted languages. The
series began by constructing models of digjetypes, classes and inheritance, then
branched out into interesting areas suchmasins, multiple inheritance and generic
classes. The core of our argurhbas been that the notionsafissandtypeare distinct,

but both can be described formally in thecalculus. Stronglyyped object-oriented
programming languages are largely based on the idea that “a class is a type” and
“subclassing is subtyping” [1]. In earlier articles, we demonstrated why this is not really
satisfactory as a formal model of classed alassification. A typsystem based on first-
order types and subtyping:

e fails to capture natural relationshipetween recursiveypes (whose methods
accept or return values of the same tgpghemselves), since recursive types can
have no proper subtypes [2];

e loses type information when methods are inherited [2], requiring the ugpeof
downcastingeverywhere to recover the mosesiiic type of the object returned
by a general method, which is tantamt to breaking the type-system;

e conflicts with the notion oftype classesadopted elsewher in functional
programming languages like Haskell, which tgee parameterso express this
notion [3].

Instead, we have argued that a class famaily of related typeswhich can only be
expressed in a second-order type systetin polymorphism [4]Classical polymorphism

is represented using type parameters thagje over many different actual types, but
object-oriented programming requires a kindpolymorphism where type parameters
receive only certain related types that satisfy a particular interface description.
Mathematically, this is constructed by plagiconstraints on type parameters, called
function boundsor F-bounds which have formz <: F[t], where F is a type function,
describing the shape of tliwterface that the type is expected to satisfy [5]. However,

Cite this column as follows:Anthony J H Simons: “The Theory of Classification Part 20: Modular
Checking of Classtypes”, in Journal of Object Technology, vol. 4, no. 17, September-October
2005, pp. 7-18 http://www.jot.fm/issues/issue 2005 09/columnl

http://www.jot.fm
http://www.jot.fm/issues/issue_2005_09/column1

OVL_/THE THEORY OF CLASSIFICATION PART 20: MODULAR CHECKING OF CLASSTYPES

while this gives a much more satisfying agnt of classes andadsification, very few
programming languages have ventured into this new and exciting territory. In this final
article, we try to understand why this is smd what practical problems remain to be
solved in the modular checking of class-types.

2 TRADING MODULARITY AND EXPRESSIVENESS

A first-order type system has two things dommend it. Firstly, it is quite simple to
implement a type-checker that can chegkes for exact correspondence, or for subtype
compatibility with a given type. The type thfe source object can be compared with that
of the target variable to see if the f@amcan be converted u the latter, using
subtyping rules like those we discussed in §§condly, code that has been checked once
need never be checked again,recompiled in new contexts. This is because the type
system can never reveal more specific infdromabout an object that is passed into a
more general variable (which we have called “type loss problem”), so the code need
only be checked once over the most general type that it can accept. This, more than any
other reason, is why ddgjt-oriented languages have beawsio take up the new insights
into the nature of classes and classification: the desire torhagelarand incremental
compilation. Without this, it would not be g&gible to build industrial-scale systems.

In the last two articles, we showed tHall support for the notion of classes and
subclassing requires a tirction to be drawn between simple, monomorggmesand
polymorphicclassesthe latter formally expressed ngitype parameters [6]. However,
this means that type checking rules are more complicated. The compiler has to keep track
of sets of type parameters, one for eachabédei with a “class-type”, and has to know
how to substitute one parameter for another when values are passed, and also check that
the various constraints on the parametéglisallow the given substitutions [3].

Now, different type substitutions may happen upon different occasions. For example,
consider a polymorphic method for moving gin&cal shapes on a screen, that accepts
Integercoordinates and ratus the moved object:

move :V(t <: GenShape]) . T —> (Integer— Integer— 1)

This method is defined for a polymorphic clasSbapesexpressed by <: GenShapi]

in the style described in earlier articles [2, 4]. Below, we assum&thuatreandCircle

are exact types thattisfy this F-bound constraint. Now,rnfoveis legally invoked on
different actual shapes onfférent occasions, say on3quareand aCircle, this will
cause the two different type substitutiofSquaret} and {Circle/t}, yielding two
differently-typed versions of themmovemethod. These variants will have have the exact

types:

move : Square»> (Integer— Integer— Square)
move : Circle—> (Integer— Integer— Circle)

8 JOURNAL OF OBJECT TECHNOLOGY VOL.4,NOo. 7

ff—

for the duration of the binding of the (polgnphic) argument to the (exactly-typed)
objects. Does this mean that we must compile two different versions of the source-code -
for move

Well, if Circle and Squarewere passed by value, then we should need multiple
compilations of the source to handle the ddfe physical layout of each type — this
would be analogous to themplate mechanisin C++, in which multiple copies of the
template code are compiled, one copy for each distinct type-instantiation. However, it is
more likely that the objects will be passed by reference and both will share the same
physical layout (in the low-order bytes) fatoring information about their screen
location. This case therefore shanore similarities with 3@ 1.5’'s treatment of type
parameters. They are used in the typechetkegliminate the need for explicit type
downcasting, but are erased later in theugirtmachine, in which objects are treated in
the same way as in the usual subtypapgproach. So, having flexible typing forove
does not necessarily require multiple compilations of this method.

Nonetheless, the polymorphic typing siioatis quite different from the kind of
typing that is possible in a first-order type system. In the latter, the resulovacan
only ever have the general tyfhape which is typically not useit, especially if we want
to do something else with the moved objeot (#hich we would first have to perform a
type downcast But, in the second-order type system, we recover the exact type of the
moved object straight away. This is good, fribra point of view of expressiveness.

Now, consider the context in whichovewas called. What does this context expect
the result-type to It knows the result must be some typ€: GenShap], but, on
different occasions, it receives bamlijects of the more specific typ8gjuareandCircle.

It is possible to optimise further method invocations on these results, on the basis of this
type analysis. For example, imagine that 8teapeclass declares aabstract method
area(), which has distinct implementations in all subclasses. The maetieaq) may be
statically bound, if we catell in advance that the target is definitelg@uareor aCircle,

rather than some unknown kind &hape for which we wouldhave to insert a
dynamically-bound call, to detect the exact tygterun-time. However, using the more
expressive polymorphic type system, we pappagate exact type information back into

the calling context and choose to bind déinea() method statically. The cost of this is that

we must compile multiple versions of the context code.

Simons et al. first analysed these kindsparametric issues as part of a wider
optimisation strategy for object-oriented ngoilers, using the experimental language
Brunelas an exemplar for the techniques [7]eYldiscovered that a fully parametric type
system gives you the choice of using more ss lef the exact type information available,
to tailor the optimisation of bindings. Therkyabinding algorithm dscribed in [7] bears
some similarities to Chambers and Ungartgion of pre-emptive type analysis in the
untyped languag8&elf[8]. However, the trade-off is that the more type information you
use, the more copies of the object-code you generat@ruimel a global compilation
approach was adopted, in which a full typalgsis of the whole program was performed
and compiler switches could be set to cohthe amount of early binding and code
duplication.

VOL.4,NOo. 7 JOURNAL OF OBJECT TECHNOLOGY 9

OVL_/THE THEORY OF CLASSIFICATION PART 20: MODULAR CHECKING OF CLASSTYPES

The early binding approach does not transiver to a modular compilation strategy.
When compiling modules incrementally, only jpertype information is available. For
example, we must compile the methods ofShapeclass, without any knowledge that it
will eventually have two subclass€&ircle and Square which we previously assumed
were the “leaves” in the clasierarchy, becoming the exagpés of objects used in the
program. Obviously, the compiler could not knawadvance whether these are in fact
leaf-nodes, or whether they toaght eventually be specialisédrther. The best that can
be done is to insert a dynamicabpund call for abstract methods liesa(). No further
optimisation can be performed. However, the parametric type information can be retained
and used to avoid type downcasting on the resuttafe().

3 A UNIFICATION APPROACH TO PARAMETRIC TYPING

Java 1.5 is introducing a form of parametgipe analysis that captures an aspect of the
strategy we describe above. However, parammetd@l be used only for certain generic
classes, like those in th#éava Collections framework, and will only characterise the
element-types of these collections. In ouew; this same approaatould be used to
characterise all class-types, in the manneacdieed in [3]. All variables marked with a
“class-type” are polymorphic dnso should be treated in a parametric way. The
parametric type information could be use@mywhere in the typehecker to obtain more
exact type information, but erased in thatrme model. This would allow code modules
(classes, in Java) to be incrementallynpided, provided that nsd calls were bound
dynamically, as is usual in Java. But it wbilso allow some optimisations and static
binding of methods for simple leaf-classes, likeeger and Boolean for which the
compiler could be told that no further spdéis@tions were intended. (In fact, the Java
simple typesdnt, float, etc. could be merged with theask-types in a single-rooted class
hierarchy).

The most significant challenge to the development of proper, parametric type-
checkers is the problem of unifying differgmalymorphic types. This happens whenever
one polymorphic variable is passed as @uarent or result torether method, where the
formal and actual types of the variables maydistinct. However, there exists at least
one programming language, Prolog, which alrlaaly a similar algorithrat the heart of
its interpreter. This is thenost general unifie(MGU) algorithm, which calculates the
most general term that can resutirfr the unification of two other terms.

For those unfamiliar with Prolog, this a language in which the programmer
constructs logical expressigns a declarative style, and program execution is then
analogous to solving the simultaneous equagapressed by all the terms. Terms are
structured agpredicates which may contain grounded valu@sritten in lowercase) or
variables (written capitalised)oSthe following two terms may exist:

loves(john, Loved). loves(Lover, mary).

10 JOURNAL OF OBJECT TECHNOLOGY VOoL.4,NOo. 7

and it is possible to see that thesentemay be unified, yielding the MGU:

loves(john, mary). with substitutions: fohn/Lover, mary/Loved

In this unification, the variableovedin the left-hand ten receives the valumary from
the right-hand termand the variabl&overin the right-hand term receives the vajolen
from the left-hand term in a symmetrical actroérging. In logic, this is equivalent to
saying: “these terms can be unified, provided that.twer stands fojohn and theLoved
person stands fanary'. The important thing to note that both the left- and right-hand
terms contributed some of the specifadues to the redting unified term.

It is not difficult to see how this kindf substitution mirors the process a
polymorphic type checker must go through whemolymorphic vaable receives an
object of some exact type. However, this is an even better analogy for when two
polymorphic variables have their typeserged, for example when a polymorphic
variable with the type <: F[t] is passed into a method, wde formal argument has the
type o <: G[o]. For the duration of the binding, == t and therefore the dual constraint
must applyz <: F[t] A T <: G[t]. In earlier articles dealing with inheritance and multiple
inheritance, we called this amersection typ49, 10] because the type variables being
constrained to accept two different, overlappsegs of types and therefore accepts the
intersection of these set&ccordingly, we used <: F[t] A G[t] to denote an intersection
on the parameter.

The important thing to note is that thisngi@g of type-constraistis even-handed: it
doesn’t matter whether <: F[t] or t <: G[r] is the more restricting F-bound, since any
type replacingr must satisfy both constraints. So, this mechanism is adequate to handle
specialisation (when a polymorphic typereplaced by a more restricted polymorphic
type [9]) and also the kind of symmetricglpe-merger that happens with multiple
inheritance (when the polymorphic typestefo parent classes become unified in the
child [10]). The latter case also extenits languages with a combination of single
inheritance and multiple interface satisfaction (thealculus model treats all class-like
and interface-like types in the same way). So, parametric type checkers will in future
need to perform unification on type wables and compute the pool of merged
constraints; but fortunately this is nwore difficult than unification in Prolog.

4 DISGUISING THE TYPE PARAMETERS

Another of the challenges to be fadedhow to make genuinely polymorphlanguages
attractive to programmers. Tipeevious article [3] reportehow such languages tend to
become swamped by the proliferation of tymeameters. If each class requires its own
self-type parameter, then a class with “clagsed” polymorphic variales in its attributes
and methods needs a distinct parameter for sach variable that could eventually be

! By this, we mean languages with sed-order type systems; the kind of¢yaliasing performed in first-order
subtyping is not techaally polymorphism, but snething much weaker.

VOL.4,NOo. 7 JOURNAL OF OBJECT TECHNOLOGY 11

OVL_JTHE THEORY OF CLASSIFICATION PART 20: MODULAR CHECKING OF CLASSTYPES

bound to a distinct type. If the classes disng these elements also contain further
“class-typed” variables of their own, then caniginal class has declaration which is
already three layers of parameters deep! sNewed how the order of declaration was
significant, in that the type parameters foe thner element classes have to be declared
first, on the outside, and the dependent fypemeters standing for the outer composite
classes have to be declared within thecope (in a second-order type system).
Essentially, any polymorphic structure must expas its interface, all of the different
type parameters which could be bound tdliflerent type at some point during the
execution of the program.

Various attempts have therefore beendendao disguise the existence of type
parameters and the many substitution operations that must be performed on them.
Perhaps the most careful and thorough of these treatments is Bnadetsng This is an
alternative to F-bounds that establishes flextigpe compatibilityrelationships between
class-types. Bruce and his co-workers tetarbuilding type-safe experimental object-
oriented languages in the Bat990s. TOOPL and TOOPLE weefunctional-style object
languages (rather like thg-calculus models we have used in this series), which
supported both simple subtypingnd a new treatment of theelftype using a
distinguished type variable calledyType[11]. Originally, the motivation foMyType
arose from considering the same problenith wubtyping in thegresence of recursive
types that led Cook to devisebounded quantification [5]; and Bruce’s early treatments
relied on an F-bounded explanation. Howeveltatar work, Bruce defined complete and
consistent type rules falyTypewhich dispensed with explicit F-bounds altogether. The
later languages TOIL and PolyTOIL were styled more like imperative object-oriented
languages, with variable reassignment [12].

The first advantage gainedrdlugh using a distinguishedyTypeis that this type
variable is implicitly defined witim each class-type. The meaningMyTypeis rather
like the type parameter in F-bounded congictions like:oc <: GenMyTypgs], but for
each new classviyTypeis implicitly rebound to refer to theelftype of the new class-
type. The implicit declaration dflyTypecan be seen below in the type declaration of the
abstraciComparable which defines abstract methddssTharandequal and in the type
declaration of the concre®oxedIntegerwhich is essentially a wrapper for a simpie

type:
Comparable = ObjectType { lessThan : MyTypebool; equal : MyType-> bool }

BoxedInteger = ObjectType { lessThan : MyTypebool; equal : MyType-> bool;
getValue void — int; setValue : int> void }

whereObjectTypeis the keyword introducing the newbject types (these examples are
adapted from [12]). Notice hoMyTypeoccurs freely inside bbtdefinitions, but stands
in each case for a different polymorphic typeour approach usy F-bounds, we would
introduce two generators, whicleaare two self-type parametessandt up-front, and
then construct F-bounds toaum type expressions:

12 JOURNAL OF OBJECT TECHNOLOGY VOoL.4,NOo. 7

GenComparable %c.{ lessThan & — bool; equal 5 — bool }
GenBoxedInteger %t.{lessThan = — bool; equal * — bool;
getValue : void- int; setValue : int> void }

V(o <: GenComparablef).some_type_expr_using)
V(t <: GenNumTypeq]).some_type_expr_using(

Now, in PolyTOIL you can declare variableshvobject types direat] for example, it is
legal to declare myinteger : BoxedIntegerwhich all internal ocurrences of MyType
are eventually resolved (in the type rulés)refer to a BoxedInteger, recursively. The
parameter MyType is replaced by the actual typ#he object receiver, when a method is
invoked upon it. In our approach using F-boyritis requires taking a fixpoint first:

BoxedInteger =¥ GenBoxedInteger; recuvely bind {BoxedIntegen'}
mylnteger : BoxedInteger

The second innovation in Bruce’s approacthesway in which subclass relationships can
be expressed directly between these object types, using thenmatebiingmechanism.
You can assert the usual subclass relationshiB@sdintegex# Comparable(read this
as ‘BoxedIntegermatchesComparablé), where “<#” is the new matching operator.
Bruce describes the matching relation as:

“the same as subtyping in the absence oMii&ypeconstruct, but differs in the
presence oMyType becausdyTypeimplicitly has different meanings in
different types.” [13].

In fact, matching behaves in a similar manteeF-bounded inclusion, in the presence of
MyType but in a similar manner to simplelgyping elsewhere. In our approach, we
would have to establish a second-order pasg subtyping relationship between the two
corresponding type generators, to ensure thattwo parameters were unified before
interfaces were compared, and then tred interface were longer than the other:

V1 . GenBoxedInteget] <: GenComparable]

Bruce’s rules simply compare the structureobject types, in which all occurrences of
MyTypeare considered equivalewhen determining if one type matches another. This

dispenses with some of the fiddly detailpairameters. Matching has the same expressive

power as F-bounds, for example, note that whBitxedinteger<# Comparable the
subtyping relationshiBoxedInteger<: Comparabledoes not hold, becauddyType
occurs as a method argument type (ontcavariant position). The type rules for
inheritance ensure thdMyTypeevolves smoothly to represent the self-type of inheriting
classes, which dispenses with another laydymé substitutions in the explicit approach.
Finally, if the programmer so wishes, it &so possible to declare explicit type
parameters in PolyTOIL. For ample, the eleent-type of eéSortedListmay be given as

VOL.4,NOo. 7 JOURNAL OF OBJECT TECHNOLOGY 13

GVL_/THE THEORY OF CLASSIFICATION PART 20: MODULAR CHECKING OF CLASSTYPES

elt : T <# Comparable to denote any type which match€emparable This is the
analogue ofv(t <: GenComparablg]). elt : t in our approach. In later work, Bruce
developed a version of matching with “haspeyg’ that was sufficiently expressive that
subtyping could be dropped altogether [1#his is closer to our approach, which
recognises only exact simple types parametric polymorphic types.

5 IMPLICIT CLASS-TYPE SUBSTITUTIONS

Perhaps the trickiest issue for future compilers, with the more thorough kind of type
analysis we have been proposing here, is to keep track of all the subtle changes to type
descriptions that happen as a result of objéeing mutually related to each other. This

can lead to some hidden evolution in thpets of expressions, of which the programmer
may not be aware! Consider a classr&iichy describing ghvarious kinds o¥ehiclethat

exist, together with the different kinds bécationin which such vehicles are typically

kept. The root concepts caolube described in Java as:

class Vehicle ({
private Person myOwn;
private Location myLoc;
public Vehicle(Person p) { myOwn = p; myLoc = null; }
public Vehicle(Person p, Location c)
myOwn = p; myLoc = c; c.keep(this)
public Person owner () { return myOwn;
public Location keptAt() { return myLoc; }
public void keepAt (Location c)
} myLoc = c¢; if (c.keeps() != this) c.keep(this); }

class Location {
private String myAdr;
private Vehicle myVeh;
public Location(String a) { myAddr = a; myVeh = null; }
public Location(String a, Vehicle v)
myAdr = a; myVeh = v; v.keepAt (this); }
public String address() { return myAdr; |}
public Vehicle keeps() { return myVeh; }
public void keep (Vehicle v)
myVeh = v; if (v.keptAt() != this) v.keepAt (this); }

12

We can build a pair of mutualseferencing objects by constructingVahicle and a
Locationin either order, sinctheir constructors set up the reciprocal references:

Person wal = new Person(“Wallace”) ;
Location lcn = new Location(“42 West Wallaby Street”);
Vehicle veh = new Vehicle(wal, 1lcn);

14 JOURNAL OF OBJECT TECHNOLOGY VOoL.4,NOo. 7

Now, the intention is that these classes sthdnd specialised in pairs, for example, we
might createCar/Garage or Aircraft/Hangar, or Ship/Portpairs. But what happens if the
programmer only specialises one hafithis mutual relationship?

class Car extends Vehicle ({
public Car(Person p, Location c) { super(p, c); }

Person wen = new Person (“Wendolene”) ;
Car car = new Car (wen) ;
Location loc = new Location(“3 Town Square”, car);

In Java, the result of enquiringc.keeps(always has the typéehicle(we are suffering
from the “type-loss” problem again), bdynamically it contains an instance @ér. In a

parametric type system, weowld expect to be &b to recover theexact vehicle-type.
This is because, when thecationis constructed with a value of the exact t@#e, this

type is propagated into the vehicle-type parametarLocation’s polymorphic variable
myVeh which we imagine might have the type:

V(t <: GenVehiclef]) . myVeh :t which then becomes...
myVeh: Car ...aftersubstituting{Car/t}.

This is exciting from the viewpoint of typenalysis; but notice that we have created a
new, unforeseen type. We expected eventually to speciaisieleandLocationin step
with each other, producin@ar andGarage such that th&arage.keeps(@nethod returns

a Car, and theCar.keptAt()method returns &arage Because we only specialised one
half of the mutual relationship, we created a new intermediate type variamtaton’
whose keeps()method returns &ar, rather than a/ehicle This type is neither a
Location nor aGarage but something in between.

Palsberg and Schwartzbach were the firsefmort such intermediate types in object-
oriented languages [15]. They were usinye substitutioomechanism, which has only
slightly less expressive power than th# fimrametric mechanism used in our appréach

They discovered that checkers which perform full type analysis will inevitably synthesise

many intermediate versions of types, assulteof the evolution of other closely-related
types. The consensus nowadays is that a aflytteferring set otypes creates another
enclosing formal structure, @osure which is specialised as a whole, when any one of
the related types is specialised. This, themheschallenge facing the designers of future
object-oriented compilers with smart typanalysis, implicit type evolution and
incremental compilation.

2 If you systematically substitute type X by type Y within ssnepe, then all Xs must change into Ys. But with type
parameters, you can declare different parameters P <# R a#dX, choosing to substituf%¥/P} and {Z/Q}, so this
gives you slightly finer control ovaevhich substitutiontiappen together.

VOL.4,NOo. 7 JOURNAL OF OBJECT TECHNOLOGY 15

OVL_JTHE THEORY OF CLASSIFICATION PART 20: MODULAR CHECKING OF CLASSTYPES

6 CONCLUSIONS

Maybe in the future we will see object-oried languages that exemplify the Theory of
Classification in full. I'd like to thinkthat one day, we could have a programming
language that is based on a feimple concepts, which is as type-safe as Pascal and as
expressive as Eiffel (or Alge@d8, or whatever the lastally good programming language
was). In my crystal ball, this language haglistinguish the theotieal notions of class
and type, to allow programmers to undemstaclearly when simple, or polymorphic
typing is intended. It will relate all builkiand programmer-defined types and support
obvious, intuitive notions of classification, fekample, that the simple types Integer and
Boolean are first-class members of the c¢tgps hierarchy and fit underneath an abstract
class of Numbers, whose abstract arithretathods are appropridyespecialised when
they are implemented in Integer and Realltle classification wi be possible, such
that both Complex numbers and Sets willcbasidered PartiallyOrdered types, Complex
and Integer numbers will beonsidered kinds of Numbeand Sets and Bags kinds of
UnorderedCollection. Interfaces will iee same thing as abstract classes.

Incremental compilation will continue to Iseipported and dynamic binding will be
the norm, with some static optimisatioperformed on the standard leaf-types. The
syntax of these languages may start out uskplicit type parameters everywhere (such
as the cutting-edge work on Haskslpe classes but the parameters may eventually
disappear inside the compiler, maybe & thss of a small amourtf flexibility and
expressiveness. The compiler’s ability to perf early type analysis will improve and |
expect that in future, code modules will be compiled, which retain their type parameters,
such that when the modules are linkadd bound at their call-sites, exact type
information will be propagated throughouettveb of type-constnais, allowing the call-
site to extract precisely-typed results. Thedong of such paramétrmodules will result
in a bi-directional flow of ype-information, yielding solutions such as the “most general
intersecting type”, computagsing unification algorithms.

Throughout my work in this agr, | have been standing the shoulders of giants. |
owe particular thanks to Willam Cook, i Bruce and Luca Cardelli for formative
conversations in the early 1990s and occasiexehanges since then. If you have been
stimulated by this informal series oftiates on the typing and semantics of object-
oriented languages, the nexage might be to get to grips with the details of the type
rules, perhaps in [13, 16]. If you have commemsights or critiques to make, please feel
free to contact me by email. If you woulddiko help bring abouthe “language with
class”, then | have a PhD projecttins area that needs a good student.

16 JOURNAL OF OBJECT TECHNOLOGY VOoL.4,NOo. 7

REFERENCES

[1]

[2]

[3]

[4]

[5]

[6]

[7]
[8]

[9]

[10]

[11]

A J H Simons, “The theory of cladication, part 4:0bject types and
subtyping”, Journal of Object Technology(5), November-December 2002
pp 27-35http://www.jot.fm/jot/issues/iss 2002_11/column2/index_html

A J H Simons, “The theory of classifttan, part 7: A classs a type family”,
Journal of Object Technology, 2(3), May-June 2008p 13-22,
http://www.jot.fm/issues/issue_2003_05/column2

A J H Simons, “The theory of cladsation, part 19: Th proliferation of
parameters”Journal of Object Technogy, 4(5), July-August 200pp 37-
48, http://www.jot.fm/issues/issue_2005_07/column4

A J H Simons, “The theory of daification, part 8:Classification and
inheritance”,Journal of Object Technology, 2(4), July-August 2083 55-
64, http://www.jot.fm/jot/issues/issue_2003_07/column4/index_html

P Canning, W Cook, W Hill, WOIthoff and J Mitchell, “F-bounded
polymorphism for objectqtented programming”Proc. 4th Int. Conf. Func.
Prog. Lang. and Arch(imperial College, London, 1989), 273-280.

A J H Simons, “The theory of daification, part 18: Polymorphism through
the looking glass”Journal of Object Technology, 4 (4), May-June 2005
7-18, http://www.jot.fm/isses/issue_2005_05/columnl

A J H Simons, Low E-K and Ng Y-MAn optimising delivery system for
object-oriented softwareQbject-Oriented Systems, 1 ((3994), 21-44.

C Chambers and D Ungar, “Iteratitgpe analysis and extended message
splitting: optimizing dynamically-typed object-oriented progranfpc. 5"
ACM Conf. Prog. Lang. Design and Imgyb.ACM Sigplan Notices, 25(6),
(1990), 150-164. Reprinted ihisp and Symboli€omputation, 4(3)(1991),
283-310.

A J H Simons, “The theory of clagisation, part 16: Rule of extension and
the typing of inheritance”Journal of ObjectTechnology, 4 (1)January-
February 2005pp 13-25http://www.jot.fm/issues/issue_2005_01/column2

A J H Simons, “The theory of clafisation, Part 17: Multiple inheritance and
the resolution of inheritance conflictsTpurnal of ObjectTechnology, 4 (2),
March - April 2005, pp 15-26, http://www.jot.fm/issues/issue_2005_03/-
column2

K Bruce, J Crabtree, A Dimock, Ruller, T Murtaugh and R van Gent, “Safe
and decidable type checking in aebject-oriented language”, Prod" &CM
Conf. Obj.-Oriented. Prog. Sys., Lang. and Appl., (1993), 29-46.

VOL.4,NOo. 7

JOURNAL OF OBJECT TECHNOLOGY 17

http://www.jot.fm/issues/issue_2002:11/column2
http://www.jot.fm/issues/issue_2003_05/column2
http://www.jot.fm/issues/issue_2005_07/column4
http://www.jot.fm/jot/issues/issue_2003_07/column4/index_html.
http://www.jot.fm/issues/issue_2005_05/column1
http://www.jot.fm/issues/issue_2005_01/column2
http://www.jot.fm/issues/issue_2005_03/column2
http://www.jot.fm/issues/issue_2005_03/column2

GVL_/THE THEORY OF CLASSIFICATION PART 20: MODULAR CHECKING OF CLASSTYPES

[12]

[13]

[14]

[15]

[16]

K Bruce, A Schuett and R van GefiolyTOIL: A type-safe, polymorphic
object-oriented languageACM Trans. Prog. Langs. and Sys., 25(@garch
(2003), 225-290.

K B Bruce, Foundations of Object-OCented Languages: Types and
Semantics(Cambridge MA: MIT Press, 2002).

K Bruce, A Fiech and L PetersefSubtyping is not a good ‘match’ for
object-oriented languages”, Proc. Bpean Conf. Obj.-Oriented Prog., pub.
LNCS, 1241, (New York: Singer Verlag, 1997), 104-127.

J Palsberg and M | Schwartzba@lfject-Oriented Type Systeif@hichester:
John Wiley, 1994).

M Abadi and L CardelliA Theory of Objects. Monographs in Computer
Sciencespringer-Verlag, 1996.

About the author

Anthony Simons is a Senior Lecturer and Director of Teaching Quality
in the Department of Computer Sogee, University of Sheffield, where
he leads object-oriented researclvémification and testing, type theory
and language design, developmenthods and precise notations. He
can be reached atsimons@dcs.shef.ac.uk

18

JOURNAL OF OBJECT TECHNOLOGY VOoL.4,NOo. 7

mailto:a.simons@dcs.shef.ac.uk

