The
University
o Of

= -n,‘-_“ u}:_.'!?- Bhe&i{“:ld.

This is a repository copy of The theory of classification part 18: polymorphism through the
looking glass.

White Rose Research Online URL for this paper:
http://eprints.whiterose.ac.uk/79261/

Version: Published Version

Article:
Simons, A.J.H. (2005) The theory of classification part 18: polymorphism through the
looking glass. Journal of Object Technology, 4 (4). 7 - 18. ISSN 1660-1769

Reuse

Unless indicated otherwise, fulltext items are protected by copyright with all rights reserved. The copyright
exception in section 29 of the Copyright, Designs and Patents Act 1988 allows the making of a single copy
solely for the purpose of non-commercial research or private study within the limits of fair dealing. The
publisher or other rights-holder may allow further reproduction and re-use of this version - refer to the White
Rose Research Online record for this item. Where records identify the publisher as the copyright holder,
users can verify any specific terms of use on the publisher’s website.

Takedown
If you consider content in White Rose Research Online to be in breach of UK law, please notify us by
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

\ White Rose o
| university consortium eprints@whiterose.ac.uk
WA Universiies of Leeds, Sheffield & York https://eprints.whiterose.ac.uk/

mailto:eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

ff——

JOURNAL OF OBJECT TECHNOLOGY

Online at http://www.jot.fm. Published by ETH Zurich, Chair of Software Engineering ©JOT, 2005

Vol. 4, No. 4, May-June 2005

The Theory of Classification
Part 18: Polymorphism through the
Looking Glass

Anthony J H Simons, Department of Computer Science, University of Sheffield

1 INTRODUCTION

In this, the eighteenth article in a regular series on object-oriented type theory, we look at
how object-oriented languages migholve in the future, givethat the formal notion of
classis now better understood thahthe outset. Object-origgd languages were the first
family to suppose that there might be systBmsets of relationships between all the
program data types and use thsthe basis for a kind ofpe compatibility. However,
the early formal models chosen weresdx on simple types and subtyping [1] and
struggled in practice to suppail the obvious, systematic relationships that programmers
intuitively recognised [2]. For a while, objects were thought to haaes and type
independently, wherelasswas demoted to a mere implementation construct. Later, it
was realised that the notion ollassis also a typeful construct that requires at least a
bounded second-ord&rcalculus model to explain it [3JVe have developed this model

in the Theory of Classificationshowing how it deals properly with typed inheritance [4,
5] and generic types [6] in a consistent framework.

However, current object-oriented languages ghbrt of what is actually possible in
a language thatally supports the notion of class. Thejanay still treat classes for the
most part as if they were the same thing as simple types, and it only becomes clear that
something more sophisticated is intenddaen dynamic binding in these languages is
examined, showing dispatching behaviour egl@nt to higher-order functions [7]. The
additional template mechanisms of C++ aada (from version 1.5) are intended partly
to compensate for the lack of expressiveneaused by treating classes as simple types.
But do we really need all these separgi@ng mechanisms? What would a language
look like that consistently suppged the higher-order notion oflass throughout?

Cite this column as follows: Anthony Simons: “The Theory of Classification: Part 18: Polymorphism
through the Looking Glassin Journal of Object Technology, vol. 4, no. 4, May - June 2005, pp
7-18 http://www.jot.fm/issues/issue 2005 05/column01

http://www.jot.fm
http://www.jot.fm/issues/issue_2005_05/column01

[

2 THE HALFWAY HOUSE

In the very first article of this series [8}e described three increasingly more flexible
kinds of plug-in type compatibility, in theontext of supplying a component to match an
interface:

e correspondence: the componestidentical in type and its behaviour exactly
matches the expectations made of iewltalls are made through the interface;

e subtyping: the component is a more sfiedype, but behaves exactly like the
more general expectations when€ake made through the interface;

e subclassing: the component is a more specific type and behaves in ways that
exceed the more general expectationemballs are made through the interface.

An example ottorrespondenceés the strong monomorphiggding exhibited in languages
like Pascal or Modula-2, in which every objexbf a single type and may only be passed
to variables of exactly theame type. Pascal’'s strongme equivalenceule means that
even structurally equivalent types are consdatistinct, if their type names are distinct
(in contrast to C++'sypedefswhich are only aliases for the base type).

An example ofsubtypingis where a subrange object is coerced to a base type
variable, so that the base type’s ftioo may be executed, such as where 8waallint
objects are passed to brtegerplus function and the result is returned admteger The
function originally expectedhtegess, but could handle subtypes lateger and convert
them. Note that no dynamic binding is implier required. Also, a simply-typed first-
order calculus (with subtyping) is eguate to explain this behaviour.

An example ofsubclassings where the functions of ¢hinterface are systematically
replaced by functions appropriate the new type, such as whereNameric type’s
abstract functionplus, minus, timeand divide are replaced by retyped versions for a
Complextype. Rather than coerceCamplexobject to aNumerig the call toplusthrough
Numeric executes the replaceme@omplex plusfunction. This could be achieved
through dynamic binding; or tarnatively through templatmstantiation (in which the
parameteNumericis replaced throughout by an act@aimplextype), requinmg at least a
second-order calculus.

What are the important differences beem the simple subtyping and subclassing
approaches? In the subtyping approach, Itlteger plusfunction treats itsSmallint
arguments exactly as if they were plémegers It returns a result of the general type
Integerand does not know or aawhether the result is still in the range @raallint On
the other hand, in the subclassing approdiclre is an obligation to propagate type
information about the actual argument and result typ&€oofplex'plusback to the call-
site. Whereas the interface expectedwameric once this was bound to @omplex
number, the second argument was also forced toGmgplexnumber. Furthermore, the
result-type, which was formerMumeric is now known also to be of tl@mplextype.
This means that the caller pfus must know how to deal with more specific types than
originally specified in the interface. From gooint of view, this is exciting stuff, in the

17 JOURNAL OF OBJECT TECHNOLOGY VoOL. 4, NO. 4

ff—

true spirit of classification, and sometbi worth exploiting in the design of object-
oriented languages. -

However, the majority of languages omlyactise a halfway-house approach, which
is subtypingwith dynamic binding This is similar to subtyping, except that the subtype
may provide a replacement function that executed instead. Recalling the earlier
example, this is like th&mallint type providing its own version of thglus function
which wraps the result back into tBenallintrange. Syntactically, the result is acceptable
as annteger, but semantically it may yield ffierent results from the originahtegerplus
function (when wrap-around occurs). From thee perspective, westill only know that
the result is of thdnteger type (rather tharSmallin) because there is no way of
propagating type information about the actual arguments through to the result of the
function. So, we have a situation where rengpecific functions are executed, but
externally we cannot see that their typs kbhanged. This givessa to the phenomenon
of “type loss” in C++ and Java, requiringroective use of type downcasting to recover
the most specific types of returned objects [2].

3 POLYMORPHISM REVISITED

Stopping at the halfway house constitutes ituria of nerve in the design of object-
oriented languages. At the heart of this peabis the inability to distinguish the notions
of classandtypein the syntax of programming languag#f an object-oriented language
implemented this distinction properly, a pragrmer should never have to perform type
downcasting, but the language could alwayover the most specifitypes of returned
objects for itself. To make this disttion absolutely clear, in thélheory of
Classification

e atypealways refers to a simple monomhic type, a first-order construct;
e aclassalways refers to a polymorphic tymesecond-order (or higher) construct.

As stated previously [8], the terpolymorphismhas less to do with the dynamic binding
of methods and properly describes the gdisexé types of variables that may receive
values of more than one typl@ conventional programmingnguages, we consider that
type constructors, such &ack[T] or Map[K,V] are polymorphic, because they contain
type variables standing for gsibly many types, and may bdapted to specific types by
parameter instantiation. In objeamtiented languages, we also consider that a variable of
“class-type” is polymorphic and can be mddeeceive actual obj¢s of possibly many
types, where these are restricted by the diessrchy to be of some “subclass-type” of
the target variable. These polymorphic netdbms seem on the surface to be quite
different, but they are fundamentally the same.

In the A-calculus, polymorphism always requsra type parameter, standing for the
generalised type; and when a polymorphic vadgeiddinds to a specific type, this type is
propagated into the parameter, throughthé whole parameterised expression. The

VOL. 4, NO. 4 JOURNAL OF OBJECT TECHNOLOGY 18

[

formal model therefore brings togethee thotions of class-based polymorphism and
template-based polymorphism. In earlier des [2, 3], we deliberately drew out the
similarity between classical GirardeRnolds [9, 10] univeral polymorphism:

V1 .identity it >t

V1 . insert it x List[t] — List[t]

in which you could give functionsuly generalised types (wheteanges over absolutely
any type) and Cook et al.’s [112] function bounded polymorphism:

V(t <: GenNumericf]) . plus:txt—> 1

V(t <: GenComparable]) . insert :t x SortedListf] — SortedListf]

in which you could give unctions class-types (wheteranges oveonly those types
which have at least the functions specifiadthe interface othe bounding generator
function). F-bounded polymorphism is more gahé¢han universal ggmorphism (since
you can type more things using F-bounds, for example you canSgpedListsof
Comparableelements with F-bounds, whereas you can only type plaia of universal
elements, without them). This can be shofermally by recasting Girard-Reynolds
polymorphism as a special case of F-bounded polymorphism:

GenUniversal #.c.{} /I the content-free constraint
V(t <: GenUniversal]]) . identity :t —> 1

V(t <: GenUniversal]]) . insert :t x List[t] — List[r]

That is, we constraim to range over those types whichvbat least the functions of the
universal interface, but this inface is trivial (empty), so ranges again over any type.

There are two practical consequences ofdigsussion. The first is that, wherever a
polymorphic variable is required in ourggramming language, we should always model
its type using some kind ofpe parameter in the formal calculus. The fact that object-
oriented languages don’'t make the type parammebeplicit for their classes is one of the
reasons why the notions ofassandtype get so confused. The second is that we do not
need separate mechanisms to explain let@ybased and class-based polymorphism. The
class parameters constrained by F-bounds aguade for both purposes [6], being more
general than classical unconstrained parameters.

4 DISTINGUISHING CLASS AND TYPE

In current object-orientediguages, objects and variables dyped” using the names of
the classes like type identifee These identifiers are usachbiguously, to describe either

17 JOURNAL OF OBJECT TECHNOLOGY VoOL. 4, NO. 4

ff—

an object or value with amxact type (a monomorphitype in the theory), or,

alternatively, to describe a variable with a flexible type (a polymorplass in the

theory). What we should like is fobject-oriented languages to indicatelass or atype “—
unambiguously.

Informally, it is possible to infer the intended semantics of class identifiers from the
program context in which they appear. I€&+ or Java-like language/hen we create an
object, we usually intend to create something with a fixed implementation and an exact

type:

... = new Point; Il exactly typed object creation

In this context, we do not expect to obtain some instance of a subcRa@stpbut rather

an exact instance of the exact typaint On the other hand, when we declare a program
variable of thePoint class, it is clear that we intend this to be flexible, capable of
receiving values that might be more specific thaPoat, but which are at least of this
class:

Pointp = ... /I polymorphic variable declaration

accept(Pointp){ ... } /I polymorphic method arguments
In this context, we do not expect these variables to be restricted to accepting only objects
of the exacPoint type, but rather any type vah is at least a subclass Pbint We can
model these differences in thecalculus, to make them explicit.

Recall that a class is defined essentiaklya flexible, open-ended implementation,
parameterised bgelf with a corresponding polymgahic type, parameterised lay the
self-type [4]. We give the typsghape of the class using g&ygenerator, followed by the
implementation-shape using an object generatbich is typed usig the type generator
as the F-bound, restricting what typeay eventually replce the self-type:

GenPoint 2\o.{x : Integer, y : Integer, equak: — Boolean }

genAPoint :V(t <: GenPointf]).t - GenPointf]
genAPoint =i (tr <: GenPointf]).A(self : 7).
{x 2,y 3, equal> A(q : 1).(self.x = g.xA self.y = q.y)}
In our C++ or Java-like programming langea when we declare a variable of Pant

class, what we are really ag#gg is the polymorphic typingO : t, wheret is a type
parameter constrained to range over any type iR thet class:

Programming Language Formal M odel

Point p; p0 :V(tr <: GenPoaintf]) . t

Table 1: Polymorphic variable declaration

VoOL. 4, NO. 4 JOURNAL OF OBJECT TECHNOLOGY 18

[

On the other hand, when we create an exact instance Bbthetype, we must fix both
the type and the implementation. In the calsuthis is done by taking the fixpoint of the
type generator and of the object generator [4]:

Point =Y GenPoint
= po.{x : Integer, y : Integer, equab: — Boolean }
= {X : Integer, y : Integer, equal : Point Boolean }, after unrolling;

aPoint =Y genAPointly GenPoint] =Y genAPoint[Point]
=Y A(self : Point).{ x— 2, y— 3,
equal—> A(q : Point).(self.x = g.x self.y = g.y)}
= u(self : Point).{ x— 2, y— 3,
equal> A(q : Point).(self.x = g.x self.y = q.y)}
= {x P 2,y 3, equab> A(q : Point).(aPoint.x = g.x aPoint.y = q.y)},
afterunrolling.

This creates the exact instaraf@ointof the exacPointtype. We can therefore model the
meaning of object creation expressions in our programming language:

Programming L anguage Formal M odel
new Point; pl =¥ genAPointf GenPoint];
pl: Point

Table 2: Exactly-typed object creation

Here, we have taken the liberty ioftroducing the temporary variabpe in the formal
model, so that we can initialise this \abie to the rather complex object creation
expression and then see that it has an exact type, which Botihtetype we expected.
The temporary variable is simply a convenierioesave repeatinghger expressions. In
section 6 below, we will use a similar apact to analyse program behaviour in step-by-
step detail.

5 TYPE CHECKING WITH FIRST-ORDER TYPES

First, we shall introdue a test-case that exemplifies soofethe difficulties identified

with type systems that check types in the first-order model (with simple types and
subtyping). The example code fragment, egpeel in our C++ or ¥a-like language, is a
cut-down version of the infamous “Eiffeyge failure” problem first identified by Cook
[13]:

17 JOURNAL OF OBJECT TECHNOLOGY VoOL. 4, NO. 4

Point p = new Point3D; /I alias a more specific Point3D
Point g = new Point; Il create a standard Point
Boolean b = p.equal(q); /I dynamilyainvoke the specific equal

Programmers expectRoint3D instance to be type-compatible withPaint variable, but

in the first order model, this is not tlease. To explain why the above fragment is
problematic, we should define th®int3D class, which describes a three-dimensional
point, whose interface extends that of a standard two-dimen$§loirl

GenPoint3D =s\c.{X : Integer, y : Integerz : Integer, equalc — Boolean}

genAPoint3D V(1 <: GenPoint3D{]).t — GenPoint3D{]
genAPoint3D =\ (t <: GenPoint3D{]).A(self : 7).
{Xx > 2,y 3,z 5,
equal> A(r : 7).(self.x = r.xa self.y = r.ya self.z = r.z)}

In particular, an instancPoint3D : Point3D created from these gerators by taking the
fixpoints (see section 4) will have an exizdield; and whenaPoint3D tests itself for
equality against another pojitt will compare all of it, yandz fields.

In the original “type failoe” scenario, the programng language expected the
subtyping relationshifoint3D <: Point to hold. In fact, wenow know that these types
are not in a subtyping relationshj because the retyping &oint3Ds equal method
violates the function subtypingule [1]. However, Eiffel howed subclasses to retype
their methods with more specific argument gyps&ince it is unlikely in practice that we
should want &oint3Dto compare itself with nte general kinds of point.

An undetected type failure arises as follows. First, we create a speoifit3D
instance and assign it (by polymorphic siing) to the more general varialge Point
This is permitted by the (faulty) assumption tfadint3D <: Point Then, we create
another instancey : Point Finally, we invoke p.equal(g), at which moment the
undetected type failure occurs. Statically, the typegpial is Point.equal :Point —
Boolean so it appears to be legal pass in the given argumenqt: Point However,p
currently contains a dynamic instanceR#int3D and the version of thequal method
which is actually invoked i®oint3D.equal : Point3D-» Boolean This receives the too-
general argumery : Point and during the execution of the method body, an attempt is
made to access thefield of a plainPoint which will cause the program to crash,
generating a memory segmentation fault.

Cook originally proposed to fix this probleby forcing Eiffel to conform to strict
subtyping rules [13]. Refieed argument types faqualwould thereforanot be allowed.
Although this technically satisfies subtyping, Wwave seen how this gelts in a strictly
less expressive languagd.[th particular, theequalmethod, which is required by every
class, may only be typed with the most gehkirad of argument (usually, the root class
Objec), and it may never be retyped with maestricted types of argument. Instead,
redefined versions aéqual have to accepDbjectarguments and use runtime-checked
type downcasting internally, to recover thermegpecific dynamicype of the argument,

VOL. 4, NO. 4 JOURNAL OF OBJECT TECHNOLOGY 18

[

before comparison can be made. This mepelghes the type failungroblem back into

the

run-time.

6 TYPE CHECKING WITH SECOND-ORDER CLASSES

Classes are type-recursive, meaning theaitr tmethods often accept or return arguments
of theselftype. So it is natural to want thesgaments and results to become uniformly

specialised along witlthe class itself. We want to allow Roint3D to specialise the

argument type of itequal method. However, we still s to avoid unchecked type

failures.

Programming L anguage

Formal Modé€

Pointp ...

p0 : V(t <: GenPointf]).t

... hew Point3D;

pl & genAPoint3DY GenPoint3D];
pl: Point3D

Point p = new Point3D;

p2 = (p0 := pl); {Point3D %}

p2 : Point3D
Pointq ... g0 : V(o <: GenPoinif]).c
... new Point; gl =¥ genAPoint ¥ GenPoint];
gl : Point
Point g = new Point; g2 = (g0 :=ql); {Point6}
g2 : Point
Boolean b ... b0 : Boolean
... p.equal ... p2 : Point3D;
p2.equal : Point3B» Boolean
... p.equal(q); g2 : Point;

p2.equal : Point3D~»> Boolean;
p2.equal(g2 : Point) :
ERROR Poin¢ Point3D

Table 3: Polymorphic checking with type substitution

17 JOURNAL OF OBJECT TECHNOLOGY VoOL. 4, NO. 4

In the Theory of Classificationwe take the view that a el is not a first-order concept,
but a second-order, polymorphic concept. Onthefadvantages this brings is the ability
to relate closed recursivgpes to each other, by relagi their generators in a (second-
order) pointwise subtyping relationship [3]. Thislalvs us to specialise argument and
result types uniformly, in line with programnséintuitions about classes. However, the
recursive types themselves do eater into simple subtypinglationships, so we cannot
type-check them in the usual first-ordsystem. By properly distinguishing the
polymorphic notion oftlassfrom the monomorphic notion aype we may type-check
the same fragment of object-oriented cadea second-order model, showing that
polymorphic assignment really involves thmpagation of typemto polymorphic type
parameters. This is a very powerful checkmgchanism, capable of resolving many of
the difficulties formerly identified with object-oriented type systems.

On the left-hand side of table 3, thepeessions in the programming language are
broken down into small steps, in order t@exne the types of these expressions in the
formal model on the right-hand side. Ore tfirst row, we declare a polymorphRoint
variable and show this to have a F-boungadametric type. On the second row, we
create an exa®oint3D object and show thi® have the exa@oint3Dtype. On the third
row, we assign the specific instance to theegal variable. This is where the new type-
checking principle first comes into play. Ate moment of polywrphic aliasing, the
exact type of the object isqagated into the type paraimeof the variable, shown by
the substitution: {Point3D 7}. As a consequence, we obtain a new conpxafter the
assignmentd0 := p1l), in which the type of thdound variable expression has been
updated.

This is how the type mismatch is evealty detected. When checking the program
expression:p.equal(g) the model can predict the type of tequal method, and its
expected argument type, since staticéliknows that this is selected frop2 At the
same time, the model knows the type of the actual argument, from the aphtdkie
formal and actual argument types are shown to conRigint = Point3D), so the checker
can raise a type mismatch at compile timet dldy do we spot the type error at compile
time, but we do this without kg to restrict the expresgness of the language. We still
allow Point3D objects to be passedanpolymorphic variablep : V(t <: GenPoinfr]).t,
so long as this does not conflict with otlygping requirements further down the line. For
example, the following code fragmentréadily accepted by this checking algorithm:

Point p = new Point3D; // alias a more specific Point3D
Point3D q = new Point3D; // create a specific Point3D
Boolean b = p.equal(q); /I dynamilyainvoke the specific equal

since, at the momewf selection, thequalmethod has the tygeoint3D.equal : Point3D
— Boolean As a consequence, it can happily accept the actual arggmeRbint3D
The following code fragment is also acceptable:

Point p = new Point3D; // alias a more specific Point3D
Point q = new Point3D; // alias another specific Point3D
Boolean b = p.equal(q); /I dynamilyainvoke the specific equal

VoOL. 4, NO. 4 JOURNAL OF OBJECT TECHNOLOGY 18

[

because the type substitutioRdint3D / t <: GenPoinfr]} is made consistently when
bothp andq alias values of exact types, before the typing oktinealmethod invocation
is considered. Though the variablgs q were originally declared with general
polymorphic types, new type contextse aestablished by the polymorphic aliasing.

7/ CONCLUSION

Any object-oriented language thatily supports the notion aflass should be able to
distinguish contexts where simple typespotymorphic classes are intended. The secret

to success is to preserve the underlyitype parameter in expressions where
polymorphism is intended. When polymorphic variables alias each other, this has the
effect of substituting one type parameter for another, possibly strengthening the F-bound
constraint (this is becausmifying two type variables tpiires that you accept the more
restricting of the two type constrés — see the previous discussionirtersection types

in [5]). When polymorphic variables aliasbjects with exact types, these types are
substituted into the type parameters. Asocasequence, it is always clear whether an
expression has a polymorphic, otdd type, in a given context.

Object-oriented lanaguages tlaatopted this simple rule could remove a lot of clutter
from their syntax. To start with, there wdube no need to have both this kind of
(genuine) polymorphic typingand subtyping. So, type etkers that performed
parametric substitutions would not alsovéato perform subtypig coercions. If two
simple types turned out not to be the sathe,checker could immediately rule them as
mutually incompatible! Secondly, there would be no need for separate syntactic
treatments of template-based and classed polymorphism, since both would be
handled using the same underlying F-boundednpetric mechanism. However, the type
instantiation process might happen at run-time as well as at compile-time (this unifies the
notions of dynamic binding and template argtation). Thirdly,we would have to
consider more carefully the scope of tyqustitutions made when polymorphic aliasing
occurs. We would expect, for exampleattra polymorphic method would bind type
parameters on entry, but release these bindings on exit, so that the method could be
applied to an object of sondifferent type on another occasi What then is the scope of
a polymorphic assignment? We saw abowa thinding one type rules out subsequent
assignments to different types. The scope of an assignment would have to be defined
carefully, with rules for “undoing” ansaignment and recovering the old polymorphic
type of the variable.

The advantages of (genuine) polymorptyping do not stop there. For example,
type propagation may have considerablgrsler and pervasive effects on the behaviour
of a piece of software. The C++ Standardnpéate Library makes use of this when it
defines templatallocatorsfor handling the memory management aspects of regular data
types. Substituting different actual allocators can alter the efficiency of the whole
program. In fact, parametric substitutionrédated to reflective meta-programming and,

17 JOURNAL OF OBJECT TECHNOLOGY VoOL. 4, NO. 4

[

when properly exploited, can produce mostief pervasive benefits claimed by aspect-
oriented programming. By understanditige true polymorphic nature of tliass we
may yet obtain much simpler, yet more powerful programming languages.

REFERENCES

[1] A J H Simons, “The theory of classification, part 4: Object types and sub-
typing”, Journal of Object Technologwol.1 no.5, November-December
2002, pp 27-35attp://www.jot.fm/issues/issue_2002_11/column2

[2] A J H Simons, “The theory of classifiban, part 7: A classs a type family”,
Journal of Object Technologwol.2 no. 3, May-June 2003, pp 13-22.
http://www.jot.fm/issues/issue_2004 05/column2

[3] A J H Simons, “The theory of clagsation, part 8: Ghssification and in-
heritance”, inJournal of Object Technologyol. 2, no. 4 July-August 2003,
pp.55-64.http://www.jot.fm/issues/issue_2003_07/column4

[4] A J H Simons, “The theory of daification, part 11: Ading class types to
object implementations”, idournal of Object Technologyol. 3, no. 3,
March-April 2004, pp7-19.
http://www.jot.fm/issues/issue_2004 03/columnl

[5] A J H Simons, “The theory of classification, part 16: Rules of extension and
the typing of inheritance”, idournal of Object Technologyol. 4, no. 1
January-February 2005, pp. 13-25.
http://www.jot.fm/issues/issue 2005_01/column2

[6] A J H Simons, “The theory of clsi$ication, part 13: Teaplate classes and
genericity”, inJournal of Object Technologyol. 3, no. 7, July-August 2004,
pp. 15-25http://www.jot.fm/issues/issue_2004_07/column2

[7] W Harris, “Contravariance for the rest of ugurnal of Object-Oriented
ProgrammingNov-Dec 1991, 10-18.
[8] A J H Simons, “The theory of clasgition, part 1: Pepgctives on type

compatibility”, Journal of Object Technologyol. 1 no. 1,May-June 2002,
pp 55-61 http://www.jot.fm/issues/issue_2002_05/column5

[9] J-Y Girard, Interpretation fonctiofle et elimination des coupures de
I'arithmetique d'ordre superiel®hD ThesisUniversite Paris VII, 1972.

[10] J Reynolds, Towards a theory of type structBrec. Coll. Prog.New York,
LNCS 19(Springer Verlag, 1974), 408-425.

[11] P Canning, W Cook, W Hill, WOIthoff and J Mitchell, “F-bounded

polymorphism for objectqtented programming”Proc. 4th Int. Conf. Func.
Prog. Lang. and Arch(iImperial College, London, 1989), 273-280.

17 JOURNAL OF OBJECT TECHNOLOGY VoOL. 4, NO. 4

http://www.jot.fm/issues/issue_2002_11/column2
http://www.jot.fm/issues/issue_2003_07/column4
http://www.jot.fm/issues/issue_2004_03/column1
http://www.jot.fm/issues/issue_2005_01/column2
http://www.jot.fm/issues/issue_2004_07/column2
http://www.jot.fm/issues/issue_2002_05/column5

ff—

[12] W Cook, W Hill and P Canning, fiheritance is not subtypingRroc. 17th
ACM Symp. Principles of Prog. LangACM Sigplan, 1990), 125-135. N
[13] W Cook, “A proposal for making Eiffélype safe”, Proc. 3rd European Conf.

Object-Oriented Prog., 198%,7-70; reprinted inComputer Journal 32(4),
1989, 305-311

About the author

Anthony Simons is a Senior Lecturer and Director of Teaching Quality
in the Department of Computer Soiee, University of Sheffield, where
he leads object-oriented researclvamification and testing, type theory
and language design, developmenthmnds and precise notations. He
can be reached atsimons@dcs.shef.ac.uk

VOL. 4, NO. 4 JOURNAL OF OBJECT TECHNOLOGY 18

mailto:a.simons@dcs.shef.ac.uk

