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Dynamically adaptive grid based discontinuous

Galerkin shallow water model
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Abstract: A Godunov-type numerical model, which is based on the local planar Runge-Kutta
discontinuous Galerkin (RKDG2) solutions to the two dimensional (2D) shallow water
equations (SWEs) on a dynamically adaptive quadrilateral grid system, is developed in this
work for shallow water wave simulations, with particular application to flood inundation
modelling. To be consistent with the dynamic grid adaptation, the well-balanced RKDG2
framework is reformulated to facilitate realistic flood modelling. Grid adaptation and
redistribution of flow data are automated based on simple measures of local flow properties.
One analytical and two diagnostic test cases are used to validate the performance of the
dynamically adaptive RKDG2 model against an alternative RKDG2 code based on uniform
quadrilateral meshes. The adaptive model is then assessed by further applying it to reproduce
a laboratory-scale tsunami benchmark case and the historical Malpasset dam-break event.
Numerical evidence indicates that the new algorithm is able to resolve the moving wave
features adequately and at much less computational cost than the refined uniform grid-based

counterpart.
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1. Introduction

Godunov-type schemes solving the 2D depth-averaged shallow water equations (SWEs) are
attractive to hydrodynamic modellers because of their intrinsic capability to represent
complex flow features accurately [33,64]. Godunov-type numerical models solving the SWEs
have undergone significant theoretical and numerical advancement in recent years. As a
whole, a well-established Godunov-type shallow water wave model should be stable and
consistent when (a) strong convective transport is involved [63], (b) steep topographic
gradients are present [12,17,24,36,39,47,48,73], (c) flooding and drying processes take place
[3,7,9,13,18,26,53,50,52,75] and, (d) high roughness values are combined with extremely low
water depths [15,16,50,71]. Such models are superior to other flow modelling tools when
coping with a situation that demands accurate prediction of violent flood hydrodynamics
including the extent of inundation [34;66].

In the last decade, a number of capable Godunov-type shallow flow models have been
reported to be successful in real-time flood forecasts. Most of them are based on the first- or
second-order non-oscillatory Total Variation Diminishing (TVD) finite volume (FV)
approximation (e.g., [3,4,8,13,25,26,27,49,50,65]). However, the utility of these models in
more general real-time flood modelling is still questionable. One major issue, which
significantly hampers the applicability of these models, is the requirement for high-resolution
spatial representation of the detailed domain features in large-scale flow simulations. This
inevitably requires the use of highly refined computational meshes that lead to a long run-
time, which could become prohibitive even for the most advanced computers [6]. One viable
means to improve the the run-time efficiency but not compromise the representation of
complex topography is to use dynamic mesh adaptation so that the refined mesh only covers
those regions with complex flow or topographic features. For instance, Nikolos and Delis

[56] attempted to use a locally refined but static grid to represent more accurately the areas



where the topographic slopes are relatively steep. Although domain topography may
significantly impact upon the flow direction, the optimal grid resolution is generally unknown
in advance, given the transient nature of most of the numerical solutions [27,44]. This
therefore motivates the use of dynamic grid refinement and coarsening to optimize the
performance of an unsteady shallow water model, which may be realized by utilizing either
quadrilateral cells [26,27,39,46,49,60,61] or triangular elements [9,57].

In recent years, the Runge-Kutta Discontinuous Galerkin (RKDG) methods have
become popular in solving PDEs [45]. For the hyperbolic conservation laws, RKDG methods
can be viewed as a genuine generalization to the conservative formulation initially introduced
by Godunov [19,20]. They are attractive due to the fact that they employ local element-
oriented solutions of arbitrary order of accuracy and only exchange information between
computational cells via numerical fluxes. They also excel in delivering converged solutions
(e.g., [42,48,72,74]) and are highly suited to local adaptation of the computational mesh
(referred to as “h-adaptation’) or local adjustment of the order of accuracy (referred to as “p-
adaptation”). In terms of computational cost, RKDG models are generally much more
expensive than other numerical schemes (e.g., those based on the traditional continuous
Galerkin finite element method or non-oscillatory FV Godunov-type approach) and their
overhead cost obviously increases with the scheme’s order of accuracy. As a consequence,
employing a second-order RKDG method (RKDG2) provides a reasonable tradeoff between
computational efficiency and numerical accuracy. RKDG2 can also substantially reduce the
overall algorithm complexity in the implementation of effective slope limiting processes [41],
consideration of uneven topography under a well-balanced framework [36,68], inclusion of
accurate tracking of a wet/dry front [76] and stable discretization of friction source terms

[37].



In solving the conservation laws of the SWEs, the RKDG methods have undergone
notable improvements in recent years and they can now provide stability properties similar to
robust finite volume Godunov-type schemes (e.g., [1,2,10,4,21,22,23
,28,29,30,31,35,38,43,44,55,58,59,62,63]. Particular innovations include the work of
Krivodonova et al. [40] who introduced a user-parameter-free local slope limiting process to
improve the scheme’s accuracy and efficiency. Xing and Shu [68,69] reported some useful
techniques for accurately handling irregular domain topographies. More recently, much effort
has been devoted to the design of wetting and drying conditions [11,21,14,31,35,70] and
stable discretization of bed friction terms [37,38].

Irrespective of the aforementioned progress made in recent years, the RKDG models
have not, surprisingly, become common in practical flood applications. One of the main
reasons may be, debatably, because of the enormous operational costs associated with this
group of models. To surmount the barrier of high runtime cost, a number of attempts have
been made to increase computational efficiency by devising dynamically adaptive RKDG
schemes. Kubatko et al. [44] systematically studied the impacts of global Ap-adaptation on
the computational efficiency and solution reliability of RKDG shallow water solutions on
structured uniform meshes. Based on their conclusions, the authors later introduced dynamic
p-adaption to the RKDG shallow water solutions [43]. With regard to local dynamic A-
adaptation, Remacle et al. [57] demonstrated its advantages with high-order RKDG models
but no information was provided on the computational cost. Most recently, Bader et al. [5]
reported a new dynamically s-adaptive mesh generator in the context of a RKDG shallow
flow solver, with a particular focus on minimizing memory demand. All of these studies have
been implemented on grids with triangular elements and involve rather idealized hydraulic
test-cases. Interestingly, a recent study by Wirasaet et al. [67] suggested that the use of

quadrilateral meshes with low-order RKDG methods is preferable to triangular meshes in



terms of cost effectiveness. Consequently, the payoff in deploying dynamic A-adaptation with
an RKDG2 scheme that solves the SWEs on structured quadrilateral grids may be quite
substantial especially when targeting water wave simulations with moving local features and
large-scale flood applications.

The main novel aspect of this work is the installation of dynamic 4-adaptivity that was
initially developed in the context of a finite volume scheme [76] to a well-established
RKDG2 2D SWE numerical solver on a quadrilateral mesh [36-38], aiming to enhance its
effectiveness. The RKDG2 scheme is therefore reformulated to cope with the (spatial) non-
uniformity and (transient) adaptive nature of the mesh while retaining the latest techniques
for local slope limiting, handling complex domain topographies and wetting and drying
processes. Dynamical grid adaptation is configured by sensing the water wave gradients and
the topographic data are stored with the highest resolution attainable. A set of analytical
shallow flow tests are first used to comprehensively test the performance of the new
dynamically A-adaptive RKDG2 model versus an RKDG2 alternative based on uniform
quadrilateral meshes of different sizes. The code is then assessed for practical flood
modelling by applying it to reproduce a laboratory-scale tsunami case and a field-scale dam-
break flood event. Applying an RKDG method to such realistic flood cases constitutes
another contribution of this work. Therefore, the present RKDG2 model may be among the
very few existing RKDG 2D SWE codes that are suitable for applications to realistic flood

modelling.

2. Shallow water equations (SWEs)

Based on mass and momentum conservation, the 2D depth-averaged nonlinear SWEs may be
written in a matrix form as

3U+0F+0,G=S8 (1



Herein ¢ is the time, (x,y) represent the Cartesian coordinates, U =[7, qx,qy]T,
F=[q,.q'h" +1g(m*-2n2), q,9,/"' 1", G=lq,.q,9,h" . q;h" +1g(* -2n2)]",  and
S=1[0, gnS,, -S,.gnS,, —S,1" are the vectors containing the flow variables, x-direction
fluxes, y-direction fluxes and source terms, respectively, g denotes the acceleration due to
gravity, 77(x,y,t) is the free-surface elevation, A(x,y,f) gives the water depth, z(x,y)

represents the ground level where 7=h+z, g,(x,y,t) and gq,(x,y,?)are respectively the x-

and y-components of the unit-width discharge. The two Cartesian components of the depth-

averaged velocity are calculated by u =g /h and v =g, /h. The source term vector may

be expressed as S = Sy + S¢ with S, =[0,-g7n0,z,-gnd,z]' and S, =[0,5,,5,1".

2 2 . .
S, =—%u\u’+v’ and S, =-20yu® +1? are the two components of friction source

f)[: hl] hl]

terms with n,, denoting the Manning coefficient.

lev(i-1,7)=0 lev(i,j)=1 lev(ii+1,7)=2

i-1 ] i+1

Fig. 1: Regularized non-uniform quadrilateral mesh with genuine indexing.



3. Non-uniform but structured quadrilateral mesh

In order to perform dynamic grid adaptation, a non-uniform but structured quadrilateral mesh
is first generated, as described in [51]. To summarise, the problem domain is first discretized
using a coarse uniform mesh consisting of M x N quadrilaterals or cells. This is called
“background mesh”, on which a cell is termed “background cell” and has a dimension of Ax
x Ay. Secondly, user-defined seeding points [32] are scattered over those areas where higher
resolution mesh is desired (closed seeding point sets may be also distributed to approximate
domain geometry). Thirdly, a background cell containing one or more seeding points is
detected and refined by specifying its subdivision level. The refinement is performed in a
fractal sense, i.e. the cell size reduces by a factor of two whenever the refinement level
increases by one. By default, a background cell containing one or more seeding points will be
given a user-determined maximum subdivision level, denoted by “/max” (where Imax e N).

2lmax x zlmax

The cell is consequently subdivided uniformly into quadrilateral child cells of

dimension —fx-x Z/A—V Finally, the mesh is regularized so that no background cell is adjacent

Im

to another background neighbour that differs in subdivision level by more than ‘1°, as seen in
Fig. 1.

Since the above procedure generates a local uniform mesh inside each background
cell, each computational (child) cell “C” can be recognized by an index system that consists
of four entries (i,j,i,j,) where 1<i<M, 1<j<N and 1<i,j <2“"” with
0 <lev(i, j) <Imax storing the subdivision level of background cell (i, j). Associating

(i,j.i,,j,) with a reference ID number “i.”, ie. (i,j,i,j )+> i , the 2D domain (Q)

subdivision may be expressed as

1,
¢

Q- {U C, and C, NC, = ifi, z} @



Cell C, has an area of Ax, xAy, (Ax,=Ax/2"" and Ay, =Ay/2*"*)) and centres at

(x.,¥,), which is consequently defined as C, = [xc —Eex +ﬂ]x[yc —Zesy, +%] . The

2 2 e 2

neighbouring information of any child cell can be easily obtained and stored, without the

need for a hierarchical data structure [51].

4. Local RKDG2 adaptive flow solution

The RKDG method adopted in this paper originates from the formulation proposed in
Cockburn and Shu [19,20]. In this section, the RKDG2 scheme is constructed for shallow
flow simulations, with a key-focus on its implementation on dynamically adaptive

quadrilateral grids.

4.1 Well-balanced framework in 2D

The RKDG2 algorithm solves for a local planar solution U" (x, y,t) =[77h,qf,qf, ]T to (1),
which is a second-order approximation in space and time [37]. Over a cell C, , the local
solution U" (x, y,t) | 1s spanned by two perpendicular lines intersecting at (xc, yc) and is

determined by average coefficients U (1) and slope coefficients U;'(r) and U/ (r)

according to the following local plane equation

Uh(x,y,t)‘r_UO(t) Ulr(l)( /2)+UU()(Z i)c)

C

(Veenec,) ©
From a set of given initial conditions, i.e. U,(x,y)=U(x,y,0), the local approximate
solution U" (x, y,t) | 1s initialized based on a local planar projection to U, (x, ) onto each

C, - The average and slope coefficients of u" (x, ¥, 0) | can be approximated by [36]



Uz 0) :%|:U0 ('xc +%’y5)+U0 ('xc _%ayc)"_Uo (xc’yc +%)+Uo ('xc’yc _%)]
U0 =4 Uy (%, +3, 3, ) - Uy (x. = 35,7, ) | @
U:Ly(()) = %|:U0 (xc’yc +%)_U0 (xc’yc _izl):|

The well-balanced property can be automatically satisfied if a similar local planar

approximation is also applied to the topography function as in (3), denoted by z"(x,y) e, »

which must be continuous across the cell faces of C, [68]

1x (x_x0)+zl,v (y_yc’)

h 0
Z(L”h_%+a A2 C An2

c

(YeeneC,) 5)

Ix
l(;

in which zf , z, and zl.l(y are the topography-associated (constant scalar) coefficients, which
are obtained by applying a similar mathematical manipulation to the topography function
z(x,y)as in (4). From (5), local approximations to the topography gradients in S, can be
obtained by partial differentiation with respect to x and y, respectively. For instance, over a

cell C; the topography gradient 0 z is discretized as

1x
X—Xx, Ay—=. Z;
8.2(x, y) ~ . [Zh (x,y)‘q“ } =-0, [zlo + Zilcx (Ax /Lz) + Z,«lcy (i’y i’z)} - e/ : (6)

After initialization, the local approximate solution U" (x, y,t)‘c is solved in space

and time with its coefficients updated by solving locally the following ODEs

o,U; =L,
oU; =L 7
o U =1
A i

L), L' and L are nonlinear vectors of space-functions that are locally derived from the

i
l(,‘

system of conservation laws (1). They can be explicitly expressed as

b Ax Ay

c

+8, (U7, 2", 2" (8)

A
i i

c



9
AxA3 U U ®
—— S, | U +—=,z%,z" [-S, | U} ——=, 2",z
6 : \/g : : 2 \/g 2 :
ly Z}y Uly Zly
L'=——{G'+G’ -G| U} +—=,2 + = |-G| U) ——~,z) ——
i Ayc{ i i i \/_ i, \/5 i \/_ i \/5
(10)

—Ay”\/g S, UO +U—1y 1x Zly -S, UO —U—i“y , 2,z
6 \/§ 4 1 4 \/g i 270,

The approximate solution U" is generally not continuous across the edges of C, . Hence,
numerical fluxes F°, F", G and G’ across the eastern, western, northern and southern
faces of C, should be calculated by means of two-argument numerical flux functions F and

G, which are here evaluated by an HLLC approximate Riemann solver [64]. For instance,

the numerical flux (F") across the eastern face of C,, ie. x +5, shared by the

neighbouring cell C, = can be estimated by

B =F 0 () (5 0)

. J an

in which
. o N o (=)
u (xﬁT’y)‘q ULO+0 0+ U 07 Ay, /2
(12)
A B . (xc 7_‘xnei) "1y (y_ynei)
Uh (xc +T’y)‘ci,,ei B U?nei (t) i U;W‘ (t) nei /2 " Ull.”/:i (t) Aynei /2

On the current grid system, cells C, and C, = can be of different sizes and the value of y must
be carefully selected so that the flux E° is evaluated at the face-centre of the smaller cell

between C, and C, . The other fluxes l:“lw, éf and (~}ls can be calculated similarly.

10



Conservative computation of these interface fluxes will be discussed in more details in
Subsections 4.2 and 4.3.
The time derivative terms in (7) are discretized by a two-stage Runge-Kutta method,

which leads to the following temporal update scheme for the average and slope coefficients
(Uq,lx,ly )n+1/2 — (UQ,lx,l)')n + At (Lq,lx,ly )n

(U(_),lx,ly )"H _ —|:(U(.)’1X’1y )n N (U(_)’lx,ly )n+1/2 Y (Lo_,lx,ly )n+1/2 } (13)

N | —

Controlled by the CFL condition, the time step is restricted to a Courant number no bigger
than 0.3 [19].

It should be noted that only the topography-associated coefficients are included in (8)
— (10) and the friction source terms (S, ) are separately integrated, before each RK stage,
using an implicit discretization scheme to ensure stable numerical simulation at cells near the

wet/dry interfaces (see [37,38] for details).

N
Fz'

| e
ff.
ii‘ w {..-'I‘:'.'.'.t..". ¥ ﬂ'-"':.'."-.il s Vi :I H . .
] i
j — nerl
c E
» @ E,
i, L. | k2
. EE
(Vieiz ¥ Adpen , Ve ) 90— @ ®
T Lyei?

Fig. 2: Conservative flux calculation at a cell with a finer eastern neighbour.
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4.2 Conservative flux calculation
As shown in Fig. 2, when cell C, shares an edge with two finer cells, the flux l:“lE leaving
cell C; must be equal to the sum of the fluxes entering the subdivided cells C; and C, to
ensure mass and momentum conservation. Therefore,

By = 3R +E7) (14)
where l:“lEl and l:“fz contain the fluxes across the western faces of cells C; ~and C, ,
respectively. To calculate l:“fl, the values of flow variables are first found on either side of

western face of cells C,

U_ _Uh _A"neil _ - - - T
El = X peil 22 Vneil e 159 E1-9, E1

i
c

T
+ h Ax,.i _ + + +
U, =U (‘xneil_ 22 Vneil o NMe1>49k1-9, k1
i

neil

(15)

to derive the associated bed elevation and “depth-positivity-preserving” Riemann states, i.e.

{Z;,UE’:} (which will be described in more details in Subsection 4.3). The topography level

and Riemann states {Z;,Uﬁ’; } relative to the western face-centre of cell C; ~can be found

similarly. Finally, when they are needed (i.e., to complete the local and temporal correction

step (23) relative to the wetting and drying condition, which will be detailed in Subsection
4.3), the flow and topography data at the centre of the eastern face of cell C; (x, +%, y.)

are gathered by interpolation

U =4(U5 +Ug) 06

_ 1 * *
ZE _7(2151 +ZE2)

12



4.3 Wetting and drying condition

In order to have a numerical scheme free of negative water depth for applications involving
wetting and drying over complex topography, the Riemann states must be constructed to be
“depth-positivity-preserving” before calling a proper Riemann solver to compute interface
fluxes. Subsequently, the associated “depth-positivity-preserving” planar approximations
must also be regenerated for evaluating other flux and source terms within the space operator
functions (8) — (10). Detailed derivation of this wetting and drying condition can be found in
Kesserwani and Liang [37, 38]. Herein, the technique is modified for implementation in the
current adapted mesh RKDG2 scheme.

Firstly, depth-positivity-preserving face values and subsequently Riemann states at

the centre of an interface of C, are reconstructed for calculating numerical fluxes.

Considering the eastern interface of cell C, shared by a similar size neighbour C, , the face

values of the flow variables at (x, + % ,.) can be procured by evaluating (12) with y = y.

Up =U"(x +50,)

. [771; R ]T
(17)

u; =U" (xﬁ%,yc)q | =[]

At the same point, the face values of the water depth, /; and /; must be also evaluated. This

is done by using a formula similar to (12) that acts on the coefficients corresponding to local

depth approximate solutions defined by (7-z)" =n" -z" (ie., h =(n-2)"(x, +%, )

G,

and hf =(n-2)"(x,+35,y,)

o The associated velocity components (#; and v} ) are then

calculated by

uy =qop /b and  vp =g, kg (18)

13



Rather than being calculated by (18), velocities are directly set to zero if C, is classified as a
dry cell with min(h") |C,»( <107*. min(h") |C,»C returns the minimum value of the depth
components that are required for computing the local fluxes in the space operators (9) and
(10), i.e.
min(h") |, =min| (7 —z)) (" =2"), (0 =z, (0] =) (0 =z | (19)
To ensure a consistent set of reconstructed flow data [54], the corresponding topography
evaluations (z; ) must be numerically deduced from previously reconstructed face values of
water surface elevation and water depth, i.e.
zg =1 g (20)
However, (20) may lead to a discontinuous bed topography across the cell face, i.e. z; # z; ,
which breaks the assumption of a well-balanced DG scheme [68]. Therefore, a single face
value of the topography should be redefined via z, =max(z;,z;), based on which the

positivity-preserving Riemann states of water depth, and consequently other Riemann states,

are defined

+* +*
e =hy +zg

X _ R 21
x,E E uE

£F _ pk* o+

y.E hE vE

According to [52], the Riemann states produced in (21) may still be inadequate to properly

handle the situation where cell C, is close to the wet/dry front, e.g. C, is wetbut C, is dry
with specifically 7, < z; . In this case, the actual free-surface 7, at the eastern face-centre of
cell C, is overwritten after (21) to become the same as the ground elevation z; defined at

the common cell face, i.e. ;" =z, #n; . To ensure that the actual free-surface elevation is

14



conserved at any wet cell C, , the following local and temporal adjustment must be appended

Lo

to (22)

Ang = max[O,—(ng —zg)]
e = AT (22)
7, <z, —An;,

Hence (22) brings back the continuous motionless states for the free-surface elevation while
adjusting the single value of the topography to ensure zero momentum fluxes across the

eastern face. The reconstruction procedure thus must be in place to ensure a well-balanced
scheme. The flux l:“l.E is then calculated by inputting the reconstructed bed elevation and

+ %

Riemann states {ZE,UE G549 yE} to the HLLC numerical flux function. Similarly, fluxes
F", F" and F are also evaluated.

Secondly, the local average and slope coefficients of both flow variables and bed
elevation must be regenerated to be consistent with the depth-positivity-preserving
reconstructed data in (21) and (22) for evaluating the source terms and local fluxes in (8) —

(10). This is an essential step for a “well-balanced” and “depth-positivity-preserving”
. 4+ % +,* * T +,* 4 % 4 %
RKDG2 scheme [38]. By denoting Uy :[ s quE’q)E] , Uy [UW G- d }w]

*

Uy = UN*aqu,q}N]T and UZ’ :[ S*,qxs,q}SJ , the corresponding local average and

slope coefficients are found by re-implementing the relationship (4), i.e.

U’ = Z[UE’* +UL+UY + Ug’*] A %[zE +zy 2y, +zs]
U =4{u-uy ] and  z" =4[z -z | (23)
Uy =4[ Uy -0y z =4z %]

It should be stressed that (23) is only applied locally and temporally to evaluate the space
operators (8) — (10), but not used to change the global coefficient values related to flow

variables and bed elevation.

15



The numerical fluxes (F°, F", F" and F’) and the modified coefficients in (23) are
hence employed to compute the local spatial operators L) , L' and L in (8) — (10), which

are in turn used to complete the updating process at each RK stage in (13).

4.4 Local slope limiting

To eliminate spurious oscillations in the numerical solution near sharp gradients, the variation
of slope coefficients (i.e. Ull.(" and Ul.cy) must be restricted by utilizing TVD FV slope
limiters. For DG methods, localized slope limiting has been accepted to be very effective
(e.g. [38]). In implementing a localized slope limiting process, local slope coefficients are
measured and those “froubled-slopes” are identified according to the criterion derived by
Krivodonova et al. [40]. Then only the variation of those troubled-slopes is controlled using a
TVD-minmod slope limiter [19].

On the current non-uniform grid system, an arbitrary cell C, may be adjacent to a
neighbour C, of different size but the “troubled-slope detection and limiting” process is to

be carried out on a uniform grid template, similar to the aforementioned flow calculation. Fig.

2 illustrates an example where the eastern neighbours are of one level finer than C, and other

cases may be derived by analogy. In order to form a local uniform grid template, an eastern

ghost neighbour C, ~ is imposed, which should be at the same level as C, . At the centre of

the ghost cell, the flow data are obtained via bi-linear interpolation that is consistent to the
current planar RKDG solutions. After that, based on the similar expressions to (12) but
replacing the limited slope coefficients with the original ones (i.e., the ones without a “har’”)

and noting that Ax,, = Ax, and Ay, = Ay,, a discontinuity detector at the eastern face centre

of C, can be implemented as

16



U (x + 5,

c, ‘

RSNG|

h Ax,
. -U (xc+?,yc)
E _ inei

L |Ax, /2| max (‘U? -0 /N3

(24)

The discontinuity detector DSZJ at the western face-centre of cell C;, can be evaluated in a
similar manner. The slope coefficient U}f is classified as ‘troubled’ if the discontinuity
detector at either eastern or western face is greater than the unity, i.e.
max (DS}, DS} )> 1 (25)
Under such a situation, the TVD-minmod slope limiter is applied to control the variation of
the slope coefficient U}f and therefore produce the controlled slope coefficient ﬁ}f via
0" = minmod (U}, U] -U;,U; - U} ) (26)
U? stands for the averaged coefficient associated with the local solution at the western
neighbour €, that has the same size as C, (if not, bi-linear interpolation formulae will be
used). The minmod function produces a zero output if the sign of any entry is different from
others. Otherwise, ﬁ:x equals the slope with smallest magnitude. If (25) is fault, U}f is not a
‘troubled-slope’ and (26) is not activated. The original slope coefficient is retained, i.e.
U =U".
It should be pointed out that (24) — (26) are applicable to cell C;, only when its eight

neighbours are flood cells. This indicates that the “troubled-slope detection and limiting” is

deactivated at a wet cell C, that is adjacent to one or more dry cells. At such a cell,
U =U" and U” =U" are set to retain high resolution wet/dry front tracking (a detailed

investigation can be found in [76]).
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4.5 Grid adaptation and data repartition

The current model performs dynamic h-adaptation at every time step in line with a gradient-
based sensor motivated by its simplicity and convenience to water wave type problems. In
the context of an RKDG2 scheme, the mesh refinement, or coarsening, is triggered by

sensing the magnitude of the /ocal water surface gradient coefficients, i.e.

n'* ’ n"” ’
E = < +| —= 27)
‘ Ax, /2 Ay, /2

The local gradient magnitudes E;. are evaluated at all of the flow cells and included in a

vector E, which is then sorted to return the q’h-quantile P (E). Herein g = 1 — 5, with s,

representing the sensitivity of the grid adaptation to the gradient sensor (27). In this work, we
select s, = 25%, which means that 25% of the flow cells are subjected to grid adaptation. The

gradients are finally normalized by ©, = E, /F,(E).
If over a flow cell C, the gradient magnitude has ©, >1, the associated background

cell will be marked for refinement and its subdivision level will increase by ‘1’ (unless it has
already been subdivided to the maximum level). Independent of this, those cells defining the
wet/dry front are also marked for mesh refinement. For the grid coarsening, if all of the child

cells have ® <© the corresponding background cell will be flagged for coarsening and

coar

its subdivision level will decrease by ‘1’ (unless it has a subdivision level of 0). Herein, ®

coar

is a user-specified tolerance and ® . =0.4 is used in this work. When a background cell is

marked for refining and coarsening, its neighbours are also checked to ensure the final mesh
is ‘regularized .
Grid adaption creates new cells at each time step (either finer or coarser) and flow

data must be allocated. The current RKDG2 scheme facilitates data allocation for the newly

created cells. For mesh refinement, consider cell C; has multiplied into four finer cells C, ,

18



C,,» G, and C, that centre at (X, ), (X)), (X3,¥.5) and (x.,,.,). The average

coefficients for the new cells (C. )7 are obtained from a direct evaluation of the local

el /1=1,2,3,4

planar solution U" (x, y)‘ at points (x,,,,)

I'I . .
. 12347 where U (x, y)‘ci( is already available

over C, . The slope coefficients associated to the local planar solution over (C"/)qu’

respectively, are obtained by conserving the local slope coefficients of the solution over the

parent cell C, . Concerning grid coarsening, if four finer cells (Cl.[ )1 are coalesced into a
e o /1=1,2,3,4

coarser cell C, , the coefficients defining the new local solution over C, are obtained by

aggregating the corresponding elementary values from the four finer cells (Cl.d )/—1 as”

4.5.1 Treatment of the topographic data

Regardless of the mesh on which the flow data are solved, the topography function is firstly
discretized, or projected, onto a fine uniform grid, which is either user-selected if an
analytical topography shape is available, or otherwise, on the basis of the amount of available
field data represented by a DEM. In either case, local planar P'-projection to the topography
is applied to form a background topographic mesh (i.e., produced as in Eq. (5) with the
associated average and slopes coefficients estimated by applying Eq. (4) to the originally
available topographic data). Secondly, after dynamic grid adaptation performs on the actual
computational mesh, the associated topographic data are collected from the background
topographic mesh. For instance, the average coefficient at the centre ‘P’ of a cell ‘Cyetual’
belonging to the actual computational mesh is obtained by directly evaluating its values from
the local planar topography projection at cell ‘Cip,” that belongs to the background
topographic mesh and particularly contains ‘P’. The slope’s coefficients over ‘Cyera’ are

produced by conserving (i.e., expanding when ‘Cuca’ > ‘Ciopo’) the original topographic
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slopes coefficients available at ‘Ciopo’. Evidently, Ciopo =

acual When the actual calculation

grid has (i.e., locally or globally) the same resolution as the one for background topographic

mesh.
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Fig. 3: Oscillatory flow in a parabolic bowl. (a) 2D view of the water depth (i.e. 30 contour-lines)
produced by the RKDG2 scheme (on the uniform grid 160 x 160) at # = 7/2, where the surrounding
curve represents the analytical shoreline. (b) Profiles of water depth along y = 0 produced by different
numerical schemes at # = 7/2 and ¢ = T. (¢) Profiles of ¢, along y = 0 produced by different numerical
schemes at 7 = 7/2. (d) Profiles of ¢, along y = 0 produced by different numerical schemes at # = 7/2.

5. Numerical tests and results

Three analytical cases and one laboratory-scaled tsunami test are first investigated to

demonstrate the performance of the dynamically s-adaptive RKDG2 model by comparing it
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to uniform grid based counterparts. The new adaptive RKDG2 model is then applied to

reproduce the historical Mapasset dam break. All the simulations are run on a Toshiba Tecra

M10-10i laptop with Core 2 Duo T9400 2.53 GHz and 3GB of RAM. Quantitative

comparison is evaluated in terms of runtime cost and (when possible) the following relative

L'-Error (%)

hnumerical _ hreference

1
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Fig. 4: Small perturbation travelling over an elliptical-shaped topography. 3D water surface produced
by the adaptive RKDG2 model (i.e., 40x20-Lev. 2) at (a) t=0s, (b) 1 =0.12s, (¢) t=0.24s, (d) t =

0.36s, (e) t=10.48s and (f) = 0.60s.
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Fig. 5: Small perturbation travelling over an elliptical-shaped topography. Dynamically adaptive
mesh (i.e., 40x20—Lev. 2) at (a) = 0s, (b) 1= 0.12s, (¢) 1 = 0.24s, (d) 1 = 0.36s, (e) 1 = 0.48s and (f) ¢
= 0.60s.
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Fig. 6: Small perturbation travelling over an elliptical-shaped topography. RKDG2 free-surface
contours obtained on dynamically adaptive mesh (upper panel) and uniform mesh (lower panel) at (a)
t=0.12s, (b) t=0.36s and (¢)  =0.60s.

5.1. Oscillatory flow in a parabolic bowl

The classic 2D analytical test due to Thacker [77] assesses the capability of the numerical
model in tracking continually moving wet/dry fronts. The case involves a planar water
surface running up and down the beach in a domain with a bowl like topography. Bottom
friction is not included and the fluid motion is therefore oscillatory periodically as there is no
energy dissipation. In a computational domain Q = [-5000; +5000] x [-5000; +5000], the

bottom topography is defined by
x2 + 2
2(x,3) = hy (a—y 29)

where /g and a are both constants. The exact solution writes

n(x,y,t) = (ho _Lp j +@[—xcos(wt) + ysin(wr)]
2g g

(30)
u(t) = Bsin(wt) and w(¢)= Bcos(wt)
where B is a velocity-related constant, w= z% is the peak magnitude and 7 =2Z is the

period of flow. Denoting by Kz%h“z, X, =—%cos(wt), Y, =%cos(wr) and
0

C :az( B 1), the analytical shoreline is a circle centred at (X;, Y;) with the radius

R =X +Y’ —C, . Herein, the constants are set to /i = 10m, @ = 3000m, B = 5ms” and a

simulation is run up to one period (i.e., t = 7). First, uniform mesh RKDG2 simulation are run
using coarse, intermediate and fine uniform resolution grids with 40x40, 80x80 and 160x160

cells, respectively. Two adaptive mesh RKDG2 simulations are then performed by taking the

23



coarse and intermediate uniform grids as a background mesh and allowing, respectively, two-
and one- level of refinement. The associated pattern of the grid was found to refine in the
vicinity of the shoreline (i.e., at t = 7/2 and ¢ = T') but are not illustrated for this example as
there are no perturbed flow features).

The RKDG2 predictions produced on all the meshes mentioned previously are
compared with the output obtained by an alternative MUSCL FV scheme on the fine uniform
grid together with the analytical solution in Fig. 3, in which Fig. 3a shows the 2D contour
lines of water depth (produced by the RKDG2 scheme on the fine uniform grid). The
numerical results produced by different schemes are observed to be qualitatively very similar,
for the water depth and non-zero discharge variables as illustrate the plots in Fig. 3b and Fig.
3d. The MUSCL scheme is found to be slightly less accurate in tracing the wet/dry front at ¢
= T/2. Remarkably, Fig. 3c presents less accurate approximations to the g,-discharge profile
for all the simulations, where small discrepancies are present at the zone where the water
depth is vanishing. This unsatisfactory prediction has also been reported in several previous
works for MUSCL-type FV schemes (e.g. most recently in [78]). Herein, the RKDG2 scheme
appears to calculate less discrepancy than the MUSCL scheme on the same fine uniform
mesh (i.e., Fig. 3c). The dynamically adaptive RKDG2 schemes are less successful in
replicating the dry zone in view of the spurious momentum that is apparent in Fig. 3c. This is
probably caused by the method of enforcing flux conservation along the non-uniform wet/dry
moving boundary. This may suggest the need to design a more advanced adaptation
technique to better represent moving wet/dry fronts in the frame of an A-adaptive RKDG
scheme.

Table 1: Oscillatory flow in a parabolic bowl: L'-Error for free-surface elevation and CPU
time costs caused by different simulations at ¢ = 77/2.

Mesh/scheme Error (%) CPU time (s)
40x40 1.2301E-001 28.5
80x80 2.9995E-002 197.0
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Uni. RKDG2 | 160x160 72021E-003 | 882.15
Uni. MUSCL | 160x160 1.9110E-001 102.14
40x40-Lev. 2 | 3.2934E-001 30.06
Adapt. RKDG2 | 80x80-Lev. 1 | 2.9006E-001 |  221.16

Table 1 presents the quantitative analysis for this case, where the L'-Error and CPU
time induced by different simulations are presented. Regarding the results generated by
uniform-mesh simulations, despite being much less efficient than the MUSCL scheme for the
same fine mesh, the RKDG2 scheme predicts smaller error even on the coarse mesh.
Therefore, it may be commented that a uniform mesh based RKDG2 scheme tends to have a
better convergence property and, hence, may achieve similar or even better solution accuracy
using coarse grids in comparison with a MUSCL scheme. This further supports earlier
findings by Shu and co-workers [72,74] who compared systematically RKDG methods with
WENO-type finite volume schemes. In our case, both adaptive mesh RKDG2 simulations are
less accurate than the RKDG?2 computation on the fixed coarse grid. This is likely due to that

fact that no perturbed flow feature are considered in this test.

5.2. Propagation of slightly perturbed flow over topography

This synthetic example is credited to LeVeque [48] and is typically used to assess the well-
balanced property of a SWEs numerical solver as well as its capability in handling the
propagation of a slightly perturbed steady state over a non-flat topography (e.g. [17]). The
elliptical-shaped bottom topography in a [0; 2] x [0; 1] domain is defined as follows

=50 (+-05)" +(y-0.5)’ |

z(x,y)=0.8¢ (31)
The initial conditions characterize a stationary pool with a water surface elevation of # = Im
except for a 0.01m upward perturbation in the upstream part at 0.05m < x < 0.15m. RKDG2

simulations are run on different uniform meshes with 40x20, 80x40 and 160x80 cells,

respectively. Adaptive grid simulations are performed using either coarse or intermediate
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uniform mesh as a background mesh and allowing dynamic local 4-adaption up to either two
or one subdivision level.

Fig. 4 and Fig. 5 depict the RKDG?2 predictions at different output times in terms of a
3D view of the free-surface elevations and the corresponding adapted grids for the simulation
corresponding to two levels of refinement. As observed in Fig. 4a and Fig. 5a, the initial non-
uniform grid is refined at # = 0 to represent the sharp surface gradient caused by the original
surface perturbation. The dynamically adaptive mesh evolves to capture effectively the
details of the moving perturbation with the highest grid resolution while discretizing the
unperturbed zone with coarse background mesh, as shown in Fig. 5. Fig. 6 compares the
depth contours predicted on the adaptive mesh (upper panel) with those produced on the
uniform grid (lower panel), all of which use 30 contour lines between 0.992m and 1.0115m.
Apart from certain parts of slightly more diffusive solution in those areas covered by the
coarse mesh due to comparatively gentle surface gradient, the adaptive RKDG2 scheme
captures most of the small-scale features of the perturbed flow to a similar resolution as those
obtained on the fine uniform grid.

Since no analytical solution is available, the RKDG2 prediction obtained on a
320x160 fine mesh is treated as a reference solution to allow a quantitative assessment. Table
2 lists the errors and the CPU times corresponding to the RKDG2 simulations.

Table 2: Perturbed flow over topography: L'-Error for free-surface elevation and CPU time
costs caused by different simulations at 7 = 0.60s.

Mesh/scheme Error (%) | CPU time (s)
40x20 15.81 4.5

Uni. RKDG2 80x40 11.92 30.2
160x80 5.39 238.0
40x20-Lev. 2 7.44 53.6

Adapt. RKDG? | 80x40-Lev. 1 6.85 91.6

Both of the adaptive mesh RKDG2 simulations lead to similar numerical error. The
simulation on the 40x20 background grid with 2 levels of refinement is found to be less time-
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consuming than the one on an 80x40 background grid allowing 1 level refinement. The two
runs are, respectively, 4.4 and 2.6 times more efficient than the fine uniform grid RKDG2

simulation.
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Fig. 7: Dam-break wave moving over an initial dry floodplain. 3D water surface predicted by the
adaptive RKDG2 scheme at (a) 7= 0s, (b) £ =2s, (¢)  =4s, (d) = 6s, (¢) = 12s and (f) ¢ = 24s.
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Fig. 8: Dam-break wave moving over an initial dry floodplain. Associated dynamically adaptive mesh
at(a)1=0s, (b) 1=2s,(c)t=4s, (d) = 6s, (¢) t=12s and (f) t = 24s.
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Fig. 9: Dam-break wave moving over an initial dry floodplain. Comparing the free-surface contours
obtained on dynamically adaptive mesh (upper panel) with those produced on uniform mesh (lower
panel) at (a) £ = 2s, (b) = 12s, (c) = 24s.
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5.3. Dam-break wave interacting with hillocks

This test of a 2D dam-break wave travelling over an initially dry and rough floodplain with
three hillocks has been widely accepted as a standard benchmark to assess the adequacy of a
numerical model for realistic flood modelling applications (e.g. [9,56]). The mathematical

expression of the topography in the [0; 75m] X [0; 30m] close domain is

2(x,y) = max[o,l—gJ(x—30)2 T+ (=6, 1-1J(x=30)? + (y—24)?

(32)
3-2J(x—47.5) +(y—15)2}

The dam is initially placed at x = 16m to hold a tranquil water body with a surface elevation
of 1.875m. The rest of the domain is dry and a global Manning coefficient is set to be ny =
0.0185. Identical uniform and A-adaptive grids as in the previous example are employed to
run the RKDG2 simulations. For adaptive meshes, as shown in Fig. 7a and Fig. 8a, initial
grid refinement is performed at the dam location to represent the original sharp water surface
gradient. Fig. 7 illustrates the 3D view of free-surface elevation at ¢ = Os, 2s, 4s, 6s, 12s and
24s, predicted by the adaptive RKDG2 solver on the 40x20 background grid allowing 2
levels of refinement. The corresponding dynamically adaptive grids are displayed in Fig. 8.
As shown in Fig. 7b and Fig. 7c for the first few seconds after the instantaneous collapse of
the dam, while the fast-moving wave front running downstream towards the two small
hillocks, a depression wave is formed and travels upstream. The grid dynamically evolves
according to the dam-break hydrodynamics, with a refined mesh generated to cover nearly
half of the domain. This is due to the steep water surface gradient caused by the dam-break
wave, as indicated in Fig. 8b and Fig. 8c. As illustrated in Fig. 7d for ¢ = 6s, while the violent
dam-break flow continues on moving downstream and interacts with the three hills, a
reflected shock is developed after the depression wave hitting the western boundary wall and

propagating downstream. Apart from successfully capturing the advancing wave front and the
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complex hydrodynamic structures formed by wave-topography interactions, the mesh is also
refined to resolve the reflected shock, as evidenced in Fig. 8d. With the increasing simulation
time as demonstrated in Fig. 7e and Fig. 7f for # = 12s and 24s, the dam-break flow grows to
be more complex due to further, wave-wave, wave-topography and wave-boundary
interactions. Nevertheless, as depicted in Fig. 8e and Fig. 8f, all of the complex flow features
are automatically captured by the adaptive grid with high-resolution refinements. In order to
reveal the merit of the current dynamic grid system, the water surface contours produced on
the fine uniform and the adaptive grid are compared in Fig. 9 at the output times 7 = 6s, 12s
and 24s, where the upper panel presents the adaptive grid result, while the lower panel shows
the uniform grid solution. All of the plots use 30 contour lines between 0 and 1.875m. It is
evident that the adaptive grid simulation resolves the complex dam-break hydrodynamics to a

similar resolution achieved by the fine uniform grid solver.

Table 3: Dam-break wave moving over an initial dry floodplain: L'-Error for free-surface
elevation and CPU time costs caused by different simulations at 7 = 24s.

Mesh/scheme Error(%) | CPU time (s)
40x20 16.58 6.4

Uni. RKDG2 80x40 12.46 473
16080 6.68 345.2
40x20-Lev.2 | 7.85 2154

Adapt. RKDG2 | 80x40-Lev. 1 | 8.76 214.2

Similar to the previous case, a reference RKDG?2 solution is constructed on a fine uniform
grid with 320%160 cells to facilitate quantitative analysis and the results are summarized in
Table 3. The numerical accuracy of both adaptive grid based simulations is quite close to that
achieved on the fine uniform mesh. In this case, the runtime cost of the two adaptive mesh
simulations is very similar and corresponds to a 1.6 times saving compared to the RKDG2
solver on the fine uniform mesh. This is quite reasonable in this case because the grid is

expected to be refining and coarsening frequently over a large part of the computational
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domain due to the rapid-varying flow hydrodynamics and repeated wetting and drying
process. Therefore the computational efficiency gained by the adaptive grid is not

outstanding.
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Fig. 10: Tsunami run-up: (a) bathymetric contours and (b) incoming wave profile through the western
boundary.
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Fig. 11: Tsunami run-up: 3D view of water surface predicted on dynamically adaptive mesh at (a) t =
0, (b) t=10s, (¢) t=17s and (d) = 25s.

Fig. 12: Tsunami run-up: comparing the free-surface contours obtained on dynamically adaptive mesh
(upper panel) with those produced on uniform mesh (lower panel) at (a) = 17s and (b) ¢ = 25s.
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Fig. 13: Tsunami run-up: (a) initial (z = 0), and (b) final (z = 25s) adaptive meshes
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Fig. 14: Tsunami run-up: comparing numerical time histories of the water surface elevation with
experimental data (a) G5, (b) G7, and (c¢) G9.
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5.4. Tsunami run-up onto a complex seashore

The laboratory data for this test were produced from a wave tank experiment and presented at
the Third International Workshop on Long Wave Run-up Models in 2004

(http://nctr.pmel.noaa.gov/benchmark/). The 1:400 physical model was built in a wave tank

to represent the coastal bathymetry near Monai in Japan. This region suffered severe flood
inundation due to the Okushiri tsunami in 1993. The tsunami triggered a maximum run-up of
31.7m observed at Monai valley, which opens onto a small beach. This run-up was not
uniform along the coast and is considered to be caused by particular topographic effects.

The 4.588m % 3.402m wave tank was installed with a bathymetric profile described in
Fig. 10a, which is represented by 392 x 244 data points on a uniform grid. The initial
motionless water body submerges the majority of the domain as shown in Fig. 11a. Along the
western boundary at x = 0, an incoming wave profile, as described in Fig. 10b was imposed
for 22.5s. As indicated in Fig 10a, three gauge points, denoted “G5”, “G7” and “G9”, were
used to measure the temporal change of water surface elevation. The points were located at
(4.521m; 1.196m), (4.521m; 1.696m) and (4.521m; 2.196m), respectively. The Manning
coefficient is assumed to be 0.01 throughout the entire computational domain. The initial
non-uniform grid for the 25s simulation is generated on an 98 x 61 coarse background mesh
with a two-level refinement at the western boundary inlet. For comparison purposes, a
simulation is run on a fine uniform gird with 392 x 244 cells, which has the same resolution
as the available topographic data. Two other RKDG2 simulations are also carried out on two
coarser uniform meshes with 196 x 122 cells and 98 x 61 cells, respectively.

Fig. 11 shows 3D views of the free water surface of the adaptive grid based RKDG2
prediction at # = Os, 10s, 17s and 25s, respectively. After a small tidal retreat at the beginning

as shown in Fig. 11a and Fig. 11b, a tsunami wave with a peak of 0.016m rushes into the
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domain and onto the shore. The incident wave interacts with the island and creates wave
reflections and diffractions. The reflected and diffracted wave reaches the coast and inundates
a large area, as shown in Fig. 11c. After reaching the maximum run-up, the wave retreats
gradually as presented in Fig. 11d for # = 25s. The contours of the water elevation at # = 17s
and ¢ = 25s achieved by the RKDG2 solvers on the dynamically adaptive and the fine
uniform grids are plotted side by side in Fig. 12. Fig. 13 presents the corresponding initial
and final dynamically adaptive grid. Compared with the uniform grid based RKDG2 outputs,
the results obtained on the adaptive grid are able to locate correctly the wet/dry front and
capture most of the detailed wave structures as compared to the fine uniform grid-based
model. The number of cells used in the adaptive grid based simulation varies between 7076

and 41843, which is clearly much less than the 95648 cells required by the fine uniform grid

simulation.
Table 4: Tsunami run-up: CPU time costs.
Mesh/scheme Uni. RKDG2 Uni. MUSCL | Adapt. RKDG?2
98 x 61 | 196 x 122 | 392 x 244 | 392 x 244 98 x 61-Lev. 2
CPU time (hrs) ] 0.25 3.7 8.6 0.75 1.52

Fig. 14 compares the time-histories of water surface elevation predicted by the
adaptive mesh RKDG2 solver with the experimental data at the three gauge points. In the
same figure is also plotted the outcome of three other RKDG2 simulations on different
uniform grids and the results produced by a MUSCL scheme on the fine uniform grid. The
numerical predictions resulting from the adaptive and the two fine uniform mesh simulations
agree satisfactorily with the experimental measurements.

For this specific case, the wave characteristics are highly affected by the steepness of
the domain topography and the issue of scale is found to be dominant. The two RKDG2
simulations on the coarser uniform grids dramatically failed to reproduce the time histories of

water surface elevation at gauge points G5 and G7 (i.e., in Fig. 14a and Fig. 14b, where
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spikes exceeded 0.05m). This is because the topography-associated coefficients over the two
coarse uniform meshes are collected from the refined topographic mesh (as explained in
Subsection 4.5.1). While this practice is helpful to avoid losing the scale data, it seems that it
may have a local side effect on the C-property, which is exactly fulfilled (i.e., in a spectral
sense [36,38]) when the actual mesh and the topographic mesh overlap. This explains why
the unperturbed zone at ¢ < 10s is better captured with the RKDG2 scheme on the uniform
topographic grid (i.e., 392 x 244 cells) than with the RKDG2 model on the dynamically
adaptive grid (although no substantial disturbances to the overall solution are observed for
this case). In practice, this side effect will be eliminated for the dynamically adaptive RKDG2
scheme in the limit of the portions of the actual grid with the highest resolution coinciding
with the topographic grid. It can also be commented, supported further by previous examples,
that the side effect of the C-property is minor at zones where the mesh is coarse but the
topography is mild.

This in turn indicates that the adaptive grid based simulation produces results with
similar resolution to the fine uniform grid outcomes. Concerning the computational
efficiency, the use of a dynamic s-adaptive grid based RKDG2 solver enables up to 6.7 times
of saving in computational cost compared with its uniform mesh based counterpart, as
indicated in Table 4. Despite the significant saving in the RKDG2 model due to mesh
adaptation, the refined FV MUSCL simulation remains 5-, 11.5- and 2-times more time-
efficient than the RKDG2 schemes on the intermediate, fine and dynamically adaptive

meshes, respectively.
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Fig. 18: Malpasset dam-break: comparing numerical predictions with measurements (a) Maximum
water level at police survey points and (b) Maximum water level at experimental gauge points.

5.5. Malpasset dam break

The Malpasset dam on the Reyran River in southern France breached in December 1959 and
created a 40m high wall of water moving rapidly downstream with a speed of 70km/h. The
dam-break wave destroyed villages and other obstacles on its way. More than 400 victims
were reported and the infrastructure damages were amounted to a total of US$68 million.
After the disastrous accident, a police survey was undertaken to estimate the maximum water
level at certain locations (“P”) by tracing water marks. Moreover, in 1964, laboratory studies
were also carried out at Electicité de France (EDF) to measure the arrival time and maximum
water level at a number of gauge points (“G”) close to the police survey locations. Police
survey points and experimental gauges are indicated in Fig. 15 by filled circles and hollow
squares.

The problem domain is shown in Fig. 15 and the dam is assumed to be a straight line
between (4701m; 7143m) and (4655m; 7392m). The free-surface level (ie., = h + z)
upstream of the dam is set to 100m and the rest of the valley is initially dry. The Manning
coefficient is chosen to be 0.033 over the whole domain. The topography data, available
originally on an unstructured triangular mesh, have been interpolated to form a uniform mesh
of 20m x 20m resolution, resulting in a 900x500 raster grid for storing the topography data.
Two dynamically adaptive grid based simulations are set up. The first one is based on a 224 x
122 background grid and allows 2 levels of refinement while the second one relates to a
background mesh of 112x61 cells and allows up to 3 levels of subdivision. Both meshes are
initially refined to represent the dam and domain boundaries. Due to strong domain
irregularity, it was also found important to refine the mesh along external boundaries. Cells

outside the boundaries are excluded from the flow calculations. The initial number of cells
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(excluding those outside the boundaries) on the two non-uniform grids is 29666 and 43601,
respectively.

Simulations are executed for 40min after the dam breaks on the two adaptive grids as
mentioned previously. Fig. 16 illustrates the flood maps obtained on both meshes at 10min,
20min and 40min. Both sets of flood maps represent the catastrophic dam-break wave
rushing along the narrow valley to the open floodplain and agree closely with those reported
in the literature (e.g. [13]). Fig. 17 displays the dynamically adaptive grids at 1 = 0 and ¢ =
40min. The grids obviously capture the moving wave front effectively as indicated in Fig. 16,
which is as expected. Fig. 18 compares the simulated and measured maximum free-surface
levels collected at the gauges and the police survey points, respectively. Also plotted are the
predictions produced by a MUSCL model [51] on a refined uniform mesh of 900 x 500 cells
and the RKDG2 model on much coarser uniform meshes (i.e., consisting of 112x61 cells and
224x122 cells—relative to the two considered background meshes). A quantitative error
analysis with respect to the reference data can be found in Table 5, where the resulting
runtime costs are also listed. All of the simulations are able to reproduce maximum water
depths that closely agree with the laboratory measurement and police survey, except an
obvious underestimation delivered by the RKDG2 solver on the very coarse uniform mesh
with 112x61 cells (as indicated in Fig. 18b). It is interesting to note for this case that the
dynamically /-adaptive RKDG2 simulations generates results that agree most closely with
the reference data. Since both adaptive grid simulations predict nearly similar results, it
seems to suggest that the adaptive grid based prediction is not sensitive to the resolution of
the background grid, which is obviously a desirable property. Generally, the present adaptive
grid based RKDG2 predictions also compare reasonably well with those numerical
predictions provided by other finite volume Godunov-type schemes documented in literature

(e.g., [13,27,65,71,78)).
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In terms of runtime cost, the adaptive mesh based simulations consume 8.1hrs and
6.3hrs for the first and second mesh setups, respectively, where the number of computational
cells increases to a maximum of 37103 and 65240. Both of these numbers are significantly
smaller than 900 % 500 cells if a uniform grid based RKDG2 simulation is run to a similar

resolution, which will result in significant savings in terms of computational cost.

Table 5: Malpasset dam-break: computational errors evaluated against the experimental data
and CPU costs, resulting from different simulations.

Mesh/scheme Error(%) at (P) | L'-Error(%) at (G) | CPU time (hrs)

Uni. RKDG2 112x61 0.976 4.468 0.0036
224x122 1.008 0.985 0.063

Uni. MUSCL 900%500 0.760 1.237 0.72
112x61-Lev.3 | 0.712 0.842 6.3

Adapt. RKDG2 | 224x122-Lev.2 | 0.543 0.846 8.1

6. Summary and conclusions

This work has introduced dynamic /s-adaptation to an RKDG2 shallow flow model, which is
based on local planar solutions to the depth-averaged SWEs on a quadrilateral grid system.
The computational grid is essentially non-uniform and involves quadrilateral cells, or panels,
of different sizes but regularized in a manner that ensures neighbouring background cells do
not differ by more than one level of refinement. The explicit RKDG2 scheme, which evolves
in time the coefficients defining a planar solution over each quadrilateral element, while
exchanging inter-elemental spatial fluxes, is formulated to comply with the non-uniform grid
system. Meanwhile, advanced numerical techniques relevant to practical flood simulation
have been implemented (i.e., for controlling slope coefficients, handling complex domain
topography and wetting and drying). Dynamic grid adaptation is performed according to an
indicator based on the magnitude of the local gradients of the RKDG2 free-surface solution.
User-determined constraints are employed to automate grid refinement and coarsening. Three

analytical benchmark tests are first employed to systematically investigate the performance of
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the dynamically /-adaptive RKDG2 model against its uniform mesh equivalent. The new
RKDG2 adaptive mesh model is then applied, and further assessed, for reproducing two
documented flood tests.

Compared with the corresponding uniform mesh based RKDG2 solver, the
dynamically adaptive grid based RKDG2 model is able to deliver numerical predictions of
comparable resolution and capture equally well those small-scale flow features without
introducing noticeable distortions or noises at the mesh interface, but at much less
computational cost. Furthermore, the RKDG2 solutions generally have a better convergence
property and higher numerical accuracy compared with those predicted by the traditional
finite volume scheme. This implies that numerical solutions with similar accuracy may be
obtained on a much coarser mesh. Overall, with the enhanced computational efficiency
provided by the dynamically adaptive grid, the new RKDG2 model becomes much more
likely applicable to real-scale shallow flow modelling. Local time stepping is currently being
investigated to further improve the performance of the current adaptive grid based RKDG2

model.
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