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The cytoskeleton is a network of crosslinked, semiflexible filaments, and it has been suggested that it has

properties of a glassy state. Here we employ optical-trap-based microrheology to apply forces to a model

cytoskeleton and measure the high-bandwidth response at an anterior point. Simulating the highly nonlinear and

anisotropic stress-strain propagation assuming affinity, we found that theoretical predictions for the quasistatic

response of semiflexible polymers are only realized at high frequencies inaccessible to conventional rheometers.

We give a theoretical basis for determining the frequency when both affinity and quasistaticity are valid, and

we discuss with experimental evidence that the relaxations at lower frequencies can be characterized by the

experimentally obtained nonaffinity parameter.

DOI: 10.1103/PhysRevE.89.042711 PACS number(s): 87.16.dm, 83.80.Lz, 83.85.Ei, 87.16.dj

I. INTRODUCTION

Most eukaryotic cells have their own mechanical frame-

work or cytoskeleton, which is a composite of protein fila-

ments such as actin, microtubules, and various intermediate

filaments. The cytoskeleton performs a range of mechanical

roles during cell division, migration, and contraction [1,2], by

transmitting and responding to forces generated by molecular

motors [3,4]. Quantitative and analytical mechanical response

models have relied on the assumption of affinity, i.e., a self-

similar strain field on all length scales, while theoretical efforts

have predicted violation of this fundamental assumption for a

range of disordered materials [5], including glasses, gels, and

colloids, not to mention cytoskeletons. Quantifying nonaffinity

is challenging for both theory and experiments, as it is coupled

to the local disordered structure and thus sensitively depends

on microscopic degrees of freedom. While the majority of

investigations have thus far been performed numerically at zero

frequency, predictions are usually not falsifiable with existing

experimental methods.

Cells or cytoskeletons have been theoretically regarded

as (1) networks of semiflexible polymers or (2) glassy

systems, in order to interpret their mechanical behaviors. Each

explains different experimental observations characteristic of

cytoskeletons; i.e., the former explains the highly nonlinear

stiffening under applied stress [6–8] and the latter the slow

relaxations at low frequencies in linear response [9,10].

The experiments mentioned above were performed with

conventional technologies of limited bandwidth and fitted to

models by qualitative scaling. The theoretical prediction for

the affine response of semiflexible networks, however, has

been given in quantitative form as the sum response of the

constituent polymers characterized by their persistence lengths

and cross-linking distances [11].

Here, we carry out high-bandwidth passive microrheol-

ogy [12–16] on vimentin networks reconstituted in vitro and

observe the nonlinear mechanical response due to forces

*mizuno@phys.kyushu-u.ac.jp

propagating from a local source applied by an optical

tweezer. Since the applied force is constant, the gel becomes

equilibrated and the fluctuation-dissipation theorem can be

employed to deduce the viscoelasticity of the local envi-

ronment from the thermal fluctuations of colloidal probes.

Our experiments unequivocally demonstrate the anisotropic

stiffening of the cytoskeletal network behind the applied force,

with greater stiffening in the parallel direction. Quantitative

agreement with the affine model of network of semiflexible

polymer is obtained for the response in both directions, but

only for the response faster than certain critical frequency

ranging ∼10–1000 Hz, which separates the high-frequency

power law and low-frequency elastic behavior of the network.

We therefore argue that the failure of the affine model at lower

frequencies is due to the presence of nonaffinity, which can

be characterized by the ratio of affine and nonaffine elasticity.

We show that this experimentally obtained factor successfully

predicts the theoretically incalculable slow response, in this

study, the zero-frequency changes in particle separation,

without any adjustables.

II. MATERIALS AND METHODS

Vimentin is a member of the intermediate filament (IF)

family of proteins and is mainly expressed in mesenchymal

cells. As in most IF networks, vimentin fibers crosslink by

themselves without crosslinking reagents and show signif-

icant stiffening under uniform shear without network rup-

ture [6,8,17], presenting an ideal system to study cytoskeletal

mechanics. Experiments were carried out using preparations

of vimentin proteins based on a standard protocol [18–21].

Vimentin proteins in subunit buffer were centrifuged at

13 K rpm, 4 ◦C for 30 min and diluted into polymerization

buffer (5 mM PIPES pH 7.0, 1.0 mM DTT, 270 mM NaCl,

0.75 mg/ml vimentin) with a small amount of polystyrene

latex beads (Polysciences Inc., Polybeads, 2.0-μm diameter,

∼1/1200 times diluted from stock solution). Samples were

loaded onto an ice-cooled glass chamber and polymerized

overnight under the optical laser trapping equipment at 30 ◦C.

Complete polymerization took several hours.
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FIG. 1. (Color online) (a) Schematic of the experiment. A

strongly trapped bead (right) was pulled away or pushed toward

the probe particle (left). Note that actual network is much denser.

(b) Imaginary part of the response function of a particle embedded

in vimentin. Triangles and circles show parallel and perpendicular

directions to the applied force, respectively. Filled symbols are under

prestress and open symbols corresponds to zero force. The solid

curve corresponds to the fit with Eq. (S9) in the Supplemental

Materials [21].

Using dual-beam optical trapping microrheology,

2 polystyrene latex particles in the vimentin solution were

weakly (∼0.75 mW) laser trapped at distances of R ∼

8.5 μm in the same focal plane (15 ∼ 20 μm above the

chamber bottom) immediately after sample preparation. After

polymerization, one of the embedded beads was strongly

trapped with a high-power NIR laser (NdYVO4, 4W, λ =

1064 nm, COMPASS, Coherent). By moving the piezo stage

parallel to the line between the particles, a point force F

up to 350 pN was locally applied to the vimentin network,

generating an axisymmetric stress field [Fig. 1(a)]. Laser

interferometry using quadrant photodiode detection [14]

allows us to precisely measure the displacement of colloidal

particles from the center position of the trapping laser [22,23].

Note that beads are much larger than the network mesh

size and thus stably trapped. The other probe particle was

weakly optically trapped by a semiconductor laser (CW

150 mW, λ = 830 nm, IQ1C150, Power Technology). The

position fluctuations in orthogonal directions �x‖(t) and

�x⊥(t) of this probe particle [Fig. 1(a)] were tracked by using

another quadrant photodiode, and the output was sampled

at 100 kHz by a 24-bit data acquisition board (PCI-4472,

National Instruments). The response functions in parallel

and perpendicular directions, α‖ and α⊥, respectively, were

extracted from the spectra of the corresponding displacement

spectra. Although the exact shear modulus is determined as

4-rank tensor [24], for convenience, we introduce “apparent”

shear moduli based on the Stokes relation,

G‖(⊥)(ω) = 1/6πα‖(⊥)a, (1)

where a is the particle radius. Details are given in Supplemental

Material S1 [21].

III. RESULTS AND DISCUSSIONS

First, we directly observed the fluctuation of the probe

particle by taking microscope images (30 Hz sampling

for 60 s, n = 5) and calculated the van Hove correlation

function P (�x),�x(�t) = x(t0 + �t) − x(t0) to obtain the

distribution of the probe particle displacements for �t = 1 s

FIG. 2. (Color online) Van Hove distributions of the probe parti-

cle displacement for �t = 1 s for (a) no force applied to the other bead

R ∼ 8.5 μm away, and (b) the strongly trapped bead pulled away from

the probe particle with an average force F = 137 pN. Displacements

parallel (open circles) and perpendicular (closed circles) to the applied

force, and their Gaussian fit (solid or broken line respectively), are

shown. The widths ε of the Gaussian are 13.4 nm (parallel) and

19.7 nm (perpendicular).

(Fig. 2). Results were fitted to a Gauss function f (�x) =

B exp[−(�x/ε)2]. As shown in Fig. 2(a), the thermal fluctua-

tions of the probe particle are evidently isotropic if the force is

not applied. When the strongly trapped particle (∼90 mW laser

power, and kt ∼ 1.4 × 10−4 N/m trap stiffness) was pulled

away from the probe particle, the fluctuations of the probe par-

ticle in the parallel direction were clearly suppressed relative

to the perpendicular direction as shown in Fig. 2(b). To pre-

cisely investigate this anisotropy, we measured the frequency-

dependent response functions of the probe particle embedded

in the uniaxially stressed vimentin network with laser inter-

ferometry and analyzed the data as explained above. Im[α‖]

was clearly smaller than that for zero force at low frequencies;

see Fig. 1(b). Im[α⊥] was also reduced, but by a markedly

smaller degree than Im[α‖]. As a control, we repeated the

experiments in PAAm gel, a crosslinked network consisting of

synthetic, flexible polymers. As demonstrated in Fig. S1 [21],

no significant stiffening or anisotropy was detected.

We hypothesize that both the nonlinearity and anisotropy

are primarily due to the stiffening of vimentin filaments

under tension. The nonlinear force-extension relation of

individual filaments has also been evoked to explain the

macroscopic, uniform response of cytoskeletal gels [6,7].

Filaments aligned parallel to the line of force will be placed

in a state of greater tension and thus become stiffer than those

orthogonally aligned, resulting in the observed anisotropic

response. Quantitative estimates for networks of fibers obeying

the wormlike chain model can be made once two key

assumptions are adopted: that the network response can be

treated as affine, and that geometrical nonlinearities such

as filament rotation are negligible. Then the static prestress

and strain distribution around the applied point force and the

differential responses α‖(⊥) are numerically calculated if three

material parameters are given: persistence length ℓp, length

density of filaments ρ, and crosslinking distance ℓc. Details of

the calculation are described in full elsewhere [24]. Before we

present results of this procedure, we first examine the validity

for the assumption of affinity for vimentin networks.
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Many theoretical studies have suggested that the static

response of semiflexible networks frequently exhibits non-

affinity when they are crosslinked with filaments less than

Maxwell’s isostatic connectivity per each node [25,26]. Due

to the static situation, all these studies do not take the solvent

response into account. For the dynamic response at high

frequencies, however, the motion of network and solvent is

strongly coupled so that the gel behaves as a single incompress-

ible continuum, ensuring the affinity. We therefore believe that

semiflexible polymer networks often deform nonaffinely to a

degree that depends on frequency: High-frequency perturba-

tions invoke an affine response, which becomes increasingly

nonaffine as the frequency is lowered [28]. When affinity

can be assumed, the network response is proportional to

that of a single-filament, which is the sum over modes with

characteristic relaxation frequency ∝λ−4 for wavelengths λ not

exceeding ℓc [11]. This leads to a high-frequency power law

G(ω) ∝ (−iω)3/4 [so G′(ω) < G′′(ω)] above ω1 ∝ κ/(ζℓ4
c)

with κ = ℓpkBT the filament bending modulus and ζ the

drag coefficient [11], where ω1 is the relaxation frequency

for the longest wavelength fluctuations between crosslinks.

This power-law behavior has been observed for crosslinked

cytoskeletons when the effects of inertia and solvent viscosity

can be neglected or corrected [14,21,23,29]. The prefac-

tor for this power law is insensitive to the crosslinking

distance ℓc and depends only on the known parameters

ρ, ζ , the bead radius a, and the unknown persistence

length ℓp. The solid curve in Fig. 1(b) shows the fit car-

ried out by assuming G(ω) = A + B(−iω)a + C(−iω)0.75 −

iωη0, where η0 = 0.00089 Pa s is the viscosity of the solvent;

see Supplemental Materials S4 for details [21]. The fit

clearly supports the 3/4 power law for the high-frequency

response. We therefore obtain ℓp ≈ 0.8 μm for our vimentin

networks.

Let us suppose that the network continues to deform

affinely below ω1. Then fluctuation modes with wavelengths

larger than ℓc do not exist, and the network exhibits an

elastic plateau G′(ω) ≈ G0 > G′′(ω) [11]; see solid curves

in Fig. 3(a). The crossover frequency ω1 can then be extracted

from experimental data as the point where G′(ω1) ≈ G′′(ω1).

As shown in Figs. 3(a) and 3(b), the expected ∼ω3/4 scaling

at high frequencies is observed for G′′(ω). Slight deviation is

due to the inertia and the effect of the solvent viscosity. G′(ω)

should also follow the similar power law, but only at higher

frequencies than those shown, where the effects of inertia are

not negligible and significant errors arising from the finite-

bandwidth sampling hinder its correction [21]. The broken

curves in Fig. 3(a) are the estimates not influenced by the error

since they are calculated based on the fit shown in Fig. 1(b).

It can be seen that the crossover frequency ω1, which is no

more than a kHz for all samples, is well-defined, and the data

around the frequency is hardly affected by the error due to the

finite bandwidth. It does not herald the onset of the predicted

plateau, though; rather a slow decay is observed to much lower

frequencies.

It is to be noted that the probe particle under ≈pN force

application does not flow in our experimental time window; the

dissociation of crosslinks, for instance, can be neglected. We

therefore propose this is primarily due to nonaffine modes. At

frequencies below ω1, with the emergence of collective modes

ω

µ

ω∝

ω
ω

ω/ω1

ω

ω∝

ω

ω

FIG. 3. (Color online) (a) Affine viscoelastic response of a

crosslinked semiflexible network (solid curves) [11]. The high-

frequency scaling ∼ω3/4 is shown as a solid line segment. Open circles

and triangles are the scaled data without prestress. Broken curves are

the expected behavior when the error due to the finite sampling is

removed [21]. (b) Applied force dependence of G′(ω) [calculated

using Eq. (1)] in parallel (closed symbols) and perpendicular (open

symbols). The line segment at high frequencies show the power law

[∝ (−iω)3/4]. Filled squares with error bars show slow static response

obtained with video microscopy without prestress. The gray dots and

the broken line show G′′(ω) under force application (F = 317 pN).

The solid curve shows G′′(ω) without prestress (averaged for both

directions). The intersections with G′(ω) as shown by the arrows give

G′(ω1). (c) Dependence of G′(ω1) (circles) and G′(0.2 Hz) (triangles)

with the force applied to the trapped bead (n = 12). Open and

closed symbols correspond to parallel and perpendicular directions,

respectively. Forces ranging from −150 to 350 pN were binned

every 100 pN, with the median and standard deviation plotted (more

negative forces gave irreproducible data). The smooth curves are the

theoretical fit from Ref. [24] with ℓp = 0.8 μm, ℓc = 0.6 μm, and

ρ = 16.25 μm−2. (d) Ratio of G′ at ω1 and 0.2 Hz for parallel (closed

circles) and perpendicular (open circles) directions. (e) Change in

probe separation induced by the force (circles) and the corresponding

affine prediction for the same parameters as (c) (dashed line). The

solid line gives the scaled prediction for nonaffine response.

with wavelengths longer than ℓc, the network can redistribute

the deformations (thus energy cost) of each filaments in order

to lower the total strain energy; i.e., it will be nonaffine.

Here it is to be noted that the crossover frequency for the

coupling-decoupling behavior between solvent and network is
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length-scale r dependent as ωc ∼ G0l
2
c/ηr2 [14], where η is

the solvent viscosity and G0 is the static network elasticity

when affinity assumed. Since ω1 ∼ ωc for the length scale of

the filaments r ∼ ℓc, these slow modes are decoupled from

the solvent: the slower the frequency is, the larger the region

of the nearby network that must reconfigure to give a mutu-

ally optimal configuration, independently of the surrounding

solvent. This can be regarded as a collective problem in that

there is only one optimal configuration for the local network, as

expected for a disordered system such as this. As the frequency

is lowered, the size of the mutually relaxing region increases.

The region of configuration space that must be explored to

find the optimum also expands, correspondingly increasing

the time to reach equilibrium. This collective process explains

the slow decay of viscoelasticity below ω1 as observed. It

is therefore at this crossover frequency ω1, which lies near

the high-frequency limit of the elastic, nonaffine regime, and

the low-frequency limit of the viscous, affine regime, that

we can compare the data to the affine mechanical model

(which, by its nature, can only be used to predict the plateau

modulus [24]).
The microrheology protocol employed here permits the

extraction of three independent quantities for each applied
force: the frequency-dependent shear moduli in parallel G′

‖(ω)

and perpendicular G′
⊥(ω) directions measured at the probe,

and the change in the particle separation. For G′
‖ and G′

⊥,
we find good agreement with the theory of [24] at the
crossover frequency ω1 extracted from the curves, as shown in
Fig. 3(c). Here we estimated ρ ≈ 16.25 μm−2 from [30] and
ℓp ≈ 0.8 μm from the high-frequency data without prestress,
leaving the single fitting parameter ℓc. We extract ℓc ≈ 0.6 μm
from the fit, consistent with previous estimates of vimentin
networks formed following the same protocol [17]. It is to be
noted that not any value of ℓc could fit the stiffening behavior of
G′

‖(0.2 Hz) and G′
⊥(0.2 Hz) as partially shown in Fig. S2 [21].

For the affine theory, the static shear modulus without prestress
is given as G0 = 6ρkBT l2

p/ℓ3
c [11]. If nonaffine relaxations

were not assumed, ℓc estimated from static elasticity G0 ∼

G′(0.2 Hz) would be smaller than that estimated from G′(ω1).
The affine model predicts that the prestress stiffening behavior
is collapsed to a single universal curve using the force scaled
as F l2

c/ρℓpR2kBT [24]. Larger ℓc therefore means more
pronounced stiffening than experimentally observed, as shown
in Fig. S2 [21].

The validity of the affine assumption at ω1 must still

be examined, since the prestress is realized under nonaffine

network deformations. Interestingly, the ratio of G′(ω1) to

the plateau value appears to be independent of the applied

force, as shown in Fig. 3(d). This insensitivity of strength of

nonaffine relaxation G′(ω1)/G′(0.2 Hz) to the stiffening of the

filaments has not, to the best of our knowledge, been predicted

in any model, to which we give qualitative speculation here.

The elastic energy of the network composed of semiflexible

polymers involves the contributions from bending and entropic

stretching deformations of constituent filaments and it is

known that ℓp is the parameter for determining both [7,11].

The network condition ℓc ∼ ℓp of our vimentin sample is,

however, out of the scope of previous theoretical studies on

nonaffinity, where ℓc ≪ ℓp or ℓc ≫ ℓp is assumed [25–27].

For ℓc ∼ ℓp, since there exists sufficient thermal bending

fluctuations between crosslinks, the total bending energy is

not sensitive to deformation modes longer than ℓc, which

is nonaffine; only the energy cost originating from the

entropic stretch of each filament matters for the nonaffine

relaxations. In such cases, quantities less dependent on ℓp , such

as the geometry of network connections and/or topological

constraints due to the steric hindrance for the overlapping of

filaments, play a more important role [31] for determining

the strength of nonaffine relaxations; G′(ω1)/G′(0.2 Hz) is

therefore independent of ℓp or the prestress stiffening of

the network. Regardless of the theoretical interpretation, this

experimental finding G′(ω1)/G′(0.2 Hz) ≈ 2.6 indicates that

affine estimations valid at ω1 can be directly extended to

the zero-frequency for prestress distributions, by the simple

application of a constant scaling factor of ≈2.6 for prestrain

distributions.

The affine model is not expected to fit the particle separation

data, as this was measured at zero-frequency for which non-

affinity is present, and indeed the afffine model underestimates

the separations as shown in Fig. 3(e). However, applying the

constant factor G′(ω1)/G′(0.2 Hz) ≈ 2.6 allows us to estimate

the prestrain distributions, including nonaffinity as explained

in the previous paragraph and that leads to agreement with

experiments as shown in the figure. We conclude that all of

our experimental data is consistent with nonlinear filament

stiffening in a network that deforms increasingly nonaffinely

as the frequency is decreased, and expect future experimental

or theoretical studies to directly quantify this phenomenon

will confirm our hypothesis. Note that the deviation for large

pushing forces in Fig. 3(e) is due to the close approach

of the beads, violating the point-particle assumption of

the model.

In typical cell situations, the function of many receptors or

protein catalysts can be modulated by the action of the forces

transmitted via the cytoskeleton. This in turn influences signal

transduction, biochemical reactions, and cell behavior. Our

findings present a unique possibility to quantify the stresses

spontaneously generated in the cell, by analyzing the affine

response at frequency ω1. Such frequencies are only accessible

to high-bandwidth techniques such as microrheology, since

2πω1 ∼ 100–1000 Hz for typical cross-linked cytoskeletons.

Indeed, the nonaffine elasticity measured at low frequencies

with macrorheometry may tend to slightly underestimate

filament bending stiffness [17,32], compared to the direct

estimates from single filaments [33,34].

IV. CONCLUSION

We have demonstrated that the static strain exhibited in

the model cytoskeleton can be quantitatively and consistently

interpreted as a consequence of relaxation from the high-

frequency affine response to the low-frequency nonaffine

behavior. The frequency separating these two response regimes

lies close to the crossover frequency ω1 predicted from affine

network theory, and it is around this frequency that our affine,

mechanical model applies. Many soft condensed materials

such as gels, glasses, and colloids also show high-frequency

power-law behavior and slow relaxation. The theoretical basis

for determining the critical frequency ω1 and relating each
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frequency range for affine and nonaffine response may also

be applicable for these materials. The combination of high-

bandwidth microrheology with a theoretical affine response

model is uniquely placed to experimentally characterize the

exotic slow nonaffine response, which remains elusive despite

its ubiquitous importance for a vast range of materials.
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