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Maximization of the portfolio growth rate under fixed
and proportional transaction costs

Jan Palczewski* FLukasz Stettner!

May 6, 2007

Abstract

This paper considers a discrete-time Markovian model of asset prices with eco-
nomic factors and transaction costs with proportional and fixed terms. Existence of
optimal strategies maximizing average growth rate of portfolio is proved in the case
of complete and partial observation of the process modeling the economic factors.
The proof is based on a modification of the vanishing discount approach. The main
difficulty is the discontinuity of the controlled transition operator of the underlying
Markov process.

Keywords: portfolio optimization, growth rate, transaction costs, incomplete informa-
tion, Markov process, impulsive strategy, optimal control, vanishing discount

1. Introduction

On a given probability space (02, F,P) with discrete filtration (F;);=o1...., where Fy is trivial,
consider a market model driven by a time homogeneous Markov process (S5(t), Z(t)) 01
where S(t) = (S(¢),....5%%)) € (0,00)* denotes prices of d financial assets and Z(t) €
(E,E), where E is a locally compact separable metric space with Borel o-algebra &, stands
for economic factors. Models with economic factors have been gaining popularity in finan-
cial mathematics recently although it has been noted that they add substantially to the
complicacy of mathematical methods required for their analysis as compared to models
without factors (see eg. [3], [4], [13], [23]). A main advantage of models with economic fac-
tors lies in the fact that economic factors can influence market trends therefore change the
long-term behaviour of prices. They answer the main criticism of pure Markovian models

*Faculty of Mathematics, Warsaw University, Banacha 2, 02-097 Warszawa, Poland, and School of
Mathematics, University of Leeds, Leeds LS2 9JT, UK (e-mail: J.Palczewski@mimuw.edu.pl)

fInstitute of Mathematics, Polish Academy of Sciences, Sniadeckich 8, 00-950 Warszawa, Poland, (e-
mail: stettner@impan.gov.pl). Research supported by MNiSzW grant 1 PO3A 01328.



related to the lack of memory of price processes. Moreover, it is known that models with
economic factors allow for better calibration to market data (see [4]).

In the above model, under transaction costs consisting of proportional and constant
terms, we maximize the functional

1

J(I) = liminf —F In X™(T), (1)
T—oo T

where X'(T) is the wealth of the portfolio (trading strategy) II at time T". This functional

computes an average growth rate of the portfolio II. Indeed, (1) can be rewritten as

T—1
1 XU(k+1)
JI) = lim inf 7 ZM S T 2)

where In XXHI(T—I‘E:)I) is a continuously compounded rate of return in time interval [k, k + 1].

Functionals of the form (2) are known as long-run average cost functionals. They have
been widely studied in the context of stochastic control of Markov processes (see [2], [18],
[20] and references therein). Financial applications require, however, additional constraints
on admissible controls and give rise to a new class of control problems (see [1], [8], [11],
[12], [14], [23] for growth-rate optimization problems on finite and infinite time horizons).

The main result of this paper states that under very general assumptions on the process
driving the market there exists an optimal Markovian control for the functional (1). This
result is proved by a modification of a vanishing discount approach, as considered in [18],
which leads to a certain Bellman inequality. Main difficulties arise from discontinuity of
the controlled transition operator of the underlying Markov process, due to a constant
term in the transaction costs structure. The above result is not only valid in the case when
economic factors are completely observed, but also in models in which economic factors
cannot be perfectly read. We also show that the optimal strategy maximizing long run
average portfolio growth rate in the case of fixed plus proportional transaction costs is also
optimal in the case of proportional transaction costs.

The results obtained in this paper are new in the case of fixed plus proportional trans-
action costs. They extend application of a general theory of stochastic control to financial
problems with a constant term in the transaction cost structure. Moreover, they generalize
[1], [23] in the case of only proportional transaction costs.

The paper is organized as follows. In Section 2 we set up a financial model, derive
its basic properties and introduce notation. Section 3 presents main results of the paper
followed by discussion and remarks. The proof of the main result is contained in Section
4. The case with incomplete observation of the economic factor process is considered in
Section 5.



2. Preliminaries

In this section we specify the model in full detail and introduce necessary notation. The
dynamics of the price process is governed by

Si(t+1)

T :Ci<Z(t+1),§(t+1)>, Si0)=s >0, i=1,....d, (3)

where (5 (t)) 1. is a sequence of i.i.d. random variables with values in a Polish space
(E, E%) and functions (' : (E,&) x (E¢, &%) — (0,00) are Borel measurable, i = 1,...,d.
The process Z(t) is a time-homogeneous Markov process. We assume that (S(t), Z(t))t:(),l,...
is a Feller Markov process, i.e. its transition operator transforms the space bounded con-
tinuous functions into itself. We shall write ¢*(¢) for ¢*(Z(t),£(t)) whenever it does not
lead to ambiguity. We denote by ((¢) the vector (¢(t),...,¢%(t)).

Denote by (Ff)i=o1.. the filtration, where F§ is a trivial o-algebra and (F7)i=12..
is generated by the process ({(t),Z(t))t:m,m with Z(0) = z. Notice that the filtration
generated by the process (S(t), Z<t>)t:0,1,... starting from (s,z) € (0,00)? x E is identical
to (Ff)i=o1.., since it is independent of the initial value of asset prices:

s'(t) = $10) [T ¢ (2(5).€(5)).
Fix initial values (s, ) for the process (S(t), Z(t))

of pairs ((Nk’T’“))k:m,...
Ny, is F7 -measurable random variable with values in [0, o0)¢ representing the number of
shares held in portfolio in the time interval [7x, Tx+1). By N(0) we denote a deterministic
initial portfolio and we set 7y = 0. The share holding process at time t is given by

b0, A trading strategy is a sequence

, where 7 is an (F7)-stopping time, 7441 > 7, k = 1,2,..., and

N(t> = Z 1t€[7'k77'k+1)Nk~
k=1

In what follows we shall consider transaction costs of the form

d
é(N, N2 S) = Y <C§Si(N;’ — N)* 4 ESHNi = Ni)™) +e, (4)

i=1
where S stands for asset prices, N7 denotes portfolio contents before transaction, Ny — after
transaction, and c is the constant cost charged independently of the size of transaction.
Proportional transaction costs are divided into two parts: ¢; € [0,1) is a proportion of the

transaction volume paid on buying of asset 7, while ¢ € [0, 1) is applied on selling of asset
1. We assume that portfolios are self-financing, i.e.

Nk . S(Tk) = Nk,1 . S(Tk) +E(Nk,1,Nk,S(Tk)>, k= 1,2,.... (5)
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In the case of no transaction costs or proportional transactions costs it is natural to
reformulate the problem in terms of proportions. We will also benefit here from this
reformulation. Let

X(t)=N(t)-S(t), (©)
X (t)=N(t—1)-S(t).
Hence, X _(t) is the wealth of the portfolio before possible transaction at ¢, and X (¢) is the

wealth just after the transaction. If there is no transaction at ¢ both values are identical.
In a similar way we construct two processes representing proportions:

i NU(1)S'(t)
m(t) = X))
; _Ni(t—l)Si(t)
~O=—xw

for i = 1,2,...,d. Since short sales are prohibited we have 7 (t),7_(t) € S, where

d
S:{(Wl,...,ﬂd): 7w >0, Z?TZ:
i=1

Denote by S° the simplex S with its interior

d
SO:{<7T1,...,7Td)I 7t >0, ZTFZ <1
i=1

and let g : S® — S be the projection to the boundary

mt md
g(7r1,...,7rd’) = <Z7ﬂ.,...,zﬂi>.

The self-financing condition can be written as

X_ (1) = X (1) + X_(73) <c(7r,(rk),frk) +

for some 7, € 8° such that 7(7) = g(ﬁk) and

Z( 7 —a )P+ G(F —nt)7)

=1

is the proportion of the portfolio wealth that is consumed by proportional part of transac-

tion costs. From (5) one can deduce that 71, = ;i((:’flz)ﬂ(m) fulfills (8). We shall show that

this is a unique solution to (8). Given 7_,m € S, x_ > 0 define a function

[T T,0 . i
F (6) = c(m_,0m) + . + 9.



Notice that (8) is equivalent to

d
P () (), X - (1) ( Z 7}2) =1.

i=1

It can be proved (see [23]) that there exists a unique function é : & x § x (0,00) — [0, 1]
such that .
Fr—mr- (é(ﬂ,, , :U,)) =1,

if F7-™%~(§) = 1 has a solution § € (0,1] and é(m_,m, z_) = 0, otherwise (the wealth
of the portfolio is too small to perform requested change of proportions). For technical
reasons this is an undesirable condition. Therefore, we shall modify transaction costs in
such a way that the transaction is possible at any moment. Let

c
> ——, h=12 9
g 1 — max; ¢; ©)

and modify (4) in the following way

“(N.. N,.S - Lgi(Ni — NOVF - (2SN — Ni)~ ) when Ny -5 > 27,
E(N1, N, )_;(Ci (M 2)" S (M 2)>+ chl;S, when Ny - S < z*.
(10)
Notice that for portfolios with the wealth over z* usual constant plus proportional trans-
action costs are applied as in (4). Transaction costs are modified only for wealth below x*,
when the constant cost is replaced by appropriate proportional term. It is not restrictive
in practical applications where portfolio wealth is counted in thousands of dollars. As an
example consider fixed cost of 1 USD and proportional cost — 0.5%. We obtain from (9)
that * > 1.0051 USD.
With the new transaction costs structure the self-financing condition (8) takes the form

X—(Tk) - X(Tk) + X—(Tk) (C(W—<7—k),ﬁ'k) + m), k=1,2,...
where a V b = max(a,b) and T, = )i(Zf:)W(Tk). Given m_,m € S, x_ > 0 we define a
function .
FT=m () = e(m_,om) + + 4.
rz_Vz*

The above self-financing condition is equivalent to

- () (7). X - () ( 3 ﬁ-]i) ~ 1.

=1

LEMMA 2.1. There exists a unique function e : § x § x (0,00) — (0, 1], such that
Fr—mt- (e(7r_, , a:_)) =1.

Moreover, e is continuous and inf e(w_,m,x_) > 0.

bt



Proof. The proof is rather straightforward and resembles the proof of Lemma 1 in [23]. =

The uniqueness of the function e implies that )‘é ((77’?}3) = e(m— (), m(7), X_(7%)). There-
fore, any transaction can be described solely by means of proportions. Given a pre-
transaction wealth X _(7;) and proportions 7_(7%) at time 73 one chooses any post-transaction

proportions 7m(7;) € S. As a result the wealth is diminished to

X(m) = X_(m)e(m— (), 7(7k), X_(71)).

Furthermore,
S rX)
X_(t+1) = Zl g St+D=X0) (w(t) St + 1)).
Therefore,
X_(1)=X_]] (7() - <+ D) TT (trcee(r () mlm) X (7)) + 1oze) (1)

and the wealth of the portfolio is independent of initial prices of the assets. Therefore,
instead of writing P(**) and E (%2) it suffices to stress the dependence of the probability
measure on the initial condition of the Markov process (Z(t)) by writing P* and E~.

For a given initial value z € E, we say that a sequence II = ((m,71), (7, 72),...) of
S-valued random variables such that 7 is F7 -measurable and 7 is a (F7)-stopping time,
is an admissible trading strategy or an admissible portfolio for z. Thanks to the modified
form of transaction costs no portfolio can lead to bankruptcy in a finite time. Let us
denote the set of all admissible portfolios for z by A*. For z € F and Il € A* we define
the corresponding pre-transaction proportion process 7'7(t) by

7 (0) = 7_,

. (12)
TPt =mpol(me+ 1) o 0l(t), T <t< Trit,
where for simplicity of the notation we set 7o = 0 and
rol=g(r'c,...,7%Y, we8, ¢€(0,00) (13)
The corresponding post-transaction proportion process is given by
T_, t=0and 7, >0,
’/TH’Z (t) =< L, t =T (14)

o (e +1) o . 0l(t), T <t < Trir

The wealth process X'*(t) is given by (11). In the sequel we shall skip the subscript II, z
unless it leads to ambiguity. The goal of this paper is to maximize the functional

J7o*(I1) = lim inf %]E “In X_(T) (15)

T—oo
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over all portfolios I € A?*, where w_ is an initial proportion, x_ denotes initial wealth and
z is an initial state of the economic factor process. Observe that due to (11) we have

T-1

JTPAI) = liTnliolgf %{ ZEZ Inm(t)-C(t+1)
tzOOO (16)
+ ZEz{lTk<T lne(F(Tk),Wk,X(Tk))}}.

k=1

3. Existence of optimal strategies

Denote by P(z,dy) the transition operator of the process Z(t). We will need the following
assumptions:

(A1) The process (S(t), Z(t)) satisfies the Feller property i.e. its transition operator maps
the space of continuous bounded functions into itself.

(A2) SXE 3 (m,2) — h(m,z) = E*{Inm-((2(1),£(1))} is a bounded, continuous function.

(A3) sup sup (P"(z,B) — P"(2/,B)) = < 1 for some n > 1.
z,2'€eE Be&

1
A4) su sup E~* < 1.
( ) 71'_,71'1;8 ZGIE) 6(7T_,7T, x*) - <(2,§(1))

We have

THEOREM 3.1. Under assumptions (A1)-(A4) there exists a measurable function p :
S x (0,00) x E — S, a constant A and a measurable set I C S x (0,00) x E such that

A= J—"*(I17) = sup J™*(1D), (17)
e A
where the optimal portfolio IT* = ((x},77), (73, 73),...) is given by the formulae

7 =inf{t >0: (W_(t),X_(t),Z(t)) el},
Thyq = inf{t > 7 : (W_(t),X_(t),Z(t)) el},
me = p(r (1), X (7). Z(73,)).

Theorem 3.1 states that for any initial state of the market and for any initial share holding
there exists an optimal portfolio maximizing the average growth rate. This portfolio has
a Markovian structure: decision about a transaction at ¢ is based only on the state of the
market at ¢t and not before ¢. This decision process is governed by the impulse set I and
the impulse function p. Clearly, every Markovian portfolio is admissible. Notice also that



the optimal growth rate is equal to a constant A independently of the initial conditions.
This is an inherent property of the so-called long-run average cost functionals (see [2], [9]).
Remarks.

(1) Assume that Z(t) is a Feller process, which is clearly required for (A1) to hold. If
Ci(2,€),i=1,...,d, are continuous in z then (A1) is satisfied. Indeed, let ¢ : (0,00)?x E —
R be a continuous bounded function. Define

g(s,z,f):/Eqb(slg“l(i,f),...,std(Z,f),E)P(z,dZ).

It is continuous by the Feller property of Z(¢) and bounded by the boundedness of ¢.
Consequently, the mapping

(5.2) = EC9(5(1).21)) = [ gl E)u(de),

where v is a distribution of £(1) on E¢, is continuous by dominated convergence theorem
and (A1) holds. In particular, if Z(t) is a Markov chain with a finite state space (Al) is
always satisfied.

(2) Notice that (A2) reads that expected one period growth rate is finite.

(3) Assume that (%(2,€), ¢ = 1,...,d, are bounded functions separated from 0 and
continuous in z. Consequently, A(m, z) is bounded. By (A1) Z(¢) is a Feller process, hence
h(r, z) is continuous by the same argument as above and (A2) holds.

(4) By Jensen’s inequality

inf h(z,m) = mindEz{ In¢*(Z(1),£(1)) }-

Tes i=1,...,

Therefore, h(m, z) is bounded from below if and only if

inf E*{In¢"(Z(1),£(1))} > =00, i=1,....d.

(5) Condition (A2) does not imply boundedness of ¢’. Consider a generalized Black-
Scholes model with economic factors (see [3], [4], [13]), i.e.

Si(t+1) = S'(t) exp (ai(Z(t + 1)) - (Wt +1) = W) + i (Z(t+ 1))), i=1,....d,
where Z(t) is a Feller process, W (t) is an m-dimensional Wiener process and o’ : E — R™,

p' i E — R, i=1,...,d, are continuous bounded functions. Clearly, (A1) is satisfied by
Remark (1). To show (A2) we recall the definition

h(m,z) =E*In (ZW’ exp (cri(Z(l)) “€(1) + M(Z(l))))
with £(1) = W (1) — W(0). Consequently,
B = Dy (ZO) W) = Da(Z1))} < hir, ) <E{Dy (ZO) M) + Da(2() .

8



.....

.....

Continuity with respect to 7 follows by the dominated convergence theorem. By a similar
argument

% . In (éw exp (0'(2) - £+ /ﬁ'(z)))y(dg)

is continuous. Hence, due to the Feller property of Z(t), the function h(w, z) is continuous
with respect to z and (A2) is satisfied. In particular, (A2) is satisfied if Z(t) is a Markov
chain with a finite state space.

(6) Assumption (A3) corresponds to uniform ergodicity of Z(t) and implies, in partic-
ular, the existence of a unique invariant measure which is approximated uniformly by the
iterations of the transition operator P (see [7]).

(7) In the stochastic control literature a one-step uniform ergodicity is usually assumed,
which is equivalent to (A3) with n = 1 (see e.g. condition (UE) in [23]). Allowing for n > 1
opened a new class of applications and is especially important in the financial context. It
can be shown that (A3) is satisfied if Z(t) is a recurrent Markov chain with a finite state
space.

(8) Assumption (A4) links a transaction cost and a growth rate of one-stage investment.
It says, in general, that no matter what strategy we choose the portfolio wealth is increasing
on average.

4. Proof of Theorem 3.1

The proof uses a generalization of the vanishing discount method ([2], [9], [18], [23]) due
to [18]. Main idea is to obtain a Bellman equation for our optimization problem as a limit
of modified Bellman equations for discounted problems related to (16). Given m_,z_, 2
consider the functional

T3 (1) = Ez{ i Bih(x(t), Z(t)) + iﬁ"“ Ine(m_ (7). 74 X_(7)) } 5e0.1),
t=1 k=1

and the value function
vg(m_,x_,z) = sup Jy ().
I1e.A*

Denote by M the impulse operator acting on measurable functions

Muw(r_,x_,z) = sup { ne(r_,mz_) 4+ w(mz_ e(r_,mz_),z) } (18)

TeS

LEMMA 4.1. The impulse operator maps the space of continuous bounded functions into
itself. Moreover, given any bounded continuous function w there exists a measurable
selector for Mw.



Proof. The proof is standard (see [9] or [17]). n

THEOREM 4.2. Under (A1)-(A2) the function vg is continuous and bounded, and sat-
isfies the Bellman equation

vy(ma-.2) = sup EZ{Zﬁt Z(1)) + 8" Mug (7 (7). X_(7), 2(r)) }, (19)

where m_(t) and X _(t) are processes representing the proportions and the wealth of
the portfolio before transaction with the following dynamics: 7_(0) = n_, 7_(t + 1) =
m_(t)o((t+1)and X_(0) =z, X _(t+1)=X_(t) m_(t) - C(t + 1) .

Proof. By Lemma 2.1 the function Ine(r_,m,z_) is bounded, and by (A2) h(m,z) is
bounded. Therefore, vg(m_,z_, z) is bounded. For a continuous bounded function v :
S x (0,00) X E+— R, let

Tyo(m. 2. 2) = sup ]EZ{ Z‘i BUh(n(t), Z(t)) + BT My <7r_ (7), X_(7), Z(T)) }

Operator 73 maps the space C* = C*(S x (0,00) x E;R) of bounded continuous functions
into itself. It follows from (A1), the Feller property of the transition operator of the process
(S(t), Z(t)), by a general result on the continuity of the value function of optimal stopping
problems. Let

v (m_,z_,z Zﬁt Zh ()), ng %vg

Thanks to continuity of vg and M vg it can be shown that vg is a value function for the
maximization of Jz over admissible portfolios with at most & transactions. Observe that
it is never optimal to have two transactions at the same time (P(7, = 7441) > 0) due to
subadditivity of the transaction cost structure. Therefore, we have the estimate

[lloo

- <Zﬁlllh|l = s e

which implies that vg tends uniformly to vg. Consequently, vg is a continuous bounded
function and satisfies vg = T3vg equivalent to the Bellman equation (19). |

4.1. Proportional transaction costs

Now we shall concentrate on the case without the constant term in the transaction cost
function, i.e. when ¢ = 0. Consequently, e(r_, 7, x_) satisfies the equation

e(m_,mx_)=1-— c(ﬂ,,e(ﬂ,,ﬂ,x,)w),

10



and the function e(m_,m, z_) is independent of x_, so we can denote it by e(r_, 7). Since
J™*=* depends on the portfolio wealth only in the transaction costs term, which by the
above comment no longer takes X_ into account, we can skip x_

J5A () = Ez{ Y Ah(r(t). Z(1) + ) F™ ne(r(n), m) } e 1),
t=1 k=1

Consequently, we shall denote by vs(7_, 2) the value function corresponding to this func-
tional. By Theorem 4.2 it is bounded and continuous. However, in the sequel we shall
need a boundedness property which is uniform in g € (0,1).

LEMMA 4.3. For arbitrary g € (0,1), 7_,7’ €S, 2 € F
vg(m_, z) —vg(n’, 2) < —In (inf e(m,7)).
Proof. 1t is an easy consequence of the fact that for an arbitrary IT = ( (71, 71)s (M2 T2)5 - - ) €
AZ
J™*(I1) < J™*(Il') — Ine(x" ,7_),
where IT' = ((71'_,0), (m1,71), (T2, T2), - ) [
LEMMA 4.4. Under (A3) there exists M < oo such that
lvs(m—, 2) — (., 2")| < M,
for € (0,1), 7,7’ €S8, 2,2 € E.

Proof. Let e = inf,_,cse(m_,m). Fixz,2/ € Eand n_,n’ € S. Denote by II the portfolio
optimal for vg(m_, z), and by II' the portfolio optimal for vg(n’,2") (they exist due to
Theorem 4.2). The corresponding proportion processes m*(t), el (t) will be written as
7_(t), 7_(t) and the corresponding wealth processes X% (¢), X' () as X_(t), X'_(t). We
have then

vg(m_, z) —vg(n’, 2') Zﬁt]E h(m_(t),2(t)) + Z]Ez{lm@ﬁ”“ lne(ﬂ,(Tk),wk)}

—Z BB h(n zEz {Lucs* me(@ (n). )}
e (E%ﬁ (n-(n), 2(n)) — 75w (), #(m)) ).

There are at most n transactions between 0 and n — 1, since it is never optimal to have
more than one transaction at a moment (by subadditivity of the cost function). Due to
the fact that h is bounded and —oco < Ine <Ine(r_,7) < 0 by Lemma 2.1, we have

v(r_,2) = va(nl, ) < nlhll,, = nine + 5" (Evg(r(n), 2(n) — By (x"(n), #'(n)) ),

11



where [|f||,, = sup f — inf f is the span semi-norm. Choose arbitrary 7* € S and observe
that

]Ezvﬁ(w_(n),z(n)) — Ezlvﬁ(wl_(n),z'(n)) < Ez{vg( n), z(n ) ﬁ( * )}
+E*? {’UB(W Z'(n)) — vg (" z’(n))}
+ E*vg(7*, 2(n)) —Ezlvg(ﬁ ,2'(n)).

By Lemma 4.3 we have

E*{vs(m_(n),z(n)) —vs(7*, 2(n)) } < —Ine,
E* {vs(n*,2'(n)) — va(7_(n),#'(n))} < —Ine.

Notice that

E *vg(7*, 2(n)) — Ezlvg(ﬂ*,z/(n)) = /Evg(ﬂ*,y) dP"(z,dy) — /Evg(ﬂ*,y) dP" (2, dy)

= /Evﬂ(ﬂ*, y) q(dy),

with ¢ = P"(z,-) — P"(%',-). Let I" € £ be the set coming from the Hahn-Jordan decom-
position of the signed measure ¢, i.e. ¢ is non-negative on I' and non-positive on I'“. By

(A3)
/E vs(1*,y) q(dy) = /E (vﬂ(ﬂ*,y)— yi,relevﬂ(ﬂ*,y’)> q(dy)

< / (Ug(ﬂ*,y) — inf vg(7", y)) q(dy)
T Yy 'ek
+/ vs(7*,y) — inf vﬁ(w*,y')> q(dy)
Te y'er
< flog(m™, )y, a(T) < & flus(7®, )|,
Consequently,
vp(m—, z) —va(nl,2") <nllhll,, — (n +2)Ine + kllvg(7™, )|,
Since 7_, 7" € S and z, 2’ € E were arbitrary we obtain
lvs(m*, ), < nllhlly, — (n+2)Ine + &ljvg(7™, )|,

which yields the required result with

nlhlly, — (n+2)ne

11—k
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4.2. Technical estimates

We shall derive the estimates on the diminution of the portfolio wealth under transaction
costs.

LEMMA 4.5. Form_,m € S, z_ € (0,00)

i) e(n_,m) >e(n_,mua_) >e(n_,mi_), r_>x_>0.
c

i) e(m_,m) —e(m_,ma_) < )

) elmm) = elrm2-) (z— Va*)(1 — max; c})

)

e(m_,m) < 1 c

. '
iii) In e(m_,ma_) ~ infz_ze(7_,7,2%) (z_Va*)(1— max;c})

i

Proof. Noticing a™ —b" < (a —b)" and a= — b~ < (a — b)~ we obtain for d;,0, € [0, 1]

(cz1 ((ﬂ_)i — 527Ti)+ - ((W—)i - 517ri)+

c(m_,6om) — c(m_,017) =

M-

1

+ C?((W—)z’ — 527T¢)_ — C?((W,)i — 517@-)_) (20)

(2

< (Cll (51 — 62)+7Ti + C?((sl — (52)77'('1').

-

=1

Consequently,
le(m_, dom) — c(m_, 017)| < |02 — 61| max(c}, c?). (21)

By definition we have
e(m_,m) =1—c(r_,e(r_,m)m),

c (22)

x_Var*

e(m_,mx_)=1-— c(ﬂ,,e(w,,w, x,)ﬂ) —

We shall prove (i) by contradiction. Assume that e(r_,7) < e(n_, 7, x_). Easily,

0<e(r_,maz_)—e(m_,m) < c(ﬂ,,e(w,,w)ﬂ) — c(ﬂ,,e(ﬂ,,ﬂ,x,)w) — \C/ -
TV
By (21) we obtain
Lma) —e(r_,m) < (e(m_,m ) —e(m L) - ——
e(m_,ma_) —e(m_,m) < (e(n_,mz_) —e(r ,W))mzax(cl,cl) v

It gives the estimate

¢ < maux(c1 cz),

bt - Va* (e(r_,ma_) —e(n_,m)) i

13



which contradicts the assumption that ¢}, ¢? € [0,1). The proofof e(n_, m,x_) < e(m_, 7, T_)
follows a similar line of argument.
Notice that from (i), (22) and (20) we obtain

e(m_,m) —e(n_,ma_) =c(r_,e(r_,mz_)w) — c(n_,e(m_,m)7) + ‘
r_Vz*
c
< —> - — My L— 1 )
< (e(m_,m) —e(r_,m x_)) max c; + v

which immediately proves (ii). For (iii) we use the inequality In(1 4+ z) < z for x > 0. =

COROLLARY 4.6. The value function vg(m_,z_, z) is non-decreasing in = _.
Proof. Givennm_e€ S, z€ Fandz_ <x_

vg(m_,2_,2) —vg(n_,z_,2z) < sup {Jg’j_’z(ﬂ) - Jg’x"z(ﬂ)}.

€A
Fix m € A% and observe that
Jg”i”z(l_[) — Jg”x”Z(H) = Z B (ln 6(7T_<Tk), Tk X_<Tk)) — 1116(71'_ (Th)s Thy X (Tk))> ,
k=1

where 70 = 0, 7_(0) = 7_,

7 (t)=mol(me+1)o...00(t), T<t<Tr
and X_(t), X_(t) are given by (11). By Lemma 4.5 (i) we have X_(t) > X _(t), t > 0 and
consequently Jg*—*(IT) — Jz**(II) < 0. n

LEMMA 4.7. Under (A4), there exists a constant D > 0 such that for 7 € S, z € E,
z_ >0

D
0<wvg(m_,z) —vg(m_,z_,2) < —, [e€(0,1).
x_
Proof. 1t suffices to obtain an estimate for

J5=#(I) — J5=5(1)

independent of z € £, [T € A*, 7_ € S, and g € (0,1). Since

e(7r_ (T%), 7Tk) }’

Jﬂ._’Z(H) . Jﬂ_,x_,za—[) — - Ez ﬁTk hl
3 B kz:; { e(m_ (), T, X_(7k))

14



Lemma 4.5 (i) implies that Jz~*(IT) — J5~*~*(IT) > 0. To obtain the second inequality
notice that as in the proof of Theorem 4.2 we can restrict ourselves to portfolios with at
most one transaction at a moment. By Lemma 4.5

T2 T_,L_,2 - z Tk 6(7'('_ (T )’ﬂ- )
T = ] (H)ZZE {s me(w_(m WZ,Xf(m)}

<Z]EZ 0 <ZOEZ

where
1 c

infz_ze(7_, 7, 2*) (1 —max;c})

d:

Let

1
A= sup sup E~
n_meS z€E e(m_,ma*) 7 ((2£(1))

and notice that A < 1 by (A4). Applying Jensen’s inequality and the following estimate

t—1

X_(t) > a_ [ e(m—(s).7(s). X_(s)) 7(s) - C(s + 1)

s=0
we obtain
> d d
E E~ < .
— X_(t) (1—A)x_

4.3. Bellman inequality

Denote by H = S x (0, 00) x E the state space of our Markovian control model. It is locally
compact, which will be needed in Lemma 4.9. Denote by ¢ a controlled transition operator,
i.e. a function ¢ : H x § — P(H), where P(H) is the space of Borel probability measures
on ‘H, given by the following relation: for any bounded measurable function f: H — R

fRo, &, 2) q(n o, z,m)(dR_,di_,dZ) = E*f(m o ((2,€(1)), X_(1),2(1)), (23)

H

X_(1) = r_e(m_,max_) (7r . ((2,5(1))), when 7_ # T,

BRGNPV W-C(z,ﬁ(l)), when 7_ = .
One can see that ¢ is not continuous in any reasonable sense as long as the constant term in
transaction costs is non-null. Indeed, z_ 7-¢((2,£(1)) —a_ e(r_,m,2_) (7-((2,£(1))) > ¢
We cannot apply results known for the vanishing discount approach, since they require
continuity of the transition operator ¢ and a uniform bound on the span semi-norm of
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vg (see [18], [9], [10]). Instead, we shall modify the approach of [18] making use of the
estimates derived in the previous sections.

To simplify the notation consider
h(m, 2), T_ =,
h(m,z)+Ine(r_,mz_), m_#m

n(r_,mx_,z) = {
The Bellman equation (19) has an equivalent form

vg(m_,x_,z) = sup {77(71'_,71',:)3_,2) + ﬁ/vg dg(rm_,x_, z, 7r)} (24)
TeS
Let ag : H — S be a measurable selector for Muvg (see (18)) and I3 be the impulse region
Ip=A{(r_,x_,2) e H: wg(n_,x_,2) = Mug(n_,z_, 2)}.
The optimal strategy in this formulation is given by a measurable function fg: H — S
™, T, T, % I »
for2) :{ ( ) ¢ I

ag(m_,z_,z), (m_,x_,z2) € Is.

Since vg is not uniformly bounded in 3 we introduce the relative discounted value
function
wg(m_,x_,2) =mg —vg(n_,z_, 2),

where
mg = sup sup vg(m_,2).
m_€S zeE
We have
LEMMA 4.8.

D
i) 0 <wg(m_,z_,2) <M+ - with M, D > 0 independent of 3, 7_,xz_, z.

ii) The set {(1 — B)mg: 5 € (0,1)} is compact.
Proof. By Lemma 4.4 and 4.7

D
wg(m_,x_,z) <mg —vg(r_, z) +vg(n_,2) —vg(m_,x_,2) < M+ —.
xX_

Part (ii) follows from boundedness of 7. |
Let A = lim supg; Mg, which is finite by statement (ii) of Lemma 4.8. Denote by (3} the

sequence of discount factors converging to 1 such that

A= lim mg,.

k—oo

Write
w(k,9) = wg, (¥), w(@) = liminf w(k,?'), € H.

k—o0, ¥ —1
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LEMMA 4.9. ([18] Lemma 3.4) Assume that H is locally compact. There exist sequences
of measurable mappings {k,}, k, : H — N and {6,}, 6, : H — H such that

i) kn(9) — o0, 0,(9) — ¥ as n — oo for any ¥ € H,
i) w(k,(9),0,(9)) — w(¥) as n — oo.
In particular, w is measurable.

In the sequel we shall need two transition operators related to q. Let g be given by the
formula (23) with

X_(1)=a_e(r_,maz_) (7 ((2.£(1))),
and § with
X_(1)=az_ (7m-¢(2£(1))).
They are weakly continuous. Indeed, it is straightforward by (A1) and the continuity of
e(m_,m x_) (see Lemma 2.1) that (7_,x_,z) — ([, fdg(r_,x_,2), [,, fdg(n_,x_,z)) is
continuous for any continuous bounded function f : 'H — R.

LEMMA 4.10. ([16] Lemma 3.2) Let {u,} be a sequence of probability measures on a
separable metric space X' converging weakly to x and {g,} be a sequence of measurable
nonnegative functions on X'. Then

/g_]d,u < lim inf/gn dpip, where g(x) = liminf g,(y), xe€X.

= n—00, Y—T

Now we are ready to derive a Bellman inequality which is the main constitute of the
proof of Theorem 3.1.

THEOREM 4.11. Under assumptions (A1)-(A4) there exists a measurable function f; :
H — S and a measurable function w : H — (—o0, 0] such that

w(®@) + X <n(9, f1(9)) + /w(ﬁ’)q(ﬁ, A@) ('),  YeH. (25)
Proof. From equation (24) we obtain

ws(V) + (8 = V)mg = —n(0, f5(9)) + ﬁ/wﬂ(ﬁl)qw, fo@)) (@),  9eH, pe(01),
where f3 is the optimal strategy for vg. In the notation of Lemma 4.9

= —1(0,(9), $,(9)) + B(n, V) /w(k:n(ﬂ),ﬁ’)q(&n(ﬁ),sn(é‘))(dﬁ’), (26)

where

B(n,9) = Brow)s  $a(9) = fam (0u(D)).

17



Since § is compact the set of accumulation points of {s,, (9)},=1.... is non-empty. Following
[17] Lemma 4 we can find a measurable selector of accumulation points i.e. a measurable
function f; : H — S such that f;(¢) is an accumulation point of {s,(¢)}p=12... Fix J € H.
There exists a subsequence (ny) such that s, () — fi1(¥) and either (a) 0, (V) € Iz,
for every k, or (b) 0, (9) € I(n,.9) for every k. Assume first that (a) holds. From

/ 0 (ka (9), ) g (00(9), 5,(9)) (') = / W (b (9), ') g (00 (9), 5,(9)) ()
and Lemma 4.10 we obtain

lim inf / Wk (9),9) ¢ (0,(9). 5u(9)) (') > / w(®)g (9. f(9)) ().

n—oo

By Corollary 4.6 the functions vg(m_,x_, 2) are non-decreasing in x_. This implies that
w(m_,x_, z) is non-increasing in z_. Hence [w()q (9, f1(9))(d¥) > [w(?)q(, f1(9))(d)
and

lim inf / w (ki (9),9) (0 (D), 5,(9)) (dV') > / w(@)q (¥, 1(9))(d). (27)

n—oo

In case (b) we have s, (¥) = 7", where 6,,(9) = (7™, 2", 2). Since 6,,(¥) — ¢ and s, (V) —
f1(9) we have f1(9) = 7_, where ¥ = (7_,z_,2). From equalities ¢(6,(9),s,(9)) =
7(0,(0), 5,(9)) and ¢(9, f1(9)) = (¥, f1(¥)) and Lemma 4.10 we obtain (27). Since 7 is

upper semicontinuous we conclude from (26) that

w®) — X > —n(0. fi(9)) + / w(®)q (0, f(9))(de),

which yields (25) with w = —w

Proof of Theorem 3.1. Fix (r_,z_, z) € H and define a portfolio IT = ((7r1, 1), (72, T2), . . .
by formulae given in Theorem 3.1 with I = {(7_,z_,2) € H : fi(n_,z_,2) # 7_} and
p = fi. Iterating (25) T times, dividing by 7" and passing with 7" to infinity we obtain

X < g7 (1l) + iminf B+ =X D, 20)

T—o0 T

< g (),
since w is nonpositive. On the other hand, by a well-known Tauberian relation
JTA(1) < lirﬁn_glf(l — 6)Jg"m"z(H)
< 1iIﬁn_Hlf(1 — Bug(m_,x_,2) < 1iIﬁn_Hlf(1 — Bug(m_,2) <A,

which proves the optimality of II. [

COROLLARY 4.12. The portfolio constructed above is optimal for the case with the
term c of the transaction cost function equal to 0. It yields the optimal average growth
rate equal to .
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Proof. First notice that A is the optimal value for the problem with proportional transac-
tion costs. Indeed, consider the proof of Theorem 4.11 with wg(7_, 2) = mg—vg(r_, z). We
obtain an analog of (25) with function w depending on 7_, z and X as above. Consequently
A is the optimal value for the problem with proportional transaction costs.

Let II be the optimal portfolio for the case with fixed and proportional transaction costs
(as defined in Theorem 3.1). Denote by X'(#) the wealth of the portfolio governed by II
when the fixed term of the transaction cost function is equal to 0. Obviously X™(¢) > X(¢)
and

1 _ —
lim —E*In X"(¢) > X
Tobo T n AN 2

Since A is the optimal value for the problem with proportional transaction costs we have
the opposite inequality. [

5. Incomplete observation

Usually investors do not have full information about factors having impact on the economy.
It is due to the time needed to collect and process statistical data or simply due to inac-
cessibility of some information. Therefore, it is natural to extend our model to cover the
case where a number of economic factors is either observable with delay and noise or not
observable at all (see [22]). This general setting is obtained by considering an observation
process whose dynamics depends on the factors. This is well-established in engineering
applications, where the observation process usually consists of noisy and possibly biased
readings of the variables. However, it was argued that in the financial context it is natural
to assume that we have complete observation of a group of factors and the rest is not
observable. It does not substantially change the reasoning but simplifies the notation.
Following the above remark assume that the space of economic factors E' is a direct sum
of metric spaces E', E? with Borel o-algebras £, £2. Therefore, Z(t) has a unique decom-
position into (Z (), Z* (t)) We shall treat E'! as the observable part of the economic factor
space and Z'(t) as the observable factor process. The process Z2(t) is the unobservable
part of the factor process. We denote by M, Z}, Z? filtrations generated, respectively, by
C(t), Z'(t) and Z2(t). Filtration )); represents our observation and is generated by M; and
Z!. Although above filtrations depend on the initial value (21, z2) of the process Z(t), we
will omit this dependence in the notation. Due to restriction in the available information,
we have to modify the set of admissible portfolios A: it consists of all admissible portfolios
from A that make use of the information available in ()), i.e. that are );-adapted. The
goal of this section is to prove existence of an optimal strategy maximizing the functional

L 1
J7=#=#P(11) = lim inf T “ i XI(T)

T—o00

over all strategies IT € A. Here (2',p) € E* x P(Z?) denotes the initial distribution of
(Z*(t), Z*(t)) and P(Z?%) stands for the space of probability measures on (Z% €?), the a
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priori knowledge of the value Z%(0). The method of proof will be similar to that of Section
4. The following assumptions on the transition probabilities are required:

(B1) There exists a measure v on R? and a positive continuous bounded function ¢ :
E' x E? x R? — [0,00) such that for any A € B(R?)

P(((t+1) € A| M,V 2L,V EL) = / q(ZMt+1), Z*(t + 1), 7)v(dF).
A

(B2) There exist a measure p; on E' and a positive continuous bounded function p; :
E'x E? x E* — (0, 00) such that for any A € &' (recall that P is a transition operator
of Z(t))

P((",2%), A x B*) =P**(Z'(1) € A) = / (24 2% 2 )i (d2).
A

(B3) There exist a measure p, on E? and a positive continuous function p, : E! x E? x
FE' x E? — (0,00) such that for any A € £?

P{Z°(t+1) e A| MV 2, VZ} = /ﬁQ(Zl(t), Z2(t), Z Mt + 1), 2 )pa(d2).
A

Remarks.

(1) The above assumptions are standard in the case of stochastic control with incomplete
information (see [15], [21], [23]).

(2) Assumption (B2) is satisfied if the transition probabilities of the economic factor process
Z(t) are equivalent and enjoy densities (with respect to some probability measure) that
depend continuously on all parameters.

(3) Let E¢ be a bounded open set in R? and

((2.6) = (C'(2,).-...¢"(2.6), (2.6) € (B, E).

Assume that ¢ has a continuous density k(y) with respect to Lebesgue measure on ES. If
€ — ((z,€) is a diffeomorphism for every z € E then assumption (B1) holds with v being
Lebesgue measure on £¢ and

q(21,22,7) = k(g(z,f)) det (D;g(z, 7:)),

where g(z,-) is the inverse function for ((z,-). If E¢ is an unbounded open set (e.g. the
whole space) we need to assume that k() and first derivatives of g(z, -) with respect to the
second variable are uniformly bounded for every z € E.

(4) Notice that in (B3) we do not assume boundedness of ps.

(5) Condition (B3) is slightly stronger than it is usually assumed. Instead we could use
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(B3’) There exist a measure p, on E? and a positive continuous function p, : E! x E? x
R? x E' x E? — (0,00) such that for any A € &2

P{Z?(t+1) e A| M,V Z! VZ}= /Am(zl(t), Z2(t), (), ZH(t + 1), 2 )pa(d2).

The only difference lies in p, that in (B3’) incorporates additionally the knowledge of the
last price movement ((t). However, in our setting (B3) has a straightforward interpreta-
tion. Recall that in Section 3 we require that the economic factor process Z(t) be itself
Markovian. Moreover, the restriction to (B3) simplifies the notation. The results of this
section can be easily generalized to cover (B3’).

With the help of the above assumptions we are able to provide a Markovian represen-
tation of the filtering process

p(t)(A) = P*(Z22(t) € A[M, v 2}), Ac &

Observe that p(t) is a random variable with values in the space P(E?) of probability
measures on (E?, £%) equipped with the weak convergence topology.

LEMMA 5.1. Under assumptions (B1)-(B3)
p(t+1)(A) = M(Z'(t), Z' (t+1),C(t +1),p(t))(A), Ae&

where

o fE2 fA q<21?2236) f)Q(Zl’ZZ’ 21322) pQ(d§2) ﬁ1(21322’21) 10<d22)

M2 358, 0)(A) = = L _ .
G2 P = G 2.0) a2, 51, 2) pa(42) (21, 2, 21) p(d22)

Proof. The proof is rather standard and employs techniques from Lemma 1.1 in [15] or
Lemma 1 in [21]. n

LEMMA 5.2. Under assumptions (B1)-(B3):

i) The process (Z'(t), p(t)) is Markovian with respect to the filtration Y, with transition
operator

HF(zl,p):/EQ/E/RdF(Zl,M(zl,21,5,p))q(21,22,§)u(d€)P((z1,22),d51 x dz%) p(dz?)

for a measurable bounded function F : E' x P(E?) — R. Moreover, II(z!, p) transforms
the space of continuous, bounded functions into itself.

ii) The process (m_(t), Z'(t), p(t)) is Markovian with respect to the filtration ), with
transition operator

(P2t = [ [ Plrocs MGG p)al 2 0u(d)
B2 JE Jrd
P((z",2%),dz" x dz*)p(dz?)
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for a measurable bounded function F : & x E' x P(E?) — R. Here, m_(t) is the
proportion process given by m_(¢) = 7_(0) o (1) ¢ --- o ((t). The transition operator II
transforms the space of continuous, bounded functions into itself.

Proof. First we prove that (Z'(t),p(t)) is a Markov process with the above transition
operator. Let F be a measurable bounded function. For simplicity we shall skip the
subscript in the expected value operator. Appropriate conditioning leads to the result:

t+1),p(t+1))|V)

E(F(Z'(t+1),p0t+1)| Vvt +1)VvZ I+ )D&)

E (F(Zl

E (F(Z'(t+1).M(Z'(0). 21(t 4+ 1).6(t + 1), (1))

/d F(Z't+1),M(Z't), Z* (t +1),6,p(1))a (21 (t + 1), Z*(t + 1),§)u(d€)\yt>

||
/\/‘\/\ —~

E

- /E /EAdF(Zl’M(Zl(t>’5l’f’ p(1) (3L, 2 Qu(d) P((Z1 (1), ), d5* x dZ2) p(t) (d2?).

To show that (21,21, ¢, p) — M(24, 21, ¢, p) is continuous, it suffices to prove that for any
Ac &2

(z'.2'.¢,p) H/ /q(51,22,f)ﬁg(zl,zQ,Zl,EQ)p2(d22)ﬁ1(z1,22,21)p(sz)
B2 JA
is continuous. By Scheffe’s theorem (see [19])
(220 o [ 0200 e 2 2) pald?) (1)
A

is continuous. Another application of Scheffe’s theorem completes the proof.
A similar argument yields continuity of the mapping

(24, 21, 32, p) — F(z2Y, M(2', 2,5, p))q(Z", 22, S)v(dQ).

R4

By Feller property of (Z*(t), Z2(t)) we have continuity of

(21,22,,0)|—>//dF(%l,M(zl,él,gN,p))q(%l,22,§)V(d§)P((zl,22),d21><d,§2).
E JR

Finally, application of Scheffe’s theorem completes the proof.
The other statement has an analogous proof. ]

Lemma 5.1 can be generalized to obtain a formula for p(¢) given p(0). First observe
that M (2%, 24, ¢, p)(A) = N(24, 24, ¢, p)(A) /N (24, 21, ¢, p) (E?), where

NE G = [ [ 0620 i A2 ) a2 ) pla), A e
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Put
N1 (Z4(0), 21(1),¢(1), p)(A) = N(Z7(0), Z21(1),¢(1), p)(A),
and, for t > 2,
N(Z'(0)s-.., 20, C(W- ., (), ) (A)
_ N(zl(t — 1), ZMt), C(t), Nt (220), ., 2Nt — 1), C(1), ... C(t — 1),p)>(A).

For (z',p) € E* x P(E?) we denote by P((z%,p),-) the operator

/E2 P((z",2%),)p(dz?).

Easy calculations lead to the following lemma.

LEMMA 5.3. i) Ny(---)(E?) is a martingale with mean 1 with respect to the measure
P9 and filtration V.

i) p(t) = My(Z%(0),...,Z*(t),¢(1),...,¢(t), p(0)), where

 N(ZY0) . 20).6(1). (1), ) (4)

M(ZY0),.. . Z (), C(1).. ... C(8), p) (A) N0, T . )

Now we shall construct such a measure that processes Z1(t), Z%(t), ((t) become inde-
pendent and consist of i.i.d. random variables. For (z!,2?) € E* x E? consider

L7 =TT a(2'(9), 22(5). () 51 (21 (5 = 1), 225 = 1), 2'(5))

pa (24 (s — 1), Z%(s — 1), Z(5), Z*(s)).

By direct calculations A§Z1’z2) = (ngl"ﬁ))_1 is a positive martingale with mean 1 with
respect to measure P and filtration F;. Let Py be a probability measure whose restric-
tions to JF; have density A, with respect to P"") . The measure P, may not be absolutely
continuous with respect to P"2*)| but its restrictions to F; for finite ¢ are equivalent to
P(#*) Tt can be easily calculated (see Lemma 1.8 in [15]) that with respect to measure P,
for any ¢ > 0 processes Z'(s), Z?(s), ((s), 1 < s < t, are independent and consist of i.i.d.
random variables with distributions p;, ps, v, respectively. The following lemma applies
above results to the filtered process:

LEMMA 5.4. For a measurable bounded function f : E' x P(E?) x (E* x P(E?) xR4)? —
R we have

1

B0 1(21(0), p(0), 2 (1, p(1): C(). .. 2 (0), p(2), (1)
—Eo{NMi(z1 2, 5 G Gp) (B)

f(Zl,p, 2%7ﬁ19615 e ’2t1’ ﬁta ét)}’
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where Eo is the expected value operator related to some measure Py with respect to

which z! (S, s = 0,...,t, are independent random variables with distributions p;, v,

respectlvely and ps = Ms(zl,éi, e, 2;,51, . ,és,p), s=1,...,¢

Proof. By easy calculation we have

E(zl,p)f(, )= /EQ E(zl,z2)f(. .. )p(sz)
_ /E CEoL{ ) f(-)pldz?)
= [ BN )8 1)} old) = Eaf N () £},

where ]E[()ZI’ZQ) represents the expected value operator for Py. In the last equality, we can
skip the integration with respect to 22 since the integrand does not depend on 2z2. n

To formulate an analog of Theorem 3.1 we need two more assumptions. We shall use
the notation from Lemma 5.4. For 2!, 2! € E', p,p € P(E?), ¢ € (0,1) and n > 1 consider

Dz p, 2 p) = {weQ: N, (LA 2 G G ) > NG (2N 2 2 G Ganp) b
(28)

B4) 3,3cc(01)6>0 such that for z', 2t € E, p,p € P(E?
(0,1), PP
Eo{lD%(Zl’p’gl’ﬁ)Nn(Zl, Zzll, ey 5;,51, e 75n,p)} Z 5
(B5) E? is compact.

THEOREM 5.5. Under assumptions (A1)-(A2), (A4), (B1)-(B5) there exists a measur-
able function p : § x (0,00) x E' x P(E?) — S, a constant A and a measurable set
I C 8 x(0,00) x E' x P(E?) such that

A= Jrm (1) = sup JT (1), (29)
eA

where the optimal portfolio IT* = ((},77), (73, 73),...) is given by the formulas
=inf{t >0: (7_(), X_(1), Z'(t),p(t)) € I},
T =inf{t > 77 (7_(0), X_(t), Z'(t), p(t)) € I},
= p(r- (), X (7). 22 (7). p(75)) -

Proof. First observe that by appropriate conditioning we obtain

T—o0

Jg”m”zl * = lim inf —{ ZEZ » Z'(t), p(t))
(30)

+zEzap{wlne<w_<7k>,m,x-m>>}},
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where
g(m 2 p) = / W, 2, 2)pld=?).
E2

Notice that ¢ is continuous and bounded by boundedness and continuity of h. Now,
the proof follows by the same consideration as that in the proof of Theorem 3.1. Under
assumption (B5) the space P(E?) is compact. Therefore, S x (0,00) x E* x P(E?) is a
locally compact separable metric space, which is needed for validity of Lemma 4.9 and
Lemma 4.10. Since we do not have (A3), Lemma 4.4 requires a new proof, which we shall
present below. To clarify the notation let

TSI = R <Z“P>{ > Bg(r (), 2'(1) p(0) + Y 5™ ne(r (), mi) } g e@1).

for I € A. Tt is a discounted functional related to the problem with only proportional
transaction costs. Denote by vg(m_, 2!, p) the value function corresponding to this func-
tional. By Theorem 4.2 it is bounded and continuous. We shall, however, prove that it is
bounded uniformly in § with respect to the span seminorm.

For a bounded measurable function f : P(E?) — R, u € M*(E?) (the space of non-
negative non-null finite measures on £2), define an operator

1
SF() = n(E) f(—E).
10 = mE )
In order to simplify the notation whenever f depends on more than one variable the
operator S f is meant to act only on the measure-valued variable. Notice that by Lemma
5.4

ECO£(ZV (1), p(t)) = ]EOSf(Zl(t),Nt(zl,zll,...,zg,g*l,...,@,p)).

LEMMA 5.6. i) The value function vg(m_, z', p) is concave with respect to the third
variable, i.e. for p, p € P(E?) and X € (0,1)

vg(m_, 2 Ap+ (L= N)p) > Avg(m_, 2, p) + (1 = Nvg(m_, 2, p).
ii) If f: P(E?) — R is a concave bounded measurable function, then Sf is concave.

Proof. We shall present only a sketch of (i) (a full proof can be found in [21] Theorem
1). First we show that for a bounded measurable F : § x E! x P(E?) — R concave with
respect to the third argument,

p— 1F(n_, 2% p)

is concave (the operator II is defined in Lemma 5.2). Then, using a notation of Theorem
4.2, we show by induction on k that vg(w,,zl,p) is concave with respect to the third
argument.

The proof of (ii) is basic and can be found in [5] Lemma 2. u
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To show a counterpart of Lemma 4.4 we use an approach from Section 5 of [6]. Namely,
va(m_, 2, p) = vs(7-, 2, 5) < mllgllep — (n+2) Ine (31)
+ (B Pvg(n, 21 (t), p(t)) — B Pug(n, Z1(8), (1))

for some 7 € S. Let hg(m_, 2%, p) = vg(n_, 2%, p) — infvg(m_, 2%, p). Hence |Jvsllsp = |25l
where || - || is the supremum norm. Using assumption (B4) and Lemma 5.4 we obtain

E (e, Z1(0), plt)) — B P, 21(8), (1))
< Eo{lDa(zl,p,il,ﬁ) (Shﬁ(n*, AN (LA LA G )
— Shy(r", 3 Na(31 5L, z;,&l,...,fn,p)))}
+ gl Bo{ (1 = 1pg et psrp)Nu(2 20 20 G s oo p) )
On D¢ (24, p, 2L, p) we have
N, (Y 5, .. . 2 n,Cl,...,En, p) = eNn(z' 2, ... 2 n,Cl,...,é’n,p)—l—(l — )
for some p € M*(£?). By Lemma 5.3 p is not null. Hence by Lemma 5.6 we have
She(m*, 2, Nu (B 2, 20 Gl o0 G ) > €Shg (77, 2 N (2 2y 20, Gl oo Gas )
(1= Sha(e", 2 )
> eShg(m*, 2}, Na(2', 21, 2, Cioeos s p))-

Consequently, by Lemma 5.3 we have

E g (n*, 2'(2), plt)) — E EPus (", Z1(2), p(1))
< (1= llhslld + sl (1 = 8) = [Ihs|(1 — €0).

We insert this estimate in (31) to obtain
[ogllsp < nllgllsp — (n +2) Ine + [lugllsp (1 — €d).

Hence, we have
nllgllsy — (n+2)Ine
gl < L2 ,

which completes the proof of the counterpart of Lemma 4.4. [

Remarks.
(1) If in place of (B4) we had

sup  sup sup (IT"(z", p)lp — I"(2', p)1p) =k < 1 (32)
21 21e B ppeP(E?) BEEIQB(P(E?))

for some n > 1, the proof of Theorem 5.5 would be significantly shorter. Condition (32)
reads exactly as (A3) for the reformulated optimization problem (30). Therefore, Theorem
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3.1 could be directly applied. We should stress, however, that (32) is very restrictive and
is not satisfied in most applications.
(2) Assumption (B5) guarantees that P(E?) is locally compact, which is needed for exis-
tence of Borel measurable selectors used in the proof. Relaxation of this condition requires
use of universally measurable selectors and substantially enlarges the space of admissible
portfolios.
(3) Observe that if P (D5 (2%, p, 21, p)) = 1, assumption (B4) is satisfied with 6 = 1. This
covers the case studied in [5] Section 3, where
Al 2 2132
inf g 22 EE)

A ELEER 22,532,22e B2 Po(21, 22, 21, 22)

S L2 sl
inf inf pA—1<Z 25 2)

= )\1 > 0.
ZLEs1eB 22,52e B2 Py (21, 22, 21)

Then given 2%, 2%, p, p

N (242 CLp) = MAeN (24, 2L, G, p) for all 21 e B2, ¢ e RY
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