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Abstract. Model interpretation is one of the key aspects of the model evaluation

process. The explanation of the relationship between model variables and out-

puts is relatively easy for statistical models, such as linear regressions, thanks to

the availability of model parameters and their statistical significance. For “black

box” models, such as random forest, this information is hidden inside the model

structure. This work presents an approach for computing feature contributions for

random forest classification models. It allows for the determination of the influ-

ence of each variable on the model prediction for an individual instance and an

additional assessment of model reliability for new data. Interpretation of feature

contributions for two UCI benchmark datasets shows the potential of the pro-

posed methodology. The robustness of results is demonstrated through an exten-

sive analysis of feature contributions calculated for a large number of generated

random forest models.

1 Introduction

Models are used to discover interesting patterns in data or to predict a specific outcome,

such as drug toxicity, client shopping purchases, or car insurance premium. They are

often used to support human decisions in various business strategies. This is why it

is important to ensure model quality and to understand its outcomes. Good practice

of model development [17] involves: 1) data analysis 2) feature selection, 3) model

building and 4) model evaluation. Implementing these steps together with capturing

information on how the data was harvested, how the model was built and how the model

was validated, allows us to trust that the model gives reliable predictions. But, how

to interpret an existing model? How to analyse the relation between predicted values

and the training dataset? Or which features contribute the most to classify a specific

instance?

Answers to these questions are considered particularly valuable in such domains as

chemoinformatics, bioinformatics or predictive toxicology [15]. Linear models, which

assign instance-independent coefficients to all features, are the most easily interpreted.



However, in the recent literature, there has been considerable focus on interpreting pre-

dictions made by non-linear models which do not render themselves to straightforward

methods for the determination of variable/feature influence. In [8], the authors present a

method for a local interpretation of Support Vector Machine (SVM) and Random Forest

model by retrieving the variable corresponding to the largest component of the decision-

function gradient at any point in the model. Interpretation of classification models using

local gradients is discussed in [4]. A method for visual interpretation of kernel-based

prediction models is described in [11]. Another approach, which is presented in detail

later, was proposed in [12] and aims at shedding light at decision-making process of

regression random forests.

Of interest to this paper is a popular “black-box” model – the random forest model

[5]. Its author suggests two measures of the significance of a particular variable [6]: the

variable importance and the Gini importance. The variable importance is derived from

the loss of accuracy of model predictions when values of one variable are permuted be-

tween instances. Gini importance is calculated from the Gini impurity criterion used in

the growing of trees in the random forest. However, in [16], the authors showed that the

above measures are biased in favor of continuous variables and variables with many cat-

egories what do not allow for a thorough analysis of a model. They also demonstrated

that the general representation of variable importance is often insufficient for the com-

plete understanding of the relationship between input variables and the predicted value.

Following the above observation, Kuzmin et al. propose in [12] a new technique

to calculate the feature contribution, i.e., the contribution of a variable to the predic-

tion, in a random forest model with numerical observed values (the observed value is a

real number). Unlike in the variable importance measures [6], feature contributions are

computed separately for each instance/record and provide detailed information about

relationships between variables and the predicted value: the extent and the kind of in-

fluence (positive/negative) of a given variable. This new approach was positively tested

in [12] on a Quantitative Structure-Activity (QSAR) model for chemical compounds.

The results were not only informative about the structure of the model but also provided

valuable information for the design of new compounds.

The procedure from [12] for the computation of feature contributions applies to

random forest models predicting numerical observed values. This paper aims to extend

it to random forest models with categorical predictions, i.e., where the observed value

determines one from a finite set of classes. The difficulty of achieving this aim lies

in the fact that a discrete set of classes does not have the algebraic structure of real

numbers which the approach presented in [12] relies on. Due to the high-dimensionality

of the calculated feature contributions, their direct analysis is not easy. We develop three

techniques for discovering patterns in the decision-making process of random forest

models. This facilitates interpretation of model predictions as well as allows a more

detailed analysis of model’s reliability for an unseen data.

The paper is organised as follows. Section 2 provides a brief description of random

forest models. Section 3 presents our approach for calculating feature contributions

for binary classifiers, whilst Section 4 describes its extension to multi-class classifi-

cation problems. Section 5 introduces three techniques for finding patterns in feature

contributions and linking them to model predictions. Section 6 contains applications of



the proposed methodology to two real world datasets from the UCI Machine Learning

repository. Section 7 concludes the work presented in this paper.

2 Random Forest

A random forest (RF) model introduced by Breiman [5] is a collection of tree predictors.

Each tree is grown according to the following procedure [6]:

1. the bootstrap phase: select randomly a subset of the training dataset – a local train-

ing set for growing the tree. The remaining samples in the training dataset form a

so-called out-of-bag (OOB) set and are used to estimate the RF’s goodness-of-fit.

2. the growing phase: grow the tree by splitting the local training set at each node

according to the value of one from a randomly selected subset of variables (the best

split) using classification and regression tree (CART) method [7].

3. each tree is grown to the largest extent possible. There is no pruning.

The bootstrap and the growing phases require an input of random quantities. It is as-

sumed that these quantities are independent between trees and identically distributed.

Consequently, each tree can be viewed as sampled independently from the ensemble of

all tree predictors for a given training dataset.

For prediction, an instance is run through each tree in a forest down to a terminal

node which assigns it a class. Predictions supplied by the trees undergo a voting pro-

cess: the forest returns a class with the maximum number of votes. Draws are resolved

through a random selection.

To present our feature contribution procedure in the following section, we have to

develop a probabilistic interpretation of the forest prediction process. Denote by C =
{C1, C2, . . . , CK} the set of classes and by ∆K the set

∆K =
{
(p1, . . . , pK) :

K∑

k=1

pk = 1 and pk ≥ 0
}
.

An element of ∆K can be interpreted as a probability distribution over C. Let ek be an

element of ∆K with 1 at position k – a probability distribution concentrated at class Ck.

If a tree t predicts that an instance i belongs to a class Ck then we write Ŷi,t = ek. This

provides a mapping from predictions of a tree to the set ∆K of probability measures on

C. Let

Ŷi =
1

T

T∑

t=1

Ŷi,t, (1)

where T is the overall number of trees in the forest. Then Ŷi ∈ ∆K and the prediction

of the random forest for the instance i coincides with a class Ck for which the k-th

coordinate of Ŷi is maximal.4

4 The distribution Ŷi is calculated by the function predict in the R package randomForest

[13] when the type of prediction is set to prob.



3 Feature Contributions for Binary Classifiers

The set ∆K simplifies considerably when there are two classes, K = 2. An element

p ∈ ∆K is uniquely represented by its first coordinate p1 (p2 = 1− p1). Consequently,

the set of probability distributions on C is equivalent to the probability weight assigned

to class C1.

Before we can present our method for computing feature contributions, we have to

examine the tree growing process. After selecting a training set, it is positioned in the

root node. A splitting variable (feature) and a splitting value are selected and the set of

instances is split between the left and the right child of the root node. The procedure

is repeated until all instances in a node are in the same class or further splitting does

not improve prediction. The class that a tree assigns to a terminal node is determined

through majority voting between instances in that node.

We will refer to instances of the local training set that pass through a given node

as the training instances in this node. The fraction of the training instances in a node n
belonging to class C1 will be denoted by Y n

mean. This is the probability that a randomly

selected element from the training instances in this node is in the first class. In particular,

a terminal node is assigned to class C1 if Y n
mean > 0.5 or Y n

mean = 0.5 and the draw is

resolved in favor of class C1.

The feature contribution procedure for a given instance involves two steps: 1) the

calculation of local increments of feature contributions for each tree and 2) the aggre-

gation of feature contributions over the forest. A local increment corresponding to a

feature f between a parent node (p) and a child node (c) in a tree is defined as follows:

LIcf =







Y c
mean − Y p

mean,
if the split in the parent is

performed over the feature f ,

0, otherwise.

A local increment for a feature f represents the change of the probability of being in

class C1 between the child node and its parent node provided that f is the splitting

feature in the parent node. It is easy to show that the sum of these changes, over all

features, along the path followed by an instance from the root node to the terminal node

in a tree is equal to the difference between Ymean in the terminal and the root node.

The contribution FCf
i,t of a feature f in a tree t for an instance i is equal to the sum

of LIf over all nodes on the path of instance i from the root node to a terminal node.

The contribution of a feature f for an instance i in the forest is then given by

FCf
i =

1

T

T∑

t=1

FCf
i,t. (2)

The feature contributions vector for an instance i consists of contributions FCf
i of all

features f .

Notice that if the following condition is satisfied:

(U) for every tree in the forest, local training instances in each terminal node are of the

same class



then Ŷi representing forest’s prediction (1) can be written as

Ŷi =
(

Y r +
∑

f

FCf
i , 1− Y r −

∑

f

FCf
i

)

(3)

where Y r is the coordinate-wise average of Ymean over all root nodes in the forest. If

this unanimity condition (U) holds, feature contributions can be used to retrieve predic-

tions of the forest. Otherwise, they only allow for the interpretation of the model.

3.1 Example

We will demonstrate the calculation of feature contributions on a toy example using a

subset of the UCI Iris Dataset [3]. From the original dataset, ten records were selected

– five for each of two types of the iris plant: versicolor (class 0) and virginica (class 1)

(see Table 1). A plant is represented by four attributes: Sepal.Length (f1), Sepal.Width

(f2), Petal.Length (f3) and Petal.Width (f4). This dataset was used to generate a random

forest model with two trees, see Figure 1. In each tree, the local training set (LD) in

the root node collects those records which were chosen by the random forest algorithm

to build that tree. The LD sets in the child nodes correspond to the split of the above

set according to the value of a selected feature (it is written between branches). This

process is repeated until reaching terminal nodes of the tree. Notice that the condition

(U) is satisfied – for both trees, each terminal node contains local training instances of

the same class: Ymean is either 0 or 1.

Table 1: Selected records from the UCI Iris Dataset. Each record corresponds to a plant. The

plants were classified as iris versicolor (class 0) and virginica (class 1).

iris.row Sepal.Length (f1) Sepal.Width (f2) Petal.Length (f3) Petal.Width (f4) class

x1 52 6.4 3.2 4.5 1.5 0

x2 73 6.3 2.5 4.9 1.5 0

x3 75 6.4 2.9 4.3 1.3 0

x4 90 5.5 2.5 4.0 1.3 0

x5 91 5.5 2.6 4.4 1.2 0

x6 136 7.7 3.0 6.1 2.3 1

x7 138 6.4 3.1 5.5 1.8 1

x8 139 6.0 3.0 4.8 1.8 1

x9 145 6.7 3.3 5.7 2.5 1

x10 148 6.5 3.0 5.2 2.0 1

The process of calculating feature contributions runs in 2 steps: the determination

of local increments for each node in the forest (a preprocessing step) and the calculation

of feature contributions for a particular instance. Figure 1 shows Y n
mean and the local

increment LIcf for a splitting feature f in each node. Having computed these values, we

can calculate feature contributions for an instance by running it through both trees and

summing local increments of each of the four features. For example, the contribution of



Fig. 1: A random forest model for the dataset from Table 1. The set LD in the root node contains

a local training set for the tree. The sets LD in the child nodes correspond to the split of the

above set according to the value of selected feature. In each node, Y n
mean denotes the fraction

of instances in the LD set in this node belonging to class 1, whilst LInf shows non-zero local

increments.

a given feature for the instance x1 is calculated by summing local increments for that

feature along the path p1 = n0 → n1 in tree T1 and the path p2 = n0 → n1 → n4 →
n5 in tree T2. According to Formula (2) the contribution of feature f2 is calculated as

FCf2
x1

=
1

2

(

0 +
1

4

)

= 0.125

and the contribution of feature f3 is

FCf3
x1

=
1

2

(

−
3

7
−

9

28
−

1

2

)

= −0.625.

The contributions of features f1 and f4 are equal to 0 because these attributes are not

used in any decision made by the forest. The predicted probability Ŷx1
that x1 belongs

to class 1 (see Formula (3)) is

Ŷx1
=

1

2

(3

7
+

4

7

)

︸ ︷︷ ︸

Ŷ r

+
(
0 + 0.125− 0.625 + 0

)

︸ ︷︷ ︸
∑

f FC
f
x1

= 0.0

Table 2 collects feature contributions for all 10 records in the example dataset. These

results can be interpreted as follows:



Table 2: Feature contributions for the random forest model from Figure 1.

Ŷ Sepal.Length (f1) Sepal.Width (f2) Petal.Length (f3) Petal.Width (f4) prediction

x1 0.0 0 0.125 -0.625 0 0

x2 0.0 0 -0.125 -0.375 0 0

x3 0.0 0 0.125 -0.625 0 0

x4 0.0 0 -0.125 -0.375 0 0

x5 0.0 0 -0.125 -0.375 0 0

x6 1.0 0 0 0.5 0 1

x7 1.0 0 0 0.5 0 1

x8 0.5 0 0.125 -0.125 0 ?

x9 1.0 0 0 0.5 0 1

x10 0.5 0 0 0 0 ?

– for instances x1, x3, the contribution of f2 is positive, i.e., the value of this feature

increases the probability of being in class 1 by 0.125. However, the large negative

contribution of the feature f3 implies that the value of this feature for instances x1

and x3 was decisive in assigning the class 0 by the forest.

– for instances x6, x7, x9, the decision is based only on the feature f3.

– for instances x2, x4, x5, the contribution of both features leads the forest decision

towards class 0.

– for instances x8, x10, Ŷ is 0.5. This corresponds to the case where one of the trees

points to class 0 and the other to class 1. In practical applications, such situations

are resolved through a random selection of the class. Since Ŷ r = 0.5, the lack of

decision of the forest has a clear interpretation in terms of feature contributions:

the amount of evidence in favour of one class is counterbalanced by the evidence

pointing towards the other.

4 Feature Contributions for General Classifiers

When K > 2, the set ∆K cannot be described by a one-dimensional value as above.

We, therefore, generalize the quantities introduced in the previous section to a multi-

dimensional case. Y n
mean in a node n is an element of ∆K , whose k-th coordinate,

k = 1, 2, . . . ,K, is defined as

Y n
mean,k =

|{i ∈ TS(n) : i ∈ Ck}|

|TS(n)|
, (4)

where TS(n) is the set of training instances in the node n and | · | denotes the number

of elements of a set. Hence, if an instance is selected randomly from a local training

set in a node n, the probability that this instance is in class Ck is given by the k-th

coordinate of the vector Y n
mean. Local increment LIcf is analogously generalized to a



multidimensional case:

LIcf =







Y c
mean − Y p

mean,
if the split in the parent is

performed over the feature f ,

(0, . . . , 0)
︸ ︷︷ ︸

K times

, otherwise,

where the difference is computed coordinate-wise. Similarly, FCf
i,t and FCf

i are ex-

tended to vector-valued quantities. Notice that if the condition (U) is satisfied, Equation

(3) holds with Y r being a coordinate-wise average of vectors Y n
mean over all root nodes

n in the forest.

Fix an instance i and let Ck be the class to which the forest assigns this instance.

Our aim is to understand which variables/features drove the forest to make that predic-

tion. We argue that the crucial information is that which explains the value of the k-th

coordinate of Ŷi. Hence, we want to study the k-th coordinate of FCf
i for all features

f .

Pseudo-code to calculate feature contributions for a particular instance towards the

class predicted by the random forest is presented in Algorithm 1. Its inputs consist

of a random forest model RF and an instance i which is represented as a vector of

feature values. In line 1, k ∈ {1, 2, . . . ,K} is assigned the index of a class predicted

by the random forest RF for the instance i. The following line creates a vector of real

numbers indexed by features and initialized to 0. Then for each tree in the forest RF
the instance i is run down the tree and feature contributions are calculated. The quantity

SplitFeature(parent) identifies a feature f on which the split is performed in the

node parent. If the value i(f) of that feature f for the instance i is lower or equal to the

threshold SplitV alue(parent), the route continues to the left child of the node parent.
Otherwise, it goes to the right child (each node in the tree has either two children or is

a terminal node). A position corresponding to the feature f in the vector FC is updated

according to the change of value of Ymean,k, i.e., the k-th coordinate of Ymean, between

the parent and the child.

Algorithm 2 provides a sketch of the preprocessing step to compute Y n
mean for all

nodes n in the forest. The parameter D denotes the set of instances used for training

of the forest RF . In line 2, TS is assigned the set used for growing tree T . This set is

further split in nodes according to values of splitting variables. We propose to use DFS

(depth first search [9]) to traverse the tree and compute the vector Y n
mean once a training

set for a node n is determined. There is no need to store a training set for a node n once

Y n
mean has been calculated.

5 Analysis of Feature Contributions

Feature contributions provide the means to understand mechanisms that lead the model

towards particular predictions. This is important in chemical or biological applications

where the additional knowledge of the forest’s decision-making process can inform the

development of new chemical compounds or explain their interactions with living or-

ganisms. Feature contributions may also be useful for assessing the reliability of model



Algorithm 1 FC(RF ,i)

1: k ← forest predict(RF, i)
2: FC ← vector(features)
3: for each tree T in forest F do

4: parent← root(T )
5: while parent ! = TERMINAL do

6: f ← SplitFeature(parent)
7: if i[f ] <= SplitV alue(parent) then

8: child← leftChild(parent)
9: else

10: child← rightChild(parent)
11: end if

12: FC[f ]← FC[f ] + Y child
mean,k − Y parent

mean,k

13: parent← child
14: end while

15: end for

16: FC ← FC / nTrees(F )

17: return FC

Algorithm 2 Ymean(RF,D)

1: for each tree T in forest F do

2: TS ← training set for tree T
3: use DFS algorithm to compute training sets in all other nodes n of tree T and compute the

vector Y n
mean according to formula (4).

4: end for

predictions for unseen instances. They provide complementary information to forest’s

voting results. This section proposes three techniques for finding patterns in the way a

random forest uses available features and linking these patterns with the forest’s predic-

tions.

5.1 Median

The median of a sequence of numbers is such a value that the number of elements bigger

than it and the number of elements smaller than it is identical. When the number of

elements in the sequence is odd, this is the central elements of the sequence. Otherwise,

it is common to take the midpoint between the two most central elements. In statistics,

the median is an estimator of the expectation which is less affected by outliers than

the sample mean. We will use this property of the median to find a “standard level” of

feature contributions for representatives of a particular class. This standard level will

facilitate an understanding of which features are instrumental for the classification. It

can be also be used to judge the reliability of forest’s prediction for an unseen instance.

For a given random forest model, we select those instances from the training dataset

that are classified correctly. We calculate the medians of contributions of every feature

separately for each class. The medians computed for one class are combined into a vec-

tor which is interpreted as providing the aforementioned “standard level” for this class.



If most of instances from the training dataset belonging to a particular class is close to

the corresponding vector of medians, we may treat this vector justifiably as a standard

level. When a prediction is requested for a new instance, we query the random forest

model for the fraction of trees voting for each class and calculate feature contributions

leading to its final prediction. If a high fraction of trees votes for a given class and the

feature contributions are close to the standard level for this class, we may reasonably

rely on the prediction. Otherwise we may doubt the random forest model prediction.

It may, however, happen that many instances from the training dataset correctly

predicted to belong to a particular class are distant from the corresponding vector of

medians. This might suggest that there is more than one standard level, i.e., there might

be multiple mechanisms relating the features to the correct class such that the feature

contributions could vary significantly from the median yet still not indicate the corre-

sponding predictions are unreliable. The next subsection presents more advanced meth-

ods capable of finding a number of standard levels – distinct patterns followed by the

random forest model in its prediction process.

5.2 Cluster Analysis

Clustering is an approach for grouping elements/objects according to their similarity

[10]. This allows us to discover patterns that are characteristic for a particular group.

As we discussed above, feature contributions in one class may have more than one

”standard level”. When this is discovered, clustering techniques can be employed to

find if there is a small number of distinct standard levels, i.e., feature contributions of

the instances in the training dataset group around these points with only a relatively

few instances being far away from them; these few instances are then treated as unusual

representatives of a given class. We shall refer to clusters of instances around these

standard levels as ”core clusters”.

The analysis of core clusters can be of particular importance for applications. For

example, in the classification of chemical compounds, the split into clusters may point

to groups of compounds with different mechanisms of activity. We should note that the

similarity of feature contributions does not imply that particular features are similar. We

examined several examples and noticed that clustering based upon the feature values did

not yield useful results whereas the same method applied to feature contributions was

able to determine a small number of core clusters.

Figure 2 demonstrates the process of analysis of model reliability for a new instance

using cluster analysis. In a preprocessing phase, feature contributions for instances in

the training dataset are obtained. The optimal number of clusters for each class can be

estimated by using, e.g., the Akaike information criterion (AIC), the Bayesian infor-

mation criterion (BIC) or the Elbow method [10, 14]. We noticed that these methods

should not be rigidly adhered to: their underlying assumption is that the data is clus-

tered and we only have to determine the number of these clusters. As we argued above,

we expect feature contributions for various instances to be grouped into a small number

of clusters and we accept a reasonable number outliers interpreted as unusual instances

for a given class. Clustering algorithms try to push those outliers into clusters, hence

increasing their number unnecessarily. We recommend, therefore, to treat the calculated

optimal number of clusters as the maximum value and consecutively decrease it looking
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Fig. 2: The workflow for assessing the reliability of the prediction made by a random forest (RF)

model.

at the structure and performance of the resulting clusters: for each cluster we assess the

average fraction of trees voting for the predicted class across the instances belonging

to this cluster as well as the average distance from the centre of the cluster. Relatively

large clusters with the former value close to 1 and the latter value small form the group

of core clusters.

To assess the reliability of the model prediction for a new instance, we recommend

looking at two measures: the fraction of trees voting for the predicted class as well as the

cluster to which the instance is assigned based on its feature contributions. If the cluster

is one of the core clusters and the distance from its center is relatively small, the instance

is a typical representative of its predicted class. This together with high decisiveness of

the forest suggests that the model’s prediction should be trusted. Otherwise, we should

allow for an increased chance of misclassification.

5.3 Log-likelihood

Feature contributions for a given instance form a vector in a multi-dimensional Eu-

clidean space. In this paper, we use a popular clustering method, k-means clustering,

which divides, separately for each class, vectors corresponding to feature contributions

of the instances in the training dataset into groups minimizing the Euclidean distance

from the centre in each group. Figure 3 shows an boxplot of feature contributions for

instances in a core cluster in a hypothetical random forest model. Notice that some fea-
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Fig. 3: The boxplot for feature contributions within a core cluster for a hypothetical random forest

model.

tures are stable within a cluster – the height of the box is small. Others (F1 and F4)

display higher variability. One would therefore expect that the same divergence of con-

tributions for features F3 and F4 from their mean value should be treated differently.

It is more significant for the feature F3 than for the feature F4. This is unfortunately

not taken into account when the Euclidean distance is considered. Here, we propose an

alternative method for assessing the distance from the cluster centre which takes into

account the variation of feature contributions within a cluster. Our method has proba-

bilistic roots and we shall present it first from a statistical point of view and provide

other interpretations afterwards.

We assume that feature contributions for instances within a cluster share the same

base values (µf ) - the centre of the cluster. We attribute all discrepancies between this

base value and the actual feature contributions to a random perturbation. These per-

turbations are assumed to be normally distributed with the mean 0 and the variance

σ2

f , where f denotes the feature. The variance of the perturbation for each feature is

selected separately – we use the sample variance computed from feature contributions

of instances of the training dataset belonging to this cluster. Although it is clear that

perturbations for different features exhibit some dependence, it is impossible to assess

it given the numer of instances in a cluster and a large number of features typically in

use.5 Therefore, we resort to a common solution: we assume that the dependence be-

tween perturbations is small enough to justify treating them as independent. Summaris-

5 A covariance matrix of feature contribution has F (F + 1)/2 distinct entries, where F is the

number of features. This value is usually larger than the size of a cluster making it impossible

to retrieve useful information about the dependence structure of feature contributions. Ap-



ing, our statistical model for the distribution of feature contributions within a cluster

is as follows: feature contributions for instances within a cluster are composed of a

base value and a random perturbation which is normally distributed and independent

between features.

Take an instance i with feature contributions FCf
i . The log-likelihood of being in a

cluster with the center (µf ) and variances of perturbations (σ2

f ) is given by

LLi =
∑

f

(

−
(FCf

i − µf )
2

2σ2

f

−
1

2
log(2πσ2

f )
)

. (5)

The higher the log-likelihood the bigger the chance of feature contributions of the in-

stance i to belong to the cluster. Notice that the above sum takes into account the obser-

vations we made at the beginning of this subsection. Indeed, as the second term in the

sum above is independent of the considered instance, the log-likelihood is equivalent to

∑

f

(

−
(FCf

i − µf )
2

2σ2

f

)

,

which is the negative of the squared weighted Euclidean distance between FCf
i and

µf with the weights being inversely proportional to the variability of a given feature

contribution in the training instances in the cluster. In our toy example of Figure 3, this

corresponds to penalizing more for discrepancies for features F2 and F3, and signifi-

cantly less for discrepancies for features F1 and F4.

In the following section, we analyse relations between the log-likelihood and clas-

sification for a UCI Breast Cancer Wisconsin Dataset.

6 Applications

In this section, we demonstrate how the techniques from the previous section can be

applied to improve understanding of a random forest model. We consider one example

of a binary classifier using the UCI Breast Cancer Wisconsin Dataset [1] (BCW Dataset)

and one example of a general classifier for the UCI Iris Dataset [3]. We complement our

studies with a robustness analysis.

6.1 Breast Cancer Wisconsin Dataset

The UCI Breast Cancer Wisconsin Dataset contains characteristics of cell nuclei for

569 breast tissue samples; 357 are diagnosed as benign and 212 as malignant. The

characteristics were captured from a digitized image of a fine needle aspirate (FNA) of

a breast mass. There are 30 features, three (the mean, the standard error and the average

of the three largest values) for each of the following 10 characteristics: radius, texture,

perimeter, area, smoothness, compactness, concavity, concave points, symmetry and

plication of more advanced methods, such as principal component analysis, is left for future

research.
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Fig. 4: Medians of feature contributions for each class for the BCW Dataset. The light grey bars

represent contributions toward class 1 and the black bars show contributions towards class 0.

fractal dimension. For brevity, we numbered these features from F1 to F30 according

to their order in the data file.

To reduce correlation between features and facilitate model interpretation, the min-

max (minimal-redundancy-maximal-relevance) method was applied and the following

features were removed from the dataset: 1, 3, 8, 10, 11, 13, 12, 15, 19, 10, 21, 24, 26. A

random forest model was generated on 2/3 randomly selected instances using 500 trees.

The other 1/3 of instances formed the testing dataset. The test set validation showed that

the model accuracy was 0.9682 (only 6 instances out of 189 were classified incorrectly);

similar accuracy was achieved when the model was generated using all the features.

We applied our feature contribution algorithm to the above random forest binary

classifier. To align notation with the rest of the paper, we denote the class “malignant”

by 1 and the class “benign” by 0. Aggregate results for the feature contributions for

all training instances and both classes are presented in Figure 4. Light-grey bars show

medians of contributions for instances of class 1 (malignant), whereas black bars show

medians of contributions for instances of class 0. Notice that there are only a few sig-

nificant features in the graph: F4 – the mean of the cell area, F7 – the mean of the cell

concavity, F14 – the standard deviation of the cell area, F23 – the average of three largest

measurements of the cell perimeter and F28 – the average of three largest measurements

of concave points. This selection of significant features is perfectly in agreement with

the results of the permutation based variable importance (the left panel of Figure 5) and

the Gini importance (the right panel of Figure 5). Interpreting the size of bars as the

level of importance of a feature, our results are in line with those provided by the Gini

index. However, the main advantage of the approach presented in this paper lies in the

fact that one can study the reasons for the forest’s decision for a particular instance.

Comparison of feature contributions for a particular instance with medians of fea-

ture contributions for all instances of one class provides valuable information about the

forest’s prediction. Take an instance predicted to be in class 1. In a typical case when
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Fig. 5: The left panel shows permutation based variable importance and the right panel displays

Gini importance for a RF binary classification model developed for the BCW Dataset. Graphs

generated using randomForest package in R.

the large majority of trees votes for class 1 the feature contributions for that instance

are very close to the median values (see Figure 6a). This happens for around 80% of all

instances from the testing dataset predicted to be in class 1. However, when the decision

is less unanimous, the analysis of feature contributions may reveal interesting informa-

tion. As an example, we have chosen instances 194 and 537 (see Table 3) which were

classified correctly as malignant (class 1) by a majority of trees but with a significant

number of trees expressing an opposite view. Figure 6b presents feature contributions

for these two instances (grey and light grey bars) against the median values for class 1

(black bars). The largest difference can be seen for the contributions of very significant

features F23, F4 and F14: it is highly negative for the two instances under consideration

compared to a large positive value commonly found in instances of class 1. Recall that

Table 3: Percentage of trees that vote for each class in RF model for a selection of instances from

the BCW Dataset.

Instance Id benign (class 0) malignant (class 1)

3 0 1

194 0.298 0.702

537 0.234 0.766
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Fig. 6: Comparison of the medians of feature contributions (toward class 1) over all instances

of class 1 (black bars) with a) feature contributions for instance number 3 (light-grey bars) b)

feature contributions for instances number 194 (grey bars) and 537 (light-grey bars) from the

BCW Dataset. The fractions of trees voting for class 0 and 1 for these three instances are collected

in Table 3.



a negative value contributes towards the classification in class 0. There are also three

new significant attributes (F2, F22 and F27) that contribute towards the correct classifi-

cation as well as unusual contributions for features F7 and F28. These newly significant

features are judged as only moderately important by both of the variable importance

methods in Figure 5. It is, therefore, surprising to note that the contribution of these

three new features was instrumental in correctly classifying instances 194 and 537 as

malignant. This highlights the fact that features which may not generally be important

for the model may, nonetheless, be important for classifying specific instances. The

approach presented in this paper is able to identify such features, whilst the standard

variable importance measures for random forest cannot.

6.2 Cluster Analysis and Likelihood Ratio

The training dataset previously derived for the BCW Dataset was partitioned according

to the true class labels. A clustering algorithm implemented in the R package kmeans

was run separately for each class. This resulted in the determination of three clusters

for class 0 and three clusters for class 1. The structure and size of clusters is presented

in Table 4. Each class has one large cluster: cluster 3 for class 0 and cluster 2 for class

1. Both have a bigger concentration of points around the cluster center (small average

distance) than the remaining clusters. This suggests that there is exactly one core cluster

corresponding to a class. This explains the success of the analysis based on the median

as the vectors of medians are close to the centers of unique core clusters.

Table 4: The structure of clusters for BCW Dataset. For each cluster, the size (the number of

training instances) is reported in the left column and the average Euclidean distance from the

cluster center among the training dataset instances belonging to this cluster is displayed in the

right column.

Cluster 1 Cluster 2 Cluster 3

size avg. distance size avg. distance size avg. distance

class 0 12 0.220 16 0.262 213 0.068

class 1 20 0.241 109 0.111 10 0.336

Figure 7 lends support to our interpretation of core clusters. The left panel shows

the boxplot of the fraction of trees voting for class 0 among training instances belonging

to each of the three clusters. A value close to one represents predictions for which the

forest is nearly unanimous. This is the case for cluster 3. Two other clusters comprise

around 10% of the training instances for which the random forest model happened

to be less decisive. A similar pattern can be observed in the case of class 1, see the

right panel of the same figure. The unanimity of the forest is observed for the most

numerous cluster 2 with other clusters showing lower decisiveness. The reason for this

becomes clear once one looks at the variability of feature contributions within each

cluster, see Figure 8. The upper and lower ends of the box corresponds to 25% and

75% quantiles, whereas the whiskers show the full range of the data. Cluster 2 enjoys

a minor variability of all the contributions which supports our earlier claims of the
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Fig. 7: Fraction of forest trees voting for the correct class in each cluster for training part of the

BCW Dataset.
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Fig. 8: Boxplot of feature contributions (towards class 1) for training instances in each of three

clusters obtained for class 1.
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Fig. 9: Loglikelihoods for belonging to the core cluster in class 0 (vertical axis) and class 1 (hor-

izontal axis) for the testing dataset in BCW. Red circles correspond to instances of class 0 while

blue circles denote instances of class 1.

similarity of instances (in terms of their feature contributions) in the core class. One

can see much higher variability in two remaining clusters showing that the forest used

different features as evidence to classify instances in each of these clusters. Although

in cluster 2 all contributions were positive, in clusters 1 and 3 there are features with

negative contributions. Recall that a negative value of a feature contribution provides

evidence against being in the corresponding class, here class 1.

Based on the observation that clusters correspond to a particular decision-making

route for the random forest model, we introduced the loglikelihood as a way to assess

the distance of a given instance from the cluster centre, or, in a probabilistic interpreta-

tion, to compute the likelihood6 that the instance belongs to the given cluster. It should

however be clarified that one cannot compare the likelihood for the core cluster in class

0 with the likelihood for the core cluster in class 1. The likelihood can only be used for

comparisons within one cluster: having two instances we can say which one is more

likely to belong to a given cluster. By comparing it to a typical likelihood for training

instances in a given cluster we can further draw conclusions about how well an instance

fits that cluster. Figure 9 presents the loglikelihoods for the two core clusters (one for

each class) for instances from the testing dataset. Colors are used to mark instances

belonging to each class: red for class 0 and blue for class 1. Notice that likelihoods

provide a very good split between classes: instances belonging to class 0 have a high

6 The likelihood is obtained by applying the exponential function to the loglikelihood.



loglikelihood for the core cluster of class 0 and rather low loglikelihood for the core

cluster of class 1. And vice-versa for instances of class 1.

6.3 Iris Dataset

In this section we use the UCI Iris Dataset [3] to demonstrate interpretability of feature

contributions for multi-classification models. We generated a random forest model on

100 randomly selected instances. The remaining 50 instances were used to assess the

accuracy of the model: 47 out of 50 instances were correctly classified. Then we ap-

plied our approach for determining the feature contributions for the generated model.

Figure 10 presents medians of feature contributions for each of the three classes. In con-

trast to the binary classification case, the medians are positive for all classes. A positive

feature contribution for a given class means that the value of this feature directs the

forest towards assigning this class. A negative value points towards the other classes.
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Fig. 10: Medians of feature contributions for each class for the UCI Iris Dataset.

Feature contributions provide valuable information about the reliability of random

forest predictions for a particular instance. It is commonly assumed that the more trees

voting for a particular class, the higher the chance that the forest decision is correct.

We argue that the analysis of feature contributions offers a more refined picture. As an

example, take two instances: 120 and 150. The first one was classified in class Versi-

colour (88% of trees voted for this class). The second one was assigned class Virginica

with 86% of trees voting for this class. We are, therefore, tempted to trust both of these

predictions to the same extent. Table 5 collects feature contributions for these instances

towards their predicted classes. Recall that the highest contribution to the decision is

commonly attributed to features 3 (Petal.Length) and 4 (Petal Width), see Figure 10.

These features also make the highest contributions to the predicted class for instance

150. The indecisiveness of the forest may stem from an unusual value for the feature



Table 5: Feature contributions towards predicted classes for selected instances from the UCI Iris

Dataset.

Instance
Sepal Petal

Length Width Length Width

120 0.059 0.014 0.053 0.448

150 -0.097 0.035 0.259 0.339

1 (Sepal.Length) which points towards a different class. In contrast, the instance 120

shows standard (low) contributions of the first two features and unusual contributions

of the last two features: very low for feature 3 and high for feature 4. Recalling that

features 3 and 4 tend to contribute most to the forest’s decision (see Figure 10) with

values between 0.25 and 0.35, the low value for feature 3 is non-standard for its pre-

dicted class, which increases the chance of it being wrongly classified. Indeed, both

instances belong to class Virginica while the forest classified the instance 120 wrongly

as class Versicolour and the instance 150 correctly as class Virginica.

The cluster analysis of feature contributions for the UCI Iris Dataset revealed that it

is sufficient to consider only two clusters for each class. Cluster sizes are 5 and 45 for

class Setosa, 4 and 46 for class Versicolour and 5 and 44 for class Virginica. Core clus-

ters were straighforward to determine. Figure 11 displays an analysis of log-likelihoods

for all instances in the dataset. For every instance, we computed feature contributions

towards each class and calculated log-likelihoods of being in the core clusters of the

respective classes. On the graph, each point represents one instance. The coordinate

LH1 is the log-likelihood for the core cluster of class Setosa, the coordinate LH2 is

the log-likelihood for the core cluster of class Versicolour and the coordinate LH3 is

the log-likelihood for the core cluster of class Virginica. Colors of points show the true

classification: class Setosa is represented by the red dots, Versicolour by the blue dots

and Virginica by the green dots. Notice that points corresponding to instances of the

same class tend to group together. This can be interpreted as the existence of coherent

patterns in the reasoning of the random forest model.

6.4 Robustness Analysis

For the validity of the study of feature contributions, it is crucial that the results are

not artefacts of one particular realization of a random forest model but that they con-

vey actual information held by the data. We therefore propose a method for robustness

analysis of feature contributions. We will use the UCI Breast Cancer Wisconsin Dataset

studied in Subsection 6.1 as an example.

We removed instance number 3 from the original dataset to allow us to perform

tests with an unseen instance. We generated 100 random forest models with 500 trees

with each model built using an independent randomly generated training set with 379 ≈
2/3 · 568 instances. The rest of the dataset for each model was used for its validation.

The average model accuracy was 0.963. For each generated model, we collected medi-

ans of feature contributions separately for training and testing datasets and each class.

The variation of these quantities over models for class 1 and the training dataset are pre-

sented using a box plot in Figure 12a. The top of the box is the 75% quantile, the bottom



Fig. 11: Log-likelihoods for all instances in UCI Iris Dataset towards core clusters for each class.

is the 25% quantile, while the bold line in the middle is the median (recalling that this is

the median of the median feature contributions across multiple models). Whiskers show

the extent of minimal and maximal values for each feature contribution. Notice that the

variation between simulations is moderate and conclusions drawn for one realization of

the random forest model in Subsection 6.1 would hold for each of the generated 100

random forest models.

A testing dataset contains those instances that do not take part in the model genera-

tion. One can, therefore, expect more errors in the classification of the forest, which, in

effect, should imply lower stability of the calculated feature contributions. Indeed, the

box plot presented in Figure 12b shows a slight tendency towards increased variability

of the feature contributions when compared to Figure 12a. However, these results are

qualitatively on a par with those obtained on the training datasets. We can, therefore,

conclude that feature contributions computed for a new (unseen) instance provide reli-

able information. We further tested this hypothesis by computing feature contributions

for instance number 3 that did not take part in the generation of models. The statistics

for feature contributions for this instance over 100 random forest models are shown in

Figure 12c. Similar results were obtained for other instances.
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(a) Medians of feature contributions for training datasets
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(b) Medians of feature contributions for testing datasets
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(c) Feature contributions for an unseen instance

Fig. 12: Feature contributions towards class 1 for 100 random forest models for the BCW dataset.



7 Conclusions

Feature contributions provide a novel approach towards black-box model interpretation.

They measure the influence of variables/features on the prediction outcome and provide

explanations as to why a model makes a particular decision. In this work, we extended

the feature contribution method of [12] to random forest classification models and we

proposed three techniques (median, cluster analysis and log-likelihood) for finding pat-

terns in the random forest’s use of available features. Using UCI benchmark datasets we

showed the robustness of the proposed methodology. We also demonstrated how feature

contributions can be applied to understand the dependence between instance character-

istics and their predicted classification and to assess the reliability of the prediction.

The relation between feature contributions and standard variable importance measures

was also investigated. The software used in the empirical analysis was implemented in

R as an add-on for the randomForest package and is currently being prepared for

submission to CRAN [2] under the name rfFC.
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