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Abstract 

The use of bicycle is substantially affected by the weather patterns, which is expected to change in 

the future as a result of climate change. It is therefore important to understand the resulting 

potential changes in bicycle flows in order to accommodate adaptation planning for cycling. We 

propose a framework to model the changes in bicycle flow in London by developing a negative 

binomial count-data model and by incorporating future projected weather data from downscaled 

global climate models, a first such approach in this area. High temporal resolution (hourly) of our 

model allows us to decipher changes not only on an annual basis, but also on a seasonal and daily 

basis. We find that there will be a modest 0.5% increase in the average annual hourly bicycle flows in 

London's network in 2041 over year 2011. The increase is primarily driven by a higher temperature 

due to a changed climate, although the increase is tempered due to a higher rainfall. The annual 

average masks the differences of impacts between seasons though - bicycle flows are expected to 

increase during the summer and winter months (by 1.6%), decrease during the spring (by 2%) and 

remain nearly unchanged during the autumn. Leisure cycling will be more affected by a changed 

climate, with an increase of around 7% during the weekend and holiday cycle flows in the summer 

months.  

 

Keywords 

bicycle flow, effects of weather, climate change impacts, climate change adaptation, count data 

model 

 

 

 



Cycling in a Changed Climate, Zia Wadud, Accepted Manuscript, Journal of Transport Geography. 2013.  

2 
 

Cycling in a Changed Climate 

Zia Wadud 

Centre for Integrated Energy Research, 

University of Leeds 

z.wadud@leeds.ac.uk 

 

1. Introduction 

Reducing carbon emissions to mitigate climate change and adapting to the potential impacts of 

climate change have become a major policy goal in many countries in the world. For example, the 

UK Government has made a commitment of an 80% reduction in its carbon emissions by 2050. The 

government is also expected to publish its first National Adaptation Programme (NAP) to climate 

change at the end of 2013 (UK Government 2013a). Since personal transport is responsible for a 

major share of global carbon emissions, reducing carbon emissions from transport is an important 

area of action. Within the personal transport sector, cycling has received significant attention from 

the transport and city planners and policymakers due to its zero-carbon credentials. Cycling also 

does not emit any harmful criteria air pollutants, and contributes toward a healthier life. A 

significant increase in cycling as a mode share can also alleviate congestion in road spaces or reduce 

the burden on a crowded public transport system. Thus cycling as a transport mode has multiple co-

benefits.  

In the context of climate change, cycling’s role so far has been primarily for carbon mitigation. 

Despite a few studies indicating that the energy use and carbon reduction potential for cycling may 

not be very large (e.g. less than 5% in the UK, Pooley et al. 2010), there are still strong campaigns to 

encourage cycling in different countries because of the multiple benefits (Wittink 2010, ECF 2011). 

The emphasis on cycling for carbon mitigation has recently been reiterated in the UK: ‘we see the 

encouragement of cycling and walking, along with improvements to public transport, as key to 

cutting carbon emissions and enhancing the quality of our urban areas’ (UK Parliament 2013b). The 

other strategy to combat climate change – adaptation – has not received much attention yet, except 

for some cursory mention, in the context of cycling (e.g. UKCIP 2011).  

The lack of interest in climate adaptation studies for cycling could be important. However, even 

before any adaptation plans can be made, it is necessary to know how cycling can be affected as a 

result of a change in the future climate. Cycling is an 'unsheltered' activity and cyclists are directly 

exposed to the various weather events such as rain, snowfall, gust or even high and low 

temperatures. Therefore, the effectiveness of the use of bicycles as a transport mode is often 
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affected by day to day changes in local weather. A change in the climate can alter the future weather 

pattern, which can affect cycling in either a positive or a negative way. It is quite possible that the 

future weather pattern would discourage cycling, e.g. if the precipitation increases, as predicted in 

the UK (Met Office 2011). This would require adaptation strategies ahead in time either to ensure 

that cycling continues as a strong transport mode in the future or to accommodate the modal shift 

from cycling to other transport modes. On the other hand, it is also conceivable that the future 

weather pattern will be conducive to a large uptake of cycling (e.g. due to an increase in 

temperature in colder regions or vice versa), and this would also require planning to ensure 

adequate cycling infrastructure in place in time. Unfortunately, there is a lack of studies on the 

potential weather-induced impact (either on the direction or on the magnitude) of climate change 

on bicycle flows, although two recent studies looked into future mode choices (including cycling as a 

mode) in the Netherlands and Toronto (Bocker et al. 2013a, Saneinejad et al. 2012). This paper aims 

to address this gap by developing a framework to determine the weather-induced impacts of climate 

change on cycling and applying that model to London, UK. In doing so, we also develop a bicycle 

count model for London network, incorporating weather, as well as other explanatory variables that 

allows us to understand the impact of these additional variables too.   

The paper is organized as follows. Section 2 reviews the literature on the impact of weather and 

climate change on cycling. Section 3 presents the modeling framework and the data used in the 

study. Section 4 presents the results with section 5 drawing conclusions and limitations of the 

current approach.   

2. Review of Literature 

Central to our research is the impact of the change in weather pattern induced by climate change. 

There are a number of studies documenting the impact of weather on travel behaviour, in different 

modes of travel. In light of the recent reviews covering all transport modes by Bocker et al. (2013b) 

and Koetse and Rietveld (2009), we focus only on those studies specific to cycling. One of the first 

studies to quantitatively investigate the impact of weather on cycling was by Hanson and Hanson 

(1977). Since then, the relationship between weather and cycling has received growing attention in 

at least five different disciplines: transportation, urban studies, geography, biometeorology and 

health. In addition to studies on the quantitative impacts of weather on reported or observed level 

of cycling in these disciplines, there are also studies that look into attitudes and barriers to cycling 

through questionnaire surveys (Pooley et al. 2011, Wardman et al. 2007), but this thread of 

literature is beyond the scope of the present work.  
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Different types of data with different spatial and temporal resolution have been used by various 

researchers to understand the impact of weather on cycling. These include travel survey data at an 

aggregate level (census tract, city, county, or state; Parkin et al. 2008, Pucher and Buehler 2006, Dill 

and Carr 2003), individual travel survey responses (Cervero and Duncan 2003, Bergstorm and 

Magnusson 2003, Winters et al. 2007, Rashad 2009, Heinen et al. 2011, Flynn et al. 2012, Saneinejad 

et al. 2012), and bicycle count data at different temporal and spatial resolutions (Phung and Rose 

2007, Ahmed et al. 2010, Miranda-Moreno and Nosal 2011, Ahmed et al. 2012, Smith and 

Kauermann 2011, Tin et al. 2012, Thomas et al. 2013). Although both cross-sectional and time series 

data have been employed, the deployment of automatic cycle counters in many cities in the world 

has made finer resolution time series data readily available in recent years, and there has been a 

number of recent studies using bicycle count data at a daily resolution (Phung and Rose 2007, 

Ahmed et al. 2010, Ahmed et al. 2012); hourly resolution is not missing either (Smith and 

Kauermann 2011, Miranda-Moreno and Nosal 2011). Studies on mode choice using individual data 

from travel diary surveys and correlating them with weather data have also started to appear 

(Cervero and Duncan 2003, Saneinejad et al. 2012).   

There are a few studies (e.g. Goetzke and Rave 2011) that investigate the effect of ‘bad’ weather to 

answer a given research question, but do not specify  the parameters of bad weather. There are 

others which investigate the effect of specific weather variables and these studies are relevant to 

our review. The weather variables studied are, in various functional forms, rain, snow, temperature, 

wind speed, sunshine hours, fog, thunderstorms, and relative humidity. Most common among these 

are rain and temperature, which are present in almost all of the studies. Most studies found that 

cycling decreases in the presence of rain or with an increase in rainfall (Key 1992, Emmerson et al. 

1998, Nankervis 1999, Richardson 2000, Cervero and Duncan 2003, Dill and Carr 2003, Pucher and 

Buehler 2006, Brandenburg et al. 2007, Winters et al. 2007, Parkin et al. 2008, Phung and Rose 2007, 

Ahmed et al. 2010, Heinen et al. 2011, Smith and Kauermann 2011, Miranda-Moreno and Nosal 

2011, Ahmed et al. 2012, Buehler and Pucher 2012, Flynn et al. 2012, Tin et al. 2012, Thomas et al. 

2013). Only a few studies found that rain had no statistically significant effect on cycling, and most of 

those (e.g. Dill and Carr 2003, Rashad 2009, Buehler and Pucher 2012) utilize cross-sectional inter-

city or inter-county data, which could be prone to omitted variable bias.  

There is also a consensus on the effect of temperature (except Buehler and Pucher 2012): up to a 

certain temperature, an increase in the temperature increases bicycle ridership, but beyond that 

point ridership starts to decrease. Therefore, unlike in rain, temperature has a clear non-linear 

impact: high and low temperatures reduce bicycle use. However, the optimum temperature 

conducive to cycling can vary from country to country. Similarly, there is a universal agreement that 
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an increase in wind speed has a negative impact on cycling, although some argue that this 

relationship is valid only at high wind speeds, indicating a non-linear effect (Phung and Rose 2007, 

Sabir 2011).   

Among other variables, sunshine hours positively influence cycling, as reported by Rashad (2009), 

Heinen et al. (2011), Tin et al. (2012) and Thomas et al. (2013), although Ahmed et al. (2010) finds an 

opposite impact. Increases in relative humidity results in a decreased level of cycling (Gebhart and 

Noland 2013), especially if it is accompanied by a high temperature (Miranda-Moreno and Nosal 

2011). Flynn et al. (2012) and Gebhart and Noland (2013) find that snowfall substantially reduces 

cycling. Gebhart and Noland (2013) also attempted to model the impact of fog and thunderstorm, 

but no statistically significant impact was noticed on hired bicycle trips. In addition, Bocker et al. 

(2013b) report that the impact of weather variables on cycling can be different depending on the 

purpose of the trip, with recreational cycling being more sensitive than commuting trips.  

The number of studies that investigated the impact of climate change on cycling is few - Bocker et al. 

(2013a) for the Netherlands and Saneinejad et al. (2012) for Toronto. Both of these utilize a mode 

choice framework. In order to model the changed climate, Bocker et al. (2013) select seasons from 

the past as representative of the changed climate in 2050 while Saneinejad et al. (2012) use ten 

scenarios of changed rainfall and temperature pattern. Neither makes use of finer resolution 

information from the climate change models, and only utilizes the aggregate level information.  

3. Methodology and Data 

3.1. Modeling Framework 

The basic modeling framework involves developing a bicycle count model for London using not only 

weather, but also other explanatory factors, and then employing this model to predict the level of 

future cycling by plugging in future projected weather data from climate simulations. Since future 

weather pattern is not deterministic in nature, we also run various plausible weather patterns 

consistent with the changed climate to quantify the plausible distribution of the potential changes in 

the cycling flow in the changed climate. The modeling framework is explained graphically in Fig. 1, 

and the key components are described below. 

[Fig. 1 here] 

3.2. Count Model Data 

The source for the cycle count data is the automated cycle counters on the Transport for London 

Road Network (TLRN). The TLRN counters are maintained by Transport for London (TfL) and the data 

from these counters are used to develop a cycling index in order to monitor cycling in London. While 
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data is generally of good quality, some light bicycles may have been missing due to the loop nature 

of the automatic counters. The count information is available in hourly resolution from 6 am to 

midnight, while counts between midnight and 6 am are merged together. For modeling purpose 

these 6-hour long data was divided by 6 to get average hourly count. We used four years of data 

from January 1, 2008 to December 31, 2011 in this study. There are some gaps in the time series 

data in most of the counters, but they do not appear systematic. Also, given that we treat the 

temporal dimension using hourly, daily and monthly dummy variable during estimation, and do not 

use time series models explicitly, these random gaps do not affect our estimation process.  

Some of the TLRN counters observe very few counts indicating a low cycling road. We remove from 

our sample those counters which register, on average, less than 10 cycles an hour during the 4 year 

period. We also remove any counter which has less than 18 months of data. This leaves us with 29 

counters, and on average 22,465 observations, i.e. more than 3 years of observations, per counter. 

Summary information of these 29 counters is presented in Table 1. 

[Table 1 here] 

Hourly weather data on precipitation (mm), snowfall (mm), wind speed (knots/hour), relative 

humidity (%) and sunshine duration (hour) were collected from the British Atmospheric Data 

Centre's MIDAS database of the UK Meteorological Office (2013) for the nearest weather station to 

London, at Heathrow. Summary of this information is presented in Table 2. The hourly data is 

cleaned and matched with corresponding cycle count data. In order to incorporate non-linear 

response to some of these weather variables, dummy variables were created during the modelling 

process.  

[Table 2 here] 

3.3. Future Weather Data 

In order to determine the future values for the weather variables, we make use of the UK Climate 

Projections 2009 (UKCP 09) results by the Department for Environment, Food and Rural Affairs 

(DEFRA 2013). UKCP 09 is the fifth generation of climate information for the UK generated from the 

state-of-the-art climate model HadCM3 developed by the Hadley Centre of the UK Meteorological 

Office. HadCM3 is a fully coupled ocean-atmosphere global climate model (GCM), which uses 

perturbed physics ensembles to take into account the different plausible values of the underlying 

model parameters representing the climate process and thus better reflect the model uncertainties. 

The UKCP 09 information is available through a purpose-built publicly available user interface, which 

allows the users to query various climate and weather information at different spatial (smallest 25 
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km2 grids) and temporal resolutions for different emissions scenarios. Detail of UKCP 09 is available 

in DEFRA (2013).  

GCMs like HadCM3 have coarser spatial, and particularly, temporal resolution than required for our 

research. We therefore use the weather generator application of the UKCP 09, which is described in 

detail in DEFRA (2013). In brief, the weather generator uses a downscaling process that produces 

synthetic hourly or daily time series for some of the weather variables which are consistent with the 

climate projections of the GCMs. The underlying modeling framework uses a stochastic rainfall 

process calibrated using past weather data and monthly climate projection data from HadCM3 to 

project future rainfall sequences on a daily basis. Mathematical relationships between rainfall and 

other weather variables, calibrated using past data, are then used to generate daily temperature 

range, relative humidity and sunshine hours. The hourly projections are then determined by 

disaggregating the daily data using observed hourly patterns and relationships to maintain the 

consistency between hourly and daily projections. Since the projected hourly and daily time series 

data are synthetic in nature, there are numerous plausible hourly and daily time series projections 

that are statistically equivalent to each other and are consistent with the HadCM3's probabilistic 

climate outputs. UKCP 09 weather generator therefore produces a large number (user-specified) of 

such representative weather simulations, each of which are consistent with the climate model 

projections under three emissions scenarios. 100 such projections of future weather variables under 

the high emissions scenario are used as inputs to our cycle count model to generate a distribution of 

future cycle counts in London network. Summary of these 100 simulations of the projected weather 

in year 2041 is presented in Table 2 above. 

3.4. Count Model Methodology 

We follow an econometric modelling approach to develop and estimate our base count model. Our 

dependent variable is an hourly time series (with gaps) of bicycle counts at different counter 

locations on TLRN. The explanatory variables are precipitation, temperature, relative humidity, wind 

speed, sunshine hours to capture the effects of weather, hourly, weekly and monthly dummy 

variables to capture the hourly, weekly and seasonal variations of the flow, and other dummy 

variables representing a step change in cycling conditions. Following the literature review, which 

indicates potential non-linear effects of precipitation, temperature and wind speed, we use several 

dummy variables representing different ranges of each of these three variables instead of using 

three continuous variables.  

Unlike some of the previous work on hourly or daily impact of weather on cycling, our data spans 4 

years, during which period a number of initiatives on cycling was taken in London. Key among them 
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is the opening of the extensive Bike Hire system and two Cycling Superhighways in July 2010 

(Transport for London 2012). It is therefore important to control for these factors. In addition, in 

order to represent the potential substitution relationships with other transport modes we include 

daily bus fares on Oyster Card (smart fare card), which changed in 2009 and 2011, as an explanatory 

factor. The nominal fares were converted to real fares using monthly consumer price index for 

London (ONS 2013a). The congestion charge into central London also changed from 3 January 2011, 

while the extent of congestion zone was reduced on 27 December 2010 - a dummy variable 

represents these events, too. Given the substantial recession in the UK during the 2008-2011 period 

and the importance of income on transport choices, we also include real wage rate and 

unemployment rate during the four years as control variables (ONS 2013b, Greater London 

Authority 2013).  

Hourly bicycle count is a non-negative, discrete variable, which is often distributed as a Poisson or 

Negative Binomial distribution. Although we find a few log-linear OLS models in the literature, 

simple log-linear OLS models are not appropriate for count variables because the errors are non-

normal and heteroskedastic, thereby making OLS estimates biased.   (Cameron and Trivedi 1998). 

While at large mean expected hourly bicycle flows parameter estimates from a log-linear OLS and 

Poisson/Negative Binomial model may not be very different, standard errors and inference can still 

be quite different. The mean expected hourly flow is quite small in (<30) in many of our counters. 

Presence of valid zero counts in the data also makes OLS log-linear models troublesome. We 

therefore treat specifically the count nature of the dependent variable and use Poisson and Negative 

Binomial regression approach (and test which one is more appropriate).    

Given our dataset is a time series for different counter locations, the dataset can be described as 

panel. However, our independent variables are the same across all counter locations, thus a 

traditional panel econometric approach does not improve our estimation. On the other hand, 

pooling the bicycle counts of all counters together is not appropriate either because of the large 

differences in flow in different counters. We therefore hypothesize that the differences between 

cycle flows among the counters are fixed in nature and include dummy variables for every counter. 

This approach is similar to a fixed effects panel model.  

We hypothesize that the proportional effect of weather and other explanatory factors are similar 

across all counters, i.e. the parameter estimates for these factors are constant across all counters. 

Since the Poisson or Negative Binomial regression uses a log transformation of the dependent 

variable, a constant parameter across all counters mean that the per cent effect on bicycle count is 

the same across the counters, and not the absolute counts. This is an important property since we 
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do not expect a similar change in one explanatory factor to have the same absolute effect on a low 

flow and a high flow location.  

Within each day, the traffic flow varies depending on the hour. Preliminary graphical analysis reveals 

that the roads on which the counters are located show three distinct hourly traffic flow patterns: 

primarily morning peaks, primarily afternoon peaks and both peaks. Since the relationship between 

different hourly flows in a day is specific to each counter location, we allow the hourly patterns of 

daily cycle flow to vary between counters. We achieve this by interacting hourly dummy variable 

with dummy variables for counter locations. Similarly we allow for the weekly flow pattern to be 

distinct for each counter location by interacting the days of the week with counter locations. At the 

monthly level, which captures the seasonality in the time series, we use a common monthly dummy 

for all locations.  

Given this background, our model has the following functional specification:   

 

where,  µit = mean hourly count at counter i (i =29) at time t  

 εit = errors  

 other lower case Greek letters = parameters to be estimated 

 variables in capital = dummy variables (explained in Table 3) 

 variables in lower case = continuous variables (explained in Table 3) 

As discussed earlier, the expected mean hourly cycle count, µ, has a Poisson or Negative Binomial 

distribution for our two model specifications. The underlying assumption in a Poisson distribution is 

that the mean is equal to the variance, whereas in Negative Binomial distribution this restriction is 

relaxed allowing for over dispersion of the data.  Also, Poisson distribution is characterized by only 

one parameter, the mean, while Negative Binomial is characterized by the mean and a dispersion 

factor, which is estimated during the regression process. Both the Poisson and Negative Binomial 

regression models are estimated by the maximum likelihood method. The econometric details of the 

estimation methods are available in Cameron and Trivedi (1998).  

log 𝜇𝑖𝑡  = 𝛼𝑖  𝐶𝑂𝑈𝑁𝑇𝐸𝑅𝑖

29

𝑖=1
+ 𝛽𝑗  𝑅𝐴𝐼𝑁𝑗𝑡

4

𝑗=2
+ 𝜇 𝑅𝐴𝐼𝑁𝐿𝐴𝐺𝑡 + 𝛾𝑘  𝑇𝐸𝑀𝑃𝑘𝑡

4

𝑘=2

+ 𝛿𝑙  𝑊𝐼𝑁𝐷𝑙𝑡

4

𝑙=2
+ 𝜃 𝐻𝑢𝑚𝑖𝑑𝑡 + 𝜌 𝑆𝑢𝑛𝑡 +  𝜏 𝑆𝑁𝑂𝑊𝑡 + 𝜑 𝑊𝑎𝑔𝑒𝑡 + 𝜔 𝑈𝑛𝑒𝑚𝑝𝑡

+  𝜅 𝐵𝑢𝑠𝑓𝑎𝑟𝑒𝑡 + 𝜆 𝐶𝑂𝑁𝐺𝐸𝑆𝑇𝑡 + 𝜉 𝐼𝑁𝐹𝑅𝐴𝑆𝑡 + 𝜐 𝑆𝑇𝑅𝐼𝐾𝐸𝑡 + ώ 𝑆𝐻𝑂𝐿𝐼𝐷𝐴𝑌𝑡

+ 𝜂𝑝  𝑀𝑂𝑁𝑇𝐻𝑝𝑡

12

𝑝=2
+ 𝜁𝑖𝑚  𝐶𝑂𝑈𝑁𝑇𝐸𝑅𝑖𝑡𝐻𝑂𝑈𝑅𝑚𝑡

𝑖=29,𝑚=19

𝑖=1,𝑚=1

+ 𝜓𝑖𝑛  𝐶𝑂𝑈𝑁𝑇𝐸𝑅𝑖𝑡𝐷𝐴𝑌𝑛𝑡
𝑖=29,𝑛=5

𝑖=2,𝑛=2
+ 𝜀𝑖𝑡  
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Our literature review suggests that the sensitivity to rainfall, wind or temperature for commuting or 

utilitarian and recreational travel can be different. We hypothesize that weekday travel is generally 

utilitarian and weekend travel is for leisure and therefore run two separate models for weekdays 

and weekends to test if the parameter estimates are indeed different. We also include public (bank) 

holidays in the weekend model, specifically, as having the flow characteristics of a Sunday.  

4. Results 

4.1. Cycling Count Model  

Estimation results for weekdays and weekends are presented in Table 3, for Negative Binomial and 

Poisson regression. The statistical test on the choice between a Negative Binomial and Poisson 

model hinges on the significance of the dispersion parameter in the Negative Binomial model: if it is 

different from zero, then Negative Binomial model is preferred. We indeed find that the dispersion 

parameter is statistically different from zero at 99% confidence level. Therefore we opt for the 

Negative Binomial model.  

[Table 3 here] 

We include the results for monthly dummies in the Table 3, but omit the parameter estimates for 

the dummy variables for individual counters and hourly and day of week interactions with counters 

for the sake of brevity (full parameter estimates are available on request). These parameters are 

plotted in Figs. 2 and 3 graphically. Three different patterns of hourly bicycle flows are highlighted 

(thick lines) for three representative counter locations in Fig. 2. Most of the locations show two 

peaks, but even among those there are substantial differences in the relative magnitudes, justifying 

our approach of interacting counter locations with hours.   

[Fig. 2 here] 

The differences between daily patterns in a week are not as large as the hourly differences (Fig. 3). 

Except for one counter (no. 173) all the counters show a similar non-linear daily cycle flow pattern: 

slight increases during Tuesdays and Wednesdays as compared to Mondays and then dropping off 

significantly on Fridays. Total daily flows during Saturdays and Sundays are even smaller (although 

they cannot be plotted on the same graph due to differences in the scale of two models), with 

Sundays and public holidays showing the smallest cycle flows (from weekend model results). Note 

that our model has a semi-logarithmic functional form, therefore the parameter estimates are not 

the traditional elasticities. Also, the parameter estimates between the counters cannot be used to 

directly compare the absolute flow characteristics between counters.    

[Fig. 3 here] 
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The weekday model supports previous assertion that rain adversely affects cycling flows, with 

maximum reduction taking place for hourly rains between 1 and 2 mm in our case. A substantial and 

statistically significant lagged effect of rain is also clearly visible. An increase in temperature 

increases bicycle usage, but the increase is non-linear and levels off (or slightly decreases) at 

temperatures above 25°c. Higher wind speed reduces cycling flows, with the effect nearly linear. 

Presence of snow has the largest impact on cycling, with a reduction of around 40% in weekday 

flows. An increase in humidity reduces bicycle use, while an increase in sunshine hours increases its 

use - although both effects are statistically significant, the absolute effects are not substantial.  

A comparison of the weekday and weekend model reveals interesting insights. In general, the impact 

of weather is larger in the weekend model, which supports the hypothesis that leisure travel is more 

sensitive to weather events than utilitarian cycling. However, while this effect is pronounced at 

heavier rains, light rain does not deter leisure cycling more than utilitarian cycling. Effect of 

temperature is consistently larger for leisure cycling, with an aberration at very low temperatures 

(which is possibly spurious). Snow has similar effect on weekday and weekend cycling, but humidity 

has a substantially larger effect on weekend cycling flows.  

During weekdays, an increase in the real wage rate reduces bicycle flows (2.18% for every GBP 

increase), hinting that utilitarian cycling could be an ‘inferior’ good, although this hypothesis 

requires further investigation using other measures of income. An increase in unemployment rate 

also increases cycling flow during weekdays by 1.82%. Cycling flows during weekdays in London 

increases substantially with an increase in bus fares (by 11.3% for every GBP increase), an increase in 

the congestion charge to central London (by 10% in January 2011 price hike) or a strike in the 

underground rail network (by 18.1% during strike days), all of which reveals cycling as a substantial 

substitute transport mode in London. The effects of wage rate, unemployment, bus fare and 

congestion charge together partially explain the increase in bicycle usage in London during 2008-

2011 period. In comparison, the opening of the cycle hire and the two bicycle superhighways had a 

relatively modest association with the increase of bicycle flows (3.15% in July 2011), although the 

longer term impact, which would require a longer time series of data to investigate, could be larger. 

Also our time series is small (only 4 years) to decipher any longer term propensity toward increased 

cycling – therefore the parameter estimates for wage rate and unemployment should be treated 

with care, as they might reflect the effect of time too. 

The weekend model shows similar direction of impacts as in the weekday model, with two 

differences. An increase in wage rate increase bicycle flows, indicating leisure cycling as a normal 

good. The effect of strike on the tube network has a negative impact on weekend cycling. Given the 
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travel chaos a strike brings about, it is possible that people simply forego their leisure travel during 

the strike days generating the negative impact on weekend cycling.       

4.2. Future Projected Cycling 

4.2.1. Average effects 

Projected future weather pattern under a changed climate scenario for 2041 is fed into the hourly 

bicycle count model to get projected bicycle count in 2041. Given some of the variables (snow, wind 

speed) are not available from the UKCP 09, these variables are kept at the base year values. We use 

year 2011 as our base year, which is the latest available data for our count model. However, instead 

of directly using 2011 cycle counts as our base dataset for comparison, we use predicted bicycle 

count from the econometric model for year 2011. We use the predictions for our baseline cycling 

counts in order to overcome the missing data in some of the counters. This results in an annual 

average hourly cycle count of 39.81 (95% confidence interval 39.58-40.04) in the TLRN network.  

Given we have 100 simulations of future hourly weather patterns, we also have 100 projected hourly 

counts for each hour of the year. The annual average of these 100 mean hourly bicycle counts is 40, 

with 95% confidence interval between 39.98 and 40.02. This is a difference of only 0.5% from the 

baseline weather scenario of 2011, which is not statistically significant at 95% confidence (although 

significant at 90%). The primary reason for the relatively modest change is the counteracting effects 

of rain and temperature, as found by Bocker et al. (2013a) as well. A projected increase in 

temperature increases future bicycle use, but an increase in rainfall tempers the effect. Especially, 

2011 was the driest and the warmest of the four years for which we have our cycle count data, 

therefore the projected changes were the smallest.   

A further look into the annual average bicycle count for each plausible weather pattern shows a 

range of an increase of 2.6% to a reduction of 2.5%. Around 20% of the plausible weather patterns 

result in a possible reduction in flow, albeit most of it marginal. Fig. 4(a) presents the frequency 

distribution of the changes in annual average hourly cycle flows for the 100 plausible future weather 

patterns.  

[Fig. 4 here] 

Since the change is sensitive to the base year conditions, we also test the future flows with respect 

to another base year, 2009. Year 2009 was wetter and colder than 2011, which would hint that the 

increase in future cycle flows with respect to 2009 will be further increased. This is indeed the case, 

as we find the baseline prediction for 2009 to be 38.15 per hour while the future projected flow is 



Cycling in a Changed Climate, Zia Wadud, Accepted Manuscript, Journal of Transport Geography. 2013.  

13 
 

38.84 per hour on average, indicating a 1.7% increase, which is statistically significant as well.1 Fig. 

4(b) presents the distribution of changes for this case, which shows larger increases than Fig 4(a). 

The frequency distribution also shows that in only 3 cases there were no increases in cycling flows in 

2041 with respect to the flow in 2009; and the range of change varies from -1.3% to +3.9%.  

4.2.2. Seasonal and weekly effects 

The changes in the weather pattern due to climate change are not constant throughout all seasons. 

Since the weather patterns during different seasons get affected differently, the seasonal changes in 

the cycle flows are also expected to be different in a changed climate. The fine temporal resolution 

in our count modelling framework easily allows us to decipher the differences in seasonal changes in 

the cycling flows due to climate change. Modelling results show that cycling flows increase by 1.5% 

in the winter and 2.5% during the summer over year 2011 baseline (Fig. 5). However, these increases 

are countered by a reduction of 2.0% and 0.1% during the spring and autumn respectively, resulting 

in a net annual hourly increase of 0.5%, as mentioned earlier.     

[Fig. 5 here] 

Disaggregating the seasonal patterns further into weekdays (representing utilitarian cycling) and 

weekends (representing leisure cycling), we again find differential impacts. During the winter, 

weekday bicycle counts increase more than the weekend bicycle counts (1.61% to 1.1%). The 

differences between the climate induced changes in cycling flows during the weekends and 

weekdays is the least prominent during the spring, when they are reduced by 2.25% and 2% 

respectively. On the other hand, the Summer months show a large variation: weekday flows increase 

by 1.6%, but weekend (and holidays) flows increase by 7%. During the autumn, weekday flows show 

a slight reduction (0.35%) but weekend flows increase by 1%, with a negligible change in the 

combined impact. On an annual hourly average basis, weekday bicycle flows increase by only 0.17%, 

while weekend flows increase by 1.97%. All of these seasonal and weekly changes are calculated on 

the basis of a 2011 baseline, and a 2009 baseline would most likely show even larger increases.  

5. Conclusions 

The use of bicycle as a transport mode or a leisure activity is particularly affected by the different 

elements of daily weather, which is expected to change considerably in the future because of the 

climate change. The objective of this paper was to develop a framework that could be used to 

determine the impact of climate induced changes in future weather pattern on bicycle flows and 

apply that framework to London which has seen a rapid growth in cycling in the past decade. We 

                                                           
1
 The difference in 2041 flows for the two baseline scenarios of 2009 and 2011 is due to the differences in the 

number of school holidays, which we kept constant for each set of baseline and future projections.  
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developed a bicycle count model for London and employed the UKCP 09 modelling results for future 

climate change to understand the potential changes in bicycle flow in 2041, with respect to those in 

2011. To our knowledge, this is the first study to utilize an hourly resolution future weather data, 

downscaled from the GCMs, to study the effect of climate change on bicycle use. In order to capture 

the potential uncertainty in future climate change and the associated weather patterns, we also 

simulate 100 plausible weather patterns under a changed climate, which is a different approach 

from the existing studies which use single values for the annual changes in the weather. Our bicycle 

count model for London supports previous findings that bicycle flow is indeed sensitive to the 

weather, with leisure cycling more sensitive than the utilitarian one. We also found evidence that 

utilitarian cycling could decrease as a result of higher income or lower unemployment rate which 

could potentially lead to lower cycling for commuting when the UK economy gains momentum in the 

future.   

Bicycle flow in London is expected to increase due to the climate change, although the magnitude of 

this increase is modest, even in the high emissions scenario of UKCP 09. Given the high temporal 

resolution of our count model, the projected relative changes in future bicycle flows are sensitive to 

the choice of the baseline year. By 2041, bicycle flows are expected to increase during the summer 

and the winter, but the reductions in the spring and the autumn temper the net annual effect. The 

largest increase (~7% over year 2011 baseline) in bicycle use is during the weekends of the summer 

months for leisure travel. This would potentially result in better utilization efficiency of the bicycle 

infrastructure during the summer off-peak periods. The maximum increase in daily weekday travel is 

1.6% during the summer and the winter, which is not very large. Still, even this small increase can be 

important if the future bicycle network gets congested - a possibility during the summer months - as 

it can result in a more than proportional increase in travel delay.  

Care must be exercised in interpreting our results. Longer run cycling flows depend on a number of 

other, possibly more influencing variables than weather, e.g. policy and safety initiatives, new 

technologies or prices of fuel and alternate transport modes, etc. Also there could be substantial 

changes in the perception about cycling and related behavioural traits over the next few decades. 

Our model thus is more appropriate in answering the question what happens if we have a changed 

weather pattern due to climate change now, rather than what happens in general in the future. 

Nonetheless, the relative impacts on cycle flows from our model will remain valid as long as people's 

sensitivity to the weather variables do not change, although the absolute flow levels may not.  

There are a few data limitations too. The weather model cannot predict snowfall, which has a large 

hourly impact on the cycle flow. Given the general increase in temperature due to climate change, it 

is likely that snowfall will be reduced. Our results therefore provide the lower bound of the potential 
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increases in the bicycle flow. Although we could not incorporate changes in wind speed too, recent 

results of UKCP 09 show that future changes in wind speed and thus its effect on our results is 

negligible. Our model also does not incorporate the impacts of extreme weather induced events, e.g. 

bike path or bike lane closures due to flooding resulting from excessive rainfall, which can be 

important for climate adaptation planning. This would require a different modelling approach, 

possibly in the area of asset management. Also, our results cannot be generalized to every other 

region in the world since the changes in weather pattern due to a changed climate and the 

sensitivity of bicycle use to temperature and rainfall will be different spatially. However, the 

modeling framework can be applied universally subject to the availability of the underlying data.   
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Fig. 1 Modeling framework 

 

 

   

 

Fig. 2 Estimates for hourly flow dummies (ζim) for different counters 
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Fig. 3 Estimates for days of the week (weekdays) dummies (ψin) for different counters 

 

 

 

 

   (a)       (b) 

Fig. 4 Distribution of changes in bicycle flows for 100 plausible weather patterns in 2041, with 

respect to (a) 2011 and (b) 2009 baseline 

     

 

 

 

 

 

-0.20

-0.15

-0.10

-0.05

0.00

0.05

0.10

0.15

Mon Tues Wed Thurs Fri

Pa
ra

m
et

er
 e

st
im

at
e

Day of week

98 99 101 102 103
140 141 170 173 192
194 195 200 501 508
510 518 520 526 528
532 534 536 538 540
542 548 550 551

0

5

10

15

20

25

30

Fr
e

q
u

e
n

cy

% change in annual average hourly flows (2011 baseline) 

0

5

10

15

20

25

30

Fr
e

q
u

e
n

cy

% change in annual average hourly flows (2009 baseline) 



Cycling in a Changed Climate, Zia Wadud, Accepted Manuscript, Journal of Transport Geography. 2013.  

21 
 

 

 

 

Fig. 5 Percent change in bicycle flows due to climate change during weekdays and weekends for 

different seasons 
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Cycling in a Changed Climate 

Tables 

 

Table 1. Summary of bicycle count data of 29 TLRN counters 

Counter Location Observations Mean  Std. Dev. 

98 A203 Stockwell Road SB 25465 21.32 22.71 
99 A203 Stockwell Road NB 22310 19.29 22.04 

101 A23 Streatham Hill SB 15813 16.33 18.30 
102 A3205 York Road NB 22631 35.54 55.03 
103 A3205 York Road SB 17070 35.43 43.35 
140 Clapham Road (A3) 21868 97.62 127.79 
141 Homerton High Street 24000 26.25 15.03 
170 Southwark Bridge Road 11289 40.86 64.26 
173 Upper Tooting Road 16075 47.00 48.98 
192 Vauxhall Bridge NB 25326 53.36 68.75 
194 Vauxhall Bridge  SB 24780 34.19 38.32 
195 Blackfriars Bridge  NB 27168 57.57 74.30 
200 Chiswick Bridge  NB 27755 13.85 12.45 
501 Upper Richmond Road 20834 47.32 34.82 
508 Tooting Bec 21845 11.82 9.24 
510 East Hill 27625 36.43 27.38 
518 A503 Camden Road 20418 56.11 42.58 
520 A41 Finchley Road NB 22922 11.35 12.86 
526 High Road Tottenham 26042 19.77 14.22 
528 Seven Sisters Road 18545 12.90 10.80 
532 Mile End Road 23717 55.36 55.00 
534 Pentonville Road 26844 36.38 30.17 
536 East India Dock Road 27486 20.66 16.49 
538 Tower Bridge Road 11668 50.69 44.55 
540 Kennington Lane 25413 12.91 9.98 
542 New Cross Road 23832 61.41 49.65 
548 A4 Brompton Road 25343 45.80 38.69 
550 Twickenham Road NB 27699 16.25 15.74 
551 Twickenham Road SB 19702 14.48 12.63 

 

 

 

Table 2. Summary of past and projected hourly weather information 

 Temperature 
(°c) 

Rainfall 
(mm/hr) 

Rainfall 
(hours) 

Snowfall 
(hours)* 

Wind speed 
(knot/hour)* 

Relative 
Humidity (%) 

Sunshine 
(hour) 

2011        
Spring (Mar-May) 11.74 0.0184 57 0 7.90 0.681 0.255 
Summer (Jun-Aug) 16.52 0.0882 210 0 7.67 0.704 0.222 
Autumn (Sep-Nov) 13.49 0.0348 107 0 8.53 0.799 0.162 
Winter (Dec-Feb) 6.52 0.0839 231 0 9.23 0.834 0.061 
2041        
Spring (Mar-May) 12.31 0.0676 235 0 7.90 0.717 0.206 
Summer (Jun-Aug) 18.77 0.0690 151 0 7.67 0.689 0.287 
Autumn (Sep-Nov) 14.94 0.0850 227 0 8.53 0.789 0.144 
Winter (Dec-Feb) 7.51 0.0765 272 0 9.23 0.832 0.070 

* 2041 condition kept as the same as 2011 
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Table 3. Parameter estimates for key explanatory factors 

 Weekday* Weekend* 

 Negative 
Binomial 

Poisson 
Negative 
Binomial 

Poisson 

RAIN 0 (reference for rainfall, no rain)     
RAIN 0-1 (Dummy for hourly rain between 0 and 1 mm) -0.048 -0.046 -0.034 -0.037 
RAIN 1-2 (Dummy for hourly rain between 1 and 2 mm) -0.116 -0.115 -0.114 -0.118 
RAIN 2-3 (Dummy for hourly rain between 2 and 3 mm) -0.090 -0.080 -0.176 -0.165 
RAIN >3 (Dummy for hourly rain more than 3 mm) -0.084 -0.086 -0.155 -0.150 
LAGRAIN (Dummy for the presence of rain in previous hour) -0.115 -0.116 -0.148 -0.168 
TEMP <(-5) (Dummy for temperature below -5°c) -0.480 -0.459 -0.365 -0.388 
TEMP (-5)-0 (Dummy for temperature between -5°c and 0°c) -0.355 -0.348 -0.480 -0.502 
TEMP 0-5 (Dummy for temperature between 0°c and 5°c) -0.178 -0.159 -0.345 -0.344 
TEMP 5-10 (Dummy for temperature between 5°c and 10°c) -0.091 -0.085 -0.206 -0.200 
TEMP 10-15 (Dummy for temperature between 10°c and 15°c) -0.038 -0.035 -0.077 -0.071 
TEMP 15-20 (reference for temperature, between 10°c and 15°c)     
TEMP 20-25 (Dummy for temperature between 15°c and 20°c) 0.032 0.031 0.044 0.050 
TEMP >25 (Dummy for temperature greater than 25°c) 0.023 0.027 0.039 0.051 
WIND 0-5 (reference for wind speed, less than 5)     
WIND 5-10 (Dummy for wind between 5 and 10) -0.011 -0.007 -0.021 -0.014 
WIND 10-15 (Dummy for wind between 10 and 15) -0.047 -0.036 -0.105 -0.091 
WIND 15-20 (Dummy for wind between 15 and 20) -0.091 -0.078 -0.167 -0.159 
WIND >20 (Dummy for wind more than 20) -0.160 -0.144 -0.202 -0.209 
SNOW (Dummy for the presence of snowfall) -0.404 -0.460 -0.401 -0.427 
Humid (Relative humidity) -0.182 -0.153 -0.456 -0.460 
Sun (Hours of sunshine) 0.040 0.034 0.059 0.054 
Wage (Real hourly wage rate)  -0.022 -0.057 0.043 0.067 
Unemp (Unemployment rate) 0.018 -0.001 0.018 0.001 
Busfare (Real day bus pass price) 0.107 0.128 0.177 0.231 
CONGEST (Dummy for the changes in congestion pricing) 0.096 0.079 0.186 0.200 
INFRAS (Dummy for the introduction of bike share and bicycle 
superhighways) 0.031 0.034 0.039 0.041 
STRIKE (Dummy for strike in the underground network) 0.166 0.204 -0.313 -0.341 
SHOLIDAY (Dummy for school holidays) -0.126 -0.120 -0.103 -0.086 
JANUARY (reference for months, January)     
FEBRUARY (Dummy for the month of February) 0.041 0.012 0.104 0.084 
MARCH  (Dummy for the month of March) 0.067 0.039 0.088 0.085 
APRIL  (Dummy for the month of April) 0.178 0.146 0.242 0.211 
MAY  (Dummy for the month of May) 0.226 0.187 0.251 0.228 
JUNE  (Dummy for the month of June) 0.248 0.191 0.310 0.270 
JULY  (Dummy for the month of July) 0.244 0.189 0.257 0.209 
AUGUST  (Dummy for the month of August) 0.254 0.212 0.291 0.252 
SEPTEMBER  (Dummy for the month of September) 0.237 0.197 0.331 0.313 
OCTOBER  (Dummy for the month of October) 0.269 0.232 0.301 0.290 
NOVEMBER (Dummy for the month of November) 0.194 0.157 0.215 0.207 
DECEMBER  (Dummy for the month of December) -0.067 -0.152 -0.043 -0.062 
ΣCOUNTER (Dummies for counter locations)     
ΣCOUNTER×HOUR (Interaction dummies between COUNTER and 
time of the day) 

    

ΣCOUNTER×DAY (Interaction dummies between COUNTER and 
days of the week) 

    

Diagnostics     
Dispersion 0.089  0.119  
N 449064 449064 200246 200246 
AIC 7.224 9.042 6.245 7.162 
BIC -2.59×10

6
 -1.78×10

6
 -1.19×10

6
 -1.00×10

6
 

     

*unless mentioned, all parameters are statistically significant at 99% confidence level 

Variables in capital letters are in a dummy variable form 

 


