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We derive exact solutions of simplified models for the temporal evolution of the protein concentration within

a cell population arbitrarily far from the stationary state. We show that monitoring the dynamics can assist in

modeling and understanding the nature of the noise in gene expression. We analyze the dispersion of the

process, i.e., the ratio of the variance to the mean at arbitrary time, and introduce a measure, the fractional

protein distribution, which can be used to probe the phase of transcription of DNA into mRNA.
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I. INTRODUCTION

Advances in experimental techniques, which enable the

direct observation of gene expression in individual cells,

have demonstrated the importance of stochasticity in gene

expression, the translation into proteins of the information

encoded within DNA �1–5�. Such variability can lead to del-

eterious effects in cell function and cause diseases �6�. On

the positive side, stochasticity in gene expression confers on

cells the ability to be responsive to unexpected stresses and

may augment growth rates of bacterial cells compared to

homogeneous populations �7�. Disentangling the various

contributions to production fluctuations is complicated by the

recent finding that different stochastic processes yield the

same response in the variance in protein abundance at sta-

tionarity �8�. A population of isogenic cells growing under

the same environmental conditions can exhibit protein abun-

dances that vary greatly from cell to cell. The sources of

variability have been identified at multiple levels �9–13�,
with transcription and translation playing a major role under

certain circumstances �14–16�.
The low concentration of reactants potentially has two

important consequences: the first is that fluctuations around

the mean can be large; the second is that the nature of the

stochastic noise should be taken into account in some detail

because one may not simply invoke the central limit theorem

�17�, which leads to the universal and ubiquitous Gaussian

noise. Thus, two genes expressed at the same average abun-

dance can produce protein populations with different Fano

factors F�t�=var�x�t�� / �x�t��, where var�x�t�� and �x�t�� are

the variance and the mean of the protein concentration x�t�,
respectively �18�. We show here that two distinct models,

one taking into account the detailed nature of the noise and

the other following from an application of the central limit

theorem, yield exactly the same stationary solution for the

distribution of proteins in isogenic cells under the same en-

vironmental conditions. The applicability of the central limit

theorem arises from the fact that the stochasticity in gene

expression results from the large number of available com-

ponents which entangle a lot of different mechanisms within

a cell. The exact dynamical solution of these two simplified

models demonstrates the value of monitoring the dynamics

for understanding the nature of the noise in a cell.

II. MODEL

We make the simplified assumption that the kinetics of

gene expression can be described approximately by four rate

constants: k1 and k2 are the transcription and translation

rates, respectively, and �1 and �2 are the degradation rates

for mRNA and proteins, respectively. It has been found ex-

perimentally that proteins are produced in bursts �5,18–20�
with an exponential distribution of the protein concentration

produced in a given event. We will assume that transcription

pulses are Poisson events and that the probability distribution

that in a single event I�0 proteins are produced, w�I�, is

approximated by w�I�=
�1

k2
e−��1/k2�I, where k2 /�1 is the trans-

lation efficiency, i.e., the mean number of proteins produced

in a given burst. Here we consider a simple model for the

production of proteins without memory and aging of mol-

ecules. Using the specific burst distribution given above al-

lows one to obtain the shape of the protein distribution even

far from stationarity. Under these assumptions, the stochastic

equation that governs the single-variable dynamics of gene

expression can be written as

ẋ�t� = � − �2x�t� + ��t� . �1�

This pseudoequation describes the real-time stochastic

evolution of gene expression through a deterministic part and

a stochastic term ��t�, which will be defined later on. Here x

is a continuous variable that represents the protein concen-

tration within a cell. For the sake of generality, we have

added the constant �, which can be incorporated into the

average noise. However, although ��0 can account for im-

portant effects in ecological systems �25�, we will show in

the following that it does not play a significant role under the

burstlike production of proteins.

In order to understand the nature of the noise for the gene

expression case, let us consider the random variable, Ik, that

is a measure of the number of proteins in the kth transcrip-

tion event, where k=1,2 , . . . ,n. A key quantity of interest is

�k=1
n�t�Ik���t��t, where n�t�, the number of events in the time

interval �t , t+�t�, is a random variable independent of both x

and the Iks. As in the experiment, let us postulate that: �i� the

Iks are independent and identically distributed with exponen-

tial distribution; and �ii� the probability of n events occurring

during the time interval �t is given by the Poisson distribu-
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tion qn��t�= �k1�t�nexp�−k1�t� /n!. The distribution of ��t�
that we use in Eq. �1� can be explicitly calculated �see Ap-

pendix A� and leads to the following expression for the cu-

mulants: ����t1�¯��tn���=n !k1�k2 /�1�n	i=2
n ��ti− t1� for n

�2 and ���t��=k1k2 /�1, independent of time.

Because the cumulants are delta functions, the noise is

still white �events are uncorrelated if they occur at different

times�; however the noise is no longer Gaussian because cu-

mulants with n greater than two are nonzero.

The master equation that describes this burstlike process

is �17�

�p�x,t�
�t

= −
�

�x
��� − �2x�p�x,t�� + k1


0

x

w�x − y�p�y,t�dy

− k1p�x,t� , �2�

where p�x , t�� p�x , t �x0 ,0� is the conditional probability that

the protein concentration has a value x at time t given that it

has a value x0 at time 0; and w�x�=
�1

k2
e−��1/k2�x.

Equation �2� can be easily understood as follows. The first

term in the right-hand side is simply related to the determin-

istic motion given by the first two terms in Eq. �1� and it is

independent of the nature of the noise term. The second and

third terms are related to the probability per unit time to

jump from a population of size y to a population of size x,

w�x−y�, given that k1 is the transition rate for a transcription

event. The stationary solution of this model was already

known �21,22� with �=0. For arbitrary ��0, the stationary

solution is

ps�x� = ��1

k2


k1/�2 ��x − �/�2�
	�k1/�2�

�x −
�

�2


k1/�2−1

e−��1/k2��x−�/�2�,

�3�

where ��x� is the step function equal to 1 when x�0 and

zero otherwise. This distinctive feature is a sharp signature of

the nature of the noise even in the stationary solution but is

present only when ��0. However, as shown in the fit to the

stationary solution in Fig. 1, the singularity, if it exists, is

easily masked by other noise effects, leading to a rounding

effect.

III. ALTERNATIVE MODEL

Although experiments on gene expression �5,18� are con-

sistent with a burstlike protein production, steady-state dis-

tributions of protein abundances are equally compatible with

alternative explanations. In fact, because mRNA is unstable

compared to protein lifetime ��1
�2�, one can assume that

transcripts give rise to a constant flux of proteins f and sub-

sequently any protein degrades at a constant rate �2. Because

of the great amount of available molecules, one can apply the

central limit theorem and suppose that the amplitude of fluc-

tuations is simply proportional to �x. Within this framework

there is no burstlike production; nevertheless the stationary

solutions that one obtains for a burstlike process, including

that of the extended autoregulation model �23,24�, are also

obtained in models with appropriately chosen random multi-

plicative Gaussian noise �see Appendix C�. Within this sce-

nario the stochastic evolution of the protein concentration

x�t� is governed by the equation

ẋ�t� = f − �2x�t� + �Dx�t���t� , �4�

where ��t� is a Gaussian white noise with autocorrelation

���t���t���=2��t− t��. Note that the same equation could be

obtained on setting ���t��= f and ����t���t����
����t���t���− ���t�����t���=2Dx�t���t− t�� in Eq. �1� with

all higher-order cumulants being identically zero. Note that

the square root of the multiplicative noise in Eq. �4� is not

introduced ad hoc. It has its roots in the central limit theorem

and can also be justified on the basis of other general con-

siderations about the discrete nature of the process. In fact,

on temporal scales much larger than the mRNA lifetime, the

protein production can be suitably described by a birth and

death process whose rates are proportional to the number of

available molecules. Accordingly, the fluctuations of this dis-

crete Markov process can be well described by the multipli-

cative noise term present in Eq. �4� in the continuum limit,

i.e., when a large number of molecules is present. In addi-

tion, because the noise goes to zero when x�t�=0, it also

prevents the random variable x�t� from becoming negative.

We point out that in ecology Eq. �4� is useful for studying

the evolution of tropical forests �25�, where the detailed na-

ture of the stochastic noise is not important because of the

relatively large numbers of trees of a given species. In the

field of finance, Eq. �4� has been used to study the evolution

of interest rates �the Cox-Ingersoll-Ross model �26��, where

analogous considerations on fluctuations can be made. On

defining f �k1k2 /�1 and D��2k2 /�1, Eq. �4� yields the

same stationary state as in Eq. �2� with �=0, i.e., Equation

�3�. The mean protein concentration at stationarity is

k1k2 /�1�2 and the Fano factor at stationarity is k2 /�1, rela-

tions that are consistent with previous findings �18�. In order

to take into account the effects of feedback in a system un-

dergoing autoregulation, one can introduce the physically

transparent modification f →Dc�x�, where c is a response

function which can be modeled as having two distinct limit-
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FIG. 1. The stationary distribution of proteins in a prokaryotic

cell population taken from Ref. �18� fitted to Eq. �3� with �=0 or

� /�2=60.3 �dashed�. The best fit parameters are �1 /k2=0.038,

k1 /�2=12.88 ��2�6100�, and �1 /k2=0.030, k1 /�2=8.33 ��2

�8700�, respectively. From the experimental data it is hard to dis-

tinguish between the steady-state distributions predicted by Eq. �3�
with �=0 and ��0.
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ing values at zero and at infinity with the latter being smaller

than the former. Even in this situation, we obtain the same

stationary distribution with bistability as in Ref. �22�. De-

spite this much more realistic analysis, the final stationary

protein distribution is experimentally indistinguishable from

Eq. �3� with �=0. Thus, a theoretical modeling of the sta-

tionary state of protein production provides little insight into

the microscopic nature of the noise that leads to stationarity.

IV. TEMPORAL EVOLUTION

These results raise the question whether the agreement

between the stationary solutions of the theoretical models

and experiments are in fact a direct probe of the nature of the

microscopic noise and whether the asymmetric stationary so-

lutions derive from a careful consideration of the bursty na-

ture of the noise. In order to circumvent the indistinguish-

ability of steady states, one can look into empirical protein

abundances far from stationarity, for which we provide ana-

lytical formulas. Thus we turn now to a study of the dynam-

ics of Eq. �2�, which is a powerful probe of the noise effects.

We have derived �see Appendix B� the solution at arbitrary

time �Fig. 2�,

p�x,t� = e−k1t��x − 
t� + ��x − 
t�
k1�1

k2�2

�e�2t − 1�e−k1t

�exp�−
�1

k2

e�2t�x − 
t��
�1F1� k1

�2

+ 1,2;
�1

k2

�e�2t − 1��x − 
t�
 , �5�

where 1F1�a ,b ;x� is the confluent hypergeometric function

�27� and 
�t��x0e−�2t+
�
�2

�1−e−�2t� is the solution of the de-

terministic part of the equation, i.e., without the noise.

Interestingly, one obtains a distribution of proteins with a

cutoff along the interval �0,
t� at any time whenever ��0.

The stochasticity plays a major role when the mean number

of bursts per cell cycle is very small, i.e., k1 /�2�1. In this

case, the solution in Eq. �5� can be approximated by replac-

ing 1F1�1,2 ;z� with �ez−1� /z �see Ref. �27� and Appendix

B�. On using Eq. �5�, one can calculate the evolution of the

Fano factor, F�t�, starting from an arbitrary initial amount of

proteins. This time evolution is highly sensitive to the nature

of the stochasticity. Figure 3 vividly shows the distinct de-

pendence of the initial dynamics of F�t� on the nature of the

noise. Note that, at stationarity, the distinct types of stochas-

ticity are indistinguishable. Interestingly, within the temporal

transient, the fluctuations deviate from Poisson behavior,

whereas, at stationarity, both models predict a Poissonian

Fano factor for genes with high transcription and low trans-

lation rates and limt→� F�t�=k2 /�1�1.

V. FRACTIONAL PROTEIN DISTRIBUTION

Another measurable quantity that directly probes the pro-

tein distribution and its temporal evolution is the fractional

protein distribution �FPD�, P�� , t�, i.e., the probability that at

time t the ratio x�t� /x�0� is equal to �, where x�t� and x�0�
are the protein concentrations at time t�0 and t=0, respec-

tively. Unlike the stationary distribution in Eq. �3� with �
=0, the FPD can exhibit a distinctive signature of the nature

of the burstlike noise even under stationary conditions: it has

an interval in which it identically vanishes and this, in prin-

ciple, can be experimentally observed. This quantity can be

defined at arbitrary times �see Appendix D�: if the initial

distribution is the steady state given by Eq. �3� with �=0,

then at t�0 the FPD is
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FIG. 2. Protein distribution dynamics for different types of noise

and with the same initial condition, i.e., x0=0 proteins at t=0. The

dashed curve is for the multiplicative Gaussian noise, i.e., Eq. �4�
with f �k1k2 /�1 and D��2k2 /�1 �see Appendix C�; whereas the

solid curve is for the non-Gaussian noise, i.e., for Eq. �5�. In both

cases the parameters are �=0, �2 /D=�1 /k2=0.038, f /D=k1 /�2

=12.88 and we have set �2
−1=40 min, �1

−1=2 min.
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FIG. 3. Fano factor dynamics with the same initial condition,

i.e., x0=0 proteins at t=0. The solid curves are for the non-Gaussian

noise case, i.e., F�t�=var�x�t�� / �x�t�� is obtained from Eq. �5� with

�=0; the dashed curves are for the multiplicative Gaussian noise,

i.e., F�t� is calculated with the analytical solution of Eq. �4�. The

parameters �k1=0.01, k2=15 min−1� in the main figure correspond

to an infrequent production of large bursts, whereas the ones �k1

=0.3, k2=0.5 min−1� used in the inset give rise to small bursts

produced frequently. In both cases we have set �1
−1=2 and �2

−1

=40 min.
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P��,t� = e−k1t��� − e−�2t� + � k1

�2


2e−k1t�e�2t − 1���� − e−�2t�
�1 + e�2t�� − e−�2t��k1/�2+1

�2F1� k1

�2

+ 1,
k1

�2

+ 1,2;
�e�2t − 1��� − e−�2t�
1 + e�2t�� − e−�2t�


 , �6�

where 2F1�a ,b ,c ;x� is the standard hypergeometric function

�27�. Thus, according to Eq. �6�, under the burst process

hypothesis we predict that �i� the FPD vanishes between 0

and e−�2t even though the system is at stationarity, an effect

which ought to be detectable for time scales less than or of

the order of 1 /�2, �ii� the FPD depends on k1 and �2 only,

�iii� at very large time separation there is only one free pa-

rameter, the ratio k1 /�2, and the FPDs predicted by the

Gaussian and non-Gaussian noises become the same �see Ap-

pendix D�.
The analogous time-dependent solutions for the Gaussian

white noise can be compared with Eqs. �5� and �6� �see Ap-

pendix D�.
The closer the system is to its steady state, the more dif-

ficult it is to distinguish among the effects of gestation, se-

nescence and burstlike production. Thus an experimental

protocol capable of analyzing the cell population and its time

evolution with different initial conditions would be helpful to

disentangle the nature of stochastic noise. At early times, the

evolution of the distribution is strongly affected by the spe-

cific mechanisms involved in the dynamics. At this stage,

different distributions of interarrival times between events or

burst sizes produce nonstationary distributions that are very

different, and the distinctive effects of noise, deterministic

driving forces, or coupling of degrees of freedom can be

elucidated. Different conditions at initial times propagate

into the early temporal evolution in strongly different ways

according to the different effects of involved mechanisms,

but inexorably lead to the same distribution for large time

separation.

VI. CONCLUSION

In summary, we have shown that fits to experimental data

of the stationary solution do not discriminate between differ-

ent types of noise. However, the temporal evolution of the

probability distribution of protein or fractional protein con-

centration under stationary conditions as well as the evolu-

tion of the Fano factor can be used as a powerful probe of the

noise effects of protein production. We have shown that the

full time dependence of the analytical solution of the model

proposed in �22� with burstlike protein production events

presents a singularity. This singularity is absent in the corre-

sponding model with Gaussian multiplicative noise.
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APPENDIX A: DEFINITION OF THE NON-GAUSSIAN

WHITE NOISE

In this section we wish to exploit the burst hypothesis of

protein production in gene expression in order to derive its

probability distribution.

Let x1 ,x2 , . . . ,xn be n-independent one-burst processes

with only positive increments. Let us suppose that they are

identically distributed, so they have the same jump transi-

tions, say a probability density function w�x� with x�0. Let

us further assume that the burst processes occur in time ac-

cording to a Poisson distribution qn�t�= �k1t�nexp�−k1t� /n!,

where k1 is the transcription rate.

Because any burst produces xi proteins according to the

distribution w�x�, we are interested in the distribution of the

random variable 
�t�=�i=1
n xi, i.e., the total amount of pro-

teins produced from t=0 through t�0, where we are assum-

ing that n bursts have been occurred in a time t. The charac-

teristic function for the process 
�t� is

�eiz
�t�� = �
n=0

�

�eiz
�t��n events by t�prob�n events by t�

= �
n=0

�

�g�z��nqn�t� , �A1�

where we have used the independence of any one-burst pro-

cess and we have used the definition

g�z� � �eizxj� = 

0

�

eizxw�x�dx , �A2�

for any j=1, . . . ,n. Because we are using the Poisson distri-

bution qn�t�, one obtains

�eiz
�t�� = ek1t�g�z�−1�. �A3�

Thus the characteristic function of 
�t� in Eq. �A1� defines

the following integral equation for the distribution p�x , t�
= ���x−
�t���:



0

�

eizxp�x,t�dx = �
n=0

�

�g�z��nqn�t� . �A4�

By direct substitution one can verify that a solution is

p�x,t� = q0�t���x� + q1�t�w�x� + q2�t��
0

x

w�x − y�w�y�dx

+ ¯ = �
n=0

�

qn�t�w�x� � w�x� � ¯ � w�x�

n-fold convolution

,

�A5�

where ��x� is a Dirac delta and the symbol “�” stands for a

convolution of w�x�’s.

Now we use the particular jump distribution w�x�=�e−�x

����1 /k2�. Hence

g�z� =
�

� − iz
, �A6�

and the calculations for the nth convolution �n�1� result in

�n
xn−1

�n − 1�!
e−�x. �A7�

Thus we obtain with qn�t�= �k1t�nexp�−k1t� /n!
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p�x,t� = e−k1t��x� +
e−k1t−�x

x
�
n=1

�
�k1t�x�n

�n − 1� ! n!

= e−k1t��x� +
t

x
e−k1t−�x

�

�t
I0�2�k1t�x�

= e−k1t��x� +
e−k1t−�x

x
�k1t�xI1�2�k1t�x� , �A8�

where I��z� is the modified Bessel function of the first kind

�27�, whose definition is

I��x� = �
n=0

�
�x/2��+2n

n ! 	�� + n + 1�
.

By exploiting this definition, one can see that in Eq. �A8�
there is no divergence at x=0. We can also calculate all the

moments

�
n�t�� =
n!

�n
k1te−k1t

1F1�n + 1,2;k1t� + e−k1t�n,0, �A9�

where 1F1�a ,b ;x� is the confluent hypergeometric function

�27� and n=0,1 ,2 , . . ..

Now we can consider the fundamental stochastic differen-

tial equation which defines the model in the main text,

dx�t� = �� −
x�t�

�

dt + d
�t� , �A10�

where ���2
−1 and 
�t� is the noise whose probability distri-

bution is given by Eq. �A8�. Finally, in order to recover Eq.

�1� in the main text, one can formally write d
�t�=��t�dt.

The master equation which governs the process defined by

Eq. �A10� is Eq. �2� in the main text.

APPENDIX B: THE SOLUTION OF THE MASTER

EQUATION

The main goal of this section is to obtain the fundamental

solution of the integrodifferential equation that describes the

evolution of the protein concentration within a population of

isogenic cells under the burst hypothesis �Eq. �2� in the main

text�,

�p�x,t�
�t

= −
�

�x
��� −

x

�

p�x,t�� +
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where ��k1
−1 , ���2

−1 , ��0, w�x� is a probability density

function and p�x , t�� p�x , t �x0 ,0� is the conditional probabil-

ity that the protein concentration has a value x at time t given

that it has a value x0 at time 0. Note that Eq. �B1� exhibits

two temporal scales, � and �, which are related to transcrip-

tion and protein dilution, respectively.

The probability flux determined by Eq. �B1� is

j�x,t� = �� −
x

�

p�x,t� + −

1

�



0

x 

0

z

w�z − y�p�y,t�dzdy

+
1

�



0

x

p�y,t�dy , �B2�

where we assume that limx→� j�x , t�=0 for any t�0. The

flux at x=0 is simply

j�0,t� = � lim
x→0+

p�x,t� , �B3�

where limx→0+ xp�x , t�=0 due to the integrability of p�x , t� at

x=0. By Laplace transforming Eq. �B1� with respect to x,

one obtains

���s,t�
�t

= j�0,t� −
s

�

���s,t�
�s

− bs��s,t� +
���s� − 1���s,t�

�
,

�B4�

where ��s���0
�w�x�e−sxdx is supposed to be finite. We are

interested in the time-dependent reflecting solution of Eq.

�B1�, so j�0, t�=0 and the characteristic equations for Eq.

�B4� get

dt =
�ds

s
=

�d�

����s� − 1 − ��s�
, �B5�

which can be easily solved. The solutions may be written as

follows:

se−t/� = s0, �B6�

��s� = �0 exp� �

�



s0

s ���� − 1

�
d� − ���s − s0�� , �B7�

where s0 ,�0 are arbitrary constants. If we choose an arbitrary

well-behaved function ��x� such that ��s0�=�0, one can

write down the general solution of Eq. �B4�,

��s,t� = ��se−t/��exp� �

�



se−t/�

s ���� − 1

�
d�

− ���s − se−t/��� . �B8�

Since the initial condition is p�x ,0�=��x−x0�, we have

��s ,0�=e−sx0, thereby one can determine the function ��x�,
finally achieving

ln ��s,t� = − ��� + x0e−t/� − ��e−t/��s +
�

�



se−t/�

s ���� − 1

�
d� .

�B9�

By using the translation theorem which holds for Laplace

transforms �28�, we may study only the function

��s,t� = exp� �

�



se−t/�

s ���� − 1

�
d�� . �B10�

We are interested in solving Eq. �B1� with w�x�=�e−�x,

where ���1 /k2 is the translation efficiency as defined in the
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main text. So ��s�=� / ��+s� and ��s , t� becomes

��s,t� = � se−t/� + �

s + �

�/�

. �B11�

It turns out that one can analytically calculate the inverse

Laplace transform of ��s , t� �see below�, and then one can

finally achieve the fundamental solution of Eq. �B1�, which

is

p�x,t�x0,0� = e−t/���x − 
t� + ��x − 
t�
��

�
e−t/��et/� − 1�

�exp�− �et/��x − 
t��

�1F1� �

�
+ 1,2;��et/� − 1��x − 
t�
 , �B12�

where 
t�x0e−t/�+���1−e−t/��, 1F1�a ,b ;x� is the confluent

hypergeometric function �27�, ��x� is the step function

which is equal to one for x�0 and zero otherwise, and ��x�
is a Dirac delta. It is worth noting that Eq. �B12� exhibits a

cutoff along the interval �0,
t� at any time whenever ��0,

thus the probability is generally continuous but not differen-

tiable �at x=
t�. One may also achieve the steady-state solu-

tion of Eq. �B1� by using the leading term of the asymptotic

representation of the confluent hypergeometric function �27�,
i.e.,

1F1�a,b;x� �
	�b�
	�a�

exx−�b−a�, �B13�

when x
1 and a ,b�0,−1,−2, . . .. Thus the normalized so-

lution at stationarity is

ps�x� =
��/�

	��/��
��x − ����x − ����/�−1e−��x−���. �B14�

In Fig. 1 in the main text we show ps�x� for different

values of � and we compare it with experimental data ob-

tained in a prokaryotic cell population: the agreement is ex-

cellent. When the mean number of bursts per cell cycle is

very small, one obtains � /��1 and we can expand Eq.

�B12� in powers of � /�. In this case, the solution in Eq.

�B12� reads

p�x,t�x0,0� = e−t/���x − 
t� + � �

�

��x − 
t�

x − 
t

�exp�− ��x − 
t�

− t/�� − exp�− �et/��x − 
t� − t/��� + O„��/��2… ,

�B15�

where we have used �see Ref. �27��

1F1�1,2;z� =
ez − 1

z
.

Laplace transform

In this section we calculate the inverse Laplace transform

of Eq. �B11�. In order to get it we study the function

��x� �
1

2�i
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k+i� �as + �

bs + �

c

esxds , �B16�

where x�0, k�0, 0�a�b, ��0, and c�0. On using the

variable z��as+�� / z̄, with z̄���1−a /b��0, one obtains

��x� �
e−�x/a

a
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where z��1. We can also write

�1 −
1

z

−c

= �
n=0

�
�c�n

n!

1

zn
, �B18�

when �z��1 and �c�n�c�c+1�¯ �c+n−1� , �c�0�1. The

series in Eq. �B18� is absolutely and uniformly convergent if

�z��1; thus it can be integrated term by term
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�B19�

where ���1 and we used

��x� =
1

2�i



z�−i�

z�+i�

exzdz .

In Eq. �B19� the integral may be evaluated along a simple

closed path that encircles the origin within which the inte-

grand has a pole of order n at z=0. Thus, by applying the

residue theorem, one obtains

� e�

�n
d� =

2�i

�n − 1�!
. �B20�

Therefore Eq. �B19� gets

1
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�B21�

We may use the definition and the properties of the con-

fluent hypergeometric function �27� to rewrite this latter re-

lation as follows:

�
n=1

�
�c�n

n!

�xz̄/a�n−1

�n − 1�!
=

�

��xz̄/a� 1F1�c,1;xz̄/a�

= c 1F1�c + 1,2;xz̄/a� , �B22�

and finally reaching the equation

��x� =
e−�x/a

a
�a

b

c

z̄��� xz̄
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 + c 1F1�c + 1,2;xz̄/a�� ,

�B23�
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We can obtain the solution in Eq. �B12� on setting a

=e−t/�, b=1, c=� /� and by using the translation theorem

which holds for the Laplace transforms.

APPENDIX C: THE GAUSSIAN WHITE NOISE CASE

Let us consider the fundamental equation of the main text

for the number of proteins at time t, x�t�, within an isogenic

cell population,

ẋ�t� = � − x�t�/� + ��t� , �C1�

where ���2
−1 and

���t�� = f ,

����t���t���� � ���t���t��� − ���t�����t��� = 2Dx�t���t − t�� .

�C2�

Because we suppose that all the other cumulants are neg-

ligible, Eq. �C2� defines a multiplicative Gaussian white

noise and on using the Itô prescription �17�, one can prove

that Eq. �C1� with Eq. �C2� is equivalent to the following

Fokker-Planck equation:

ṗ = �x��x/� − f − ��p� + D�x
2�xp� . �C3�

In this case the constant � only shifts the average number of

proteins, so we can assume that �=0 without lack of gener-

ality. In Eq. �C3� p� p�x , t �x0 ,0� is the conditional probabil-

ity that the protein concentration has a value x at time t given

that it has a value x0 at time 0, i.e., �n
n+�np�x , t �x0 ,0�dx is the

fraction of cells with protein population between n and n

+�n; furthermore, f �k1k2 /�1 and D��2k2 /�1. Setting ṗ

=0, one obtains the stationary solution of Eq. �C3�,

pstat�x� = �D��−f/D	�f/D�−1x f/D−1e−x/D�, �C4�

where 	�x� is the gamma function �27�. This solution is

equivalent �with �=0� to Eq. �3� of the main text, which has

been derived on using a non-Gaussian white noise that em-

bodies the burst hypothesis.

One can also obtain the time-dependent solution of Eq.

�C3� with reflecting boundary conditions and with initial

population equal to x0. One can find all the details of the

derivation in �29�, here we write down only the final expres-

sion

p�x,t�x0,0� = � 1

D�

 f/D

x f/D−1e−x/D�

�� 1

D�

2

x0xe−t/��1/2−f/2D

1 − e−t/�

� exp�−

1

D�
�x + x0�e−t/�

1 − e−t/� �I f/D−1�
2

D�
�x0xe−t/�

1 − e−t/� � .

�C5�

In Fig. 2 of the main text we have compared the behavior

of this equation with that in Eq. �5� of the main text. Unlike

this latter, Eq. �C5� has no any cutoff neither at finite times

nor at stationarity.

APPENDIX D: THE FRACTIONAL PROTEIN

DISTRIBUTION

The fractional protein distribution �FPD�, PFPD�� , t�, is

defined as the probability that at time t the ratio x�t� /x�0� is

equal to �, where x�t� and x�0� are the protein concentrations

within a population of isogenic cells at time t�0 and t=0,

respectively. The system can be initially prepared according

to any kind of probability density function, pinit�x0�, never-

theless because we are interested in FPD at stationarity, we

are using Eqs. �5� and �6� of the main text, i.e., the time-

dependent reflecting solution and the stationary probability

distribution with �=0, respectively. Thus, by definition the

FPD is

PFPD��,t� = ���� − x/x0��

= 

0

�

dx0

0

�

dxpstat�x0�p�x,t�x0,0���� − x/x0� ,

�D1�

where ��0, t�0, and ��x� is a Dirac delta. Notice that

PFPD�� ,0�=���−1� and

lim
t→+�

PFPD��,t� = 

0

�

dx0x0pstat�x0�pstat��x0�

=
	�2��
	2���

��−1

�� + 1�2� , �D2�

where �=k1 /�2 and 	��� is the standard gamma function

�27�. Note that Eq. �D2� has a peak for ��0 only when �
�1, whereas when 0���1 there is an integrable singular-

ity at �=0. Furthermore, because the Gaussian and non-

Gaussian noises have the same steady state, they both have

the same FPD when t→+�.

When substituting Eqs. �3� and �5� of the main text in Eq.

�D1� and performing some simple manipulations, one gets

PFPD��,t� = e−t/���� − e−t/�� + ��� − e−t/��
�

�

��/�+1

	��/��
e−t/�

��et/� − 1�

0

�

dxx�/� exp�− �x�1 + et/��� − e−t/����

�1F1� �

�
+ 1,2;��et/� − 1��� − e−t/��x
 , �D3�

where ��k1
−1 , ���2

−1 , ���1 /k2. On exploiting the for-

mula 7.621.4 in �30� for the integral, one can come up with

Eq. �6� of the main text, which is independent on �. When

the mean number of bursts per cell cycle is very small, one

obtains � /��1 and we can expand Eq. �6� of the main text

in powers of � /�. In this case, the solution reads

PFPD��,t� = e−t/���� − e−t/�� + − � �

�

2��� − e−t/��e−t/�

� − e−t/�

� ln� 1 + � − e−t/�

1 + et/��� − e−t/��

 + O���/��3� , �D4�

where we have used �see Ref. �27��
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2F1�1,1,2;z� = −
ln�1 − z�

z
.

Along the same lines one can obtain the FPD for the

Gaussian white noise. Thus, substituting the time-dependent

reflecting solution in Eq. �C5� and the steady state in Eq.

�C4�, one comes up with the final expression

PFPD��,t� =
2 f/D−1

��

	� f

D
+

1

2



	� f

D



�� + 1�
�

�et/�� f/2D

1 − e−t/�

� � sinh� t

2�



�
�

f/D+1

� 4�2

�� + 1�2et/� − 4�

 f/D+1/2

,

�D5�

where f �k1k2 /�1 , ���2
−1 and D��2k2 /�1. Note that in

this case PFPD�� , t� is much simpler than Eq. �6� in the main

text and depends only on f /D=k1 /�2 and �. In Fig. 4 we

have compared the FPD for the non-Gaussian white noise

�Eq. �6� in the main text� and Eq. �D5�, which have the same

steady state.
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FIG. 4. Fractional protein distribution �FPD�. The dashed curve

is for the Gaussian noise case, i.e., Eq. �D5� with f �k1k2 /�1 and

D��2k2 /�1; whereas the solid curve is for the non-Gaussian noise

case, i.e., Eq. �6� in the main text. The arrow indicates the cutoff

point. Note, however, that extrinsic noise could tend to smooth out

the discontinuity. In both cases k1 /�2=12.88 and we have set �2
−1

=40 min.
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