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Abstract. Numerical simulations of detonations in cylindrical rate-sticks of highly
non-ideal explosives are performed, using a simple model with a weakly pressure
dependent rate law and a pseudo-polytropic equation of state. Some numerical issues
with such simulations are investigated, and it is shown that very high resolution
(hundreds of points in the reaction zone) are required for highly accurate (converged)
solutions. High resolution simulations are then used to investigate the qualitative
dependences of the detonation driving zone structure on the diameter and degree of
confinement of the explosive charge. The simulation results are used to show that,
given the radius of curvature of the shock at the charge axis, the steady detonation
speed and the axial solution are accurately predicted by a quasi-one-dimensional
theory, even for cases where the detonation propagates at speeds significantly below
the Chapman-Jouguet speed. Given reaction rate and equation of state models, this
quasi-one-dimensional theory offers a significant improvement to Wood-Kirkwood
theories currently used in industry.

Keywords: Detonation, Explosives, ANFO, Numerical Simulation, Shock Captur-
ing

1. Introduction

Detonations are supersonic waves that can propagate through reac-
tive materials, which consist of a strong shock wave coupled to the
exothermicty of the chemical reactions. In so called non-ideal deto-
nation processes, the nonlinear coupling between front curvature and
the details of the chemical decomposition kinetics is important in the
propagation of the wave. The chemical physics of condensed phase non-
ideal detonations is of relevance to a number of disparate industries,
both from the point of view of safety and of performance. These in-
clude: (i) defence related industries where insensitive munitions (IMs)
as well as low explosives used by terrorists entail non-ideal detona-
tion processes; (ii) mining industry, where the modern commercial
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2 G. J. Sharpe & M. Braithwaite

explosives used are mainly ammonium nitrate based water-in-oil emul-
sions or ammonium nitrate-fuel oil slurries (ANFO), sometimes incor-
porating ammonium nitrate prills (heavy ANFO, doped emulsions);
(iii) industries where the manufacture, transport and storage of haz-
ardous (explosive,combustible and detonable) materials are involved;
(iv) chemical/petrochemical and fine chemical industries, where it is
inevitable that some chemical processing operations will involve unsta-
ble intermediates, some of which may be detonable, these include those
handling acetylene and acetylides, peroxides, nitrates and perchlorates,
ethylene oxide and propylene oxide.

Theoretical attempts have been made to progress beyond simple one-
dimensional thermo-hydrodynamic (Chapman-Jouguet) descriptions of
condensed phase detonations in non-ideal explosives. One approach
that is currently in use in the mining (e.g. [1]) and defence (e.g. [2])
industries is that based on Wood-Kirkwood theory [3], which uses a
slightly divergent flow central stream tube approximation to give the
solution only along the axis of a cylindrical charge. However, this is an
incomplete theory which involves an unknown function (the axial flow
divergence) that needs to be arbitrarily prescribed. Furthermore, there
exist concerns over the validity of this slightly divergent flow approach
for significantly non-ideal explosives, e.g. for determining critical diame-
ters for detonations in different confinements (indeed, further unknown
relationships between the radius of curvature of the shock at the axis,
the charge diameter and confinement need to be empirically specified
in this method in order to obtain detonation speeds as a function of
diameter [1]).

A rational asymptotic theory for two-dimensional steady detona-
tions is given in [4], based on the assumption of weak shock curvature
(on the detonation reaction zone length) or equivalently on the as-
sumption of detonation speed close to the Chapman-Jouguet (planar)
detonation speed. Stemming from this work, there is now a large body
of theoretical and experimental work on propagation laws of curved
detonation fronts known as Detonation Shock Dynamics (DSD) (see
the review in [5], and references contained therein).

The lowest order asymptotic DSD theory is equivalent to an assump-
tion that the front is quasi-one-dimensional and hence that it is gov-
erned by a single normal detonation speed-shock curvature (Dn−κ) law.
This Dn −κ law can found from an asymptotic (small curvature) anal-
ysis (e.g. [4][6]) or numerical integration of the quasi-one-dimensional
equations (e.g. [7][8][9]) given a reaction rate law and equation of state
model. Applied to the ratestick problem, the asymptotic theory gives
an equation which determines the shock shape of the steady state det-
onation, which can then be used to solve the complete problem (e.g.
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Non-ideal detonations 3

detonation speed versus charge diameter) [4]. The shock shape equation
is subject to a boundary condition at the charge edge, which depends
on the explosive and confinement model pair (this condition can be
determined through a modified inert shock polar analysis at the shock-
charge edge intersection point [5][10]). However, such an asymptotic
theory based on small curvature/small detonation speed deficits from
CJ is not likely to be valid for the highly non-ideal explosives of interest
here, in which detonations can propagate even when the detonation
speed is ∼ 50% of CJ and the shock front is strongly curved.

Indeed, it is found that the first order DSD theory does not do well in
describing experimental shock shapes for these highly non-ideal explo-
sives. The experimentally measured shock shapes give a Dn−κ relation
for the shock front as one moves from the charge axis to the charge edge.
For mildly non-ideal explosives, such as PBX 9502 or Nitromethane,
the Dn −κ relations along different shock fronts (e.g. corresponding to
different charge diameters) do all lie close to one another or overlay,
at least for sufficiently small curvatures [11][12][13], indicating that
the dynamics of curved detonation fronts in such explosives are, to
leading order, well described by a single Dn − κ law as predicted by
the first order theory. Indeed, the Dn − κ law determined from rate-
stick experiments for a given explosive can then be used to theoretically
determine the shock front dynamics for the explosive in more complex
geometries [5][14]. For the more non-ideal explosives, however, such
as PBXN 1111 and ANFOs, the Dn − κ relations along individual
shock fronts lie along different curves for different diameters, and these
curves do not intersect or overlap [12][15][16]. Hence for these non-ideal
explosives, the front propagation cannot be described a simple, single
Dn − κ law such as the first order DSD theories give, and thus higher
order (two-dimensional) effects must be important.

A second order (in the deficit of the detonation speed from CJ) DSD
theory exists [5][14][16]. At second order, two-dimensional (and time-
dependent) effects and brought into play. The Dn − κ relations along
different shock fronts determined from this higher-order theory are in
better qualitative agreement with the non-ideal explosive experiments.
However, this higher order theory is still based on the rational asymp-
totic limit that the detonation is asymptotically close to the CJ speed.
Hence it is not quantitatively predictive for highly non-ideal explosive
such as heavy ANFOs and doped emulsions in which the departure
from the CJ speed is significant. Furthermore, to date this theory has
only been developed for a specific, simple form of the reaction rate
law, with a square root dependence on the reaction progress variable
(square root depletion), a polytropic equation of state and only for slab
geometry. The analysis would be significantly less tractable for more
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complex forms of the reaction rate model (note that even changing
from square root to simple depletion (a linear dependence of the rate
law on the reaction progress variable) introduces logarithmic near-sonic
boundary layers even in the first order DSD theory [17]) as well as for
cylindrical charge geometry due the introduction of geometric source
terms.

In order to increase the range over which the higher order theory is
valid, an extended theory based on the exact shock-change equation
is also given in [14], where the single unknown term in the equa-
tion is approximated using the higher-order DSD theory results. For
lower detonation speeds, this extended theory gives results which are
significantly different to the higher DSD theory (J. Bdzil, private com-
munication), and which are in much better agreement with the results
for front shapes and speeds from numerical simulations [14]. However,
this shock-change equation based theory is essentially only a front
propagation law, and one cannot reconstruct the flow field behind
the shock (e.g. along the charge axis or the explosive-inert interface)
from this, since the equation on which it is based is valid only at the
shock. Furthermore, this front propagation theory has again only been
developed for the simple pressure dependent rate law with square root
depletion and a polytropic equation of state in slab geometry.

Hence in order to investigate highly non-ideal steady detonations
in cylindrical charges, including the details of the reactive flow field in
the reaction zone and detonation products, one must currently resort
to direct numerical simulations of the full reactive Euler equations.
Aslam and co-workers [5][10][14][16] performed several simulations in
two-dimensional slab geometry. Their main interest was in validating or
comparing with various aspects of DSD theory. However, a major result
of this work was to show that for reasonably accurate results, numerical
resolutions of more than about 50 numerical grid points in the reaction
zone length are required [14]. Importantly, this raises severe questions
regarding the validity of engineering style calculations, which typically
only use 4-10 grid points in the reaction zone (e.g. [18]). Axisymmetric
simulations of cylindrical charges were performed in [19]. They found
that for small charge diameters the sonic locus in the steady state wave
could be different to that in the analysis in [4]. However, the calculations
were less accurate than those of Aslam and co-workers, and they only
presented results for two (unconfined) cases. Some simulations in slab
geometry have also been performed in [20], but were interested only in
comparing numerical methods, rather than in the details of the solution.
Hence parametric studies of detonations in cylindrical charges using
high-resolution simulations are needed.
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Non-ideal detonations 5

In this paper we perform such high-resolution studies of non-ideal
detonations in cylindrical charges for a simple reaction rate law and
equation of state. The purpose of the paper is three-fold: (i) to provide
complete two-dimensional solutions which can be used for assessing and
improving approximate theories (e.g., we use the results to show that
a significant improvement to Wood-Kirkwood theory for determining
the axial solution is provided by a quasi-one-dimensional theory); (ii)
to investigate how the qualitative nature of the reaction zone structure
changes with charge diameter and with the degree of confinement; (iii)
to examine and identify some numerical issues that arise in such simu-
lations, even when simple models are used. We stress here at the outset
that this paper is not concerned with modelling of a specific explosive,
nor in detailed modelling of reaction rates or equations of states for such
explosives, nor in explicit modelling of the heterogeneities inherent in
many non-ideal explosives. Finally, here we are concerned only with the
steady-state solutions, and not in the evolution to this steady-state.

2. The model

The governing equations of the model are the Reactive Euler equations,
which represent conservation of mass, momentum and energy coupled
to a chemical reaction,

Dρ

Dt
+ρ∇·v = 0, ρ

Dv

Dt
= −∇p,

De

Dt
− p

ρ2

Dρ

Dt
= 0,

Dλ

Dt
= W, (1)

(

D

Dt
=

∂

∂t
+ v · ∇

)

,

Here v is the material velocity, ρ is the material density, p the pressure,
e the internal energy per unit mass, λ a reaction progress variable (i.e.
λ = 0 in the initial explosive and λ = 1 in the completely burnt state),
with W the reaction rate.

Equations (1) are closed by specifying an equation of state (eos)
and a form for the reaction rate. For the purposes of the paper as
stated in the introduction, it is sufficient to use relatively simple, but
representative, eos and rate laws. Note first that theoretical detonation
curvature studies show that highly non-ideal detonations, which can
propagate even when the front curvature is large and at speeds which
depart significantly from the CJ speed, are associated with rate laws
which are not very state sensitive (e.g. [8][9][16]). While the main results
here are generic to non-ideal explosives, the rate and eos laws that are
used were chosen to be representative of commercial ANFO explosives,
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6 G. J. Sharpe & M. Braithwaite

namely

e =
p

(γ∗ − 1)ρ
− Qλ, γ∗ = γ0 + γ1

ρ

ρ0
+ γ2

ρ2

ρ2
0

, (2)

where Q is the heat of reaction and ρ0 is the initial density of the
explosive, and

W =
1

τ

(

p

pref

)(1.5)

(1 − λ), (3)

where

γ0 = 1.3333, γ1 = 0.36264, γ2 = 0.076288, pref = 1 GPa,

Q = 3.822 × 106 J kg−1

Hence a simple pseudo-polytropic eos given in equation (2) is used
to represent the thermodynamics of the explosive and its detonation
products (cf. [1]). This eos and its associated parameters are chosen to
give a match for adiabatic γ at both the CJ state and in the hot gaseous
products to those determined from an ideal (thermochemical equilib-
rium) detonation code, which is based on a fundamental intermolecular
potential based equation of state for the fluid state [21].

Note that for this eos the sound speed, c, is defined by

c2 =

[

p

ρ2
−

(

∂e

∂ρ

)](

∂e

∂p

)

−1

=
γ∗p

ρ
+

(

γ1

ρ0
+ 2γ2

ρ

ρ2
0

)

p

(γ∗ − 1)
. (4)

and adiabatic γ is then given by

γ =
ρc2

p
.

The 1.5 power for the pressure dependence in the reaction rate
was chosen from a best fit of the results from an industrial Wood-
Kirkwood code with experimental data (I. Parker, C. Cunningham,
private communications), while the value of the rate constant is taken
to be

τ = 28 µs,

which was chosen so that the detonation speed determined from the
numerical simulations agreed well with the experimental result for the
case of an unconfined explosive with a charge diameter of 100 mm.

Note that our choice of rate law and eos can be considered one of
a commonly used class of models with pressure dependent rate laws
of the form kpn(1 − λ)m (k a rate constant) and equations of state of
the form e = p/((γ∗ − 1)ρ), as used in previous rate-stick simulations
(the case n = 0, m = 1/2, γ∗ = γ = 3 was considered in [20], results
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Non-ideal detonations 7

for n = 1, m = 1, γ∗ = γ = 1.4 were given in [19], while Aslam and
co-workers [5][10][14][16] used m = 1/2, γ∗ = γ = 3 and n = 0, 1, 2
and 3). Some additional results with a different choice of the eos and
rate parameters are given in the Appendix, which shows that the main
results and conclusions described in section 5 below are not sensitive to
the choice parameters for this class of models. Note also that even the
more complex, semi-empirical rate laws often used to model specific
explosives (e.g. [1]) are essentially pressure dependent rates.

For our choice of model parameters, we also fix the initial pressure
and density of the explosive, p0 and ρ0 respectively, to be

p0 = 1 × 105 Pa, ρ0 = 0.8 g/cm3.

Here we are concerned with detonations in cylindrical rate sticks,
and therefore solve the two-dimensional, axially symmetric version of
equations (1), i.e. in (r, z) co-ordinates. The material velocity is then
v = (u, w), where u and w are the radial and axial components,
respectively.

We also need to model the effects of different confinements. In this
work we are concerned with how the confinement affects the detonation
wave in the explosive, rather than in the motion of the confinement.
Hence in order to model confinement we simply include an inert ma-
terial surrounding the explosive which has the same properties as the
explosive itself (apart from being non-reactive), i.e. the inert is taken
to have an equation of state as in the explosive, given by the first term
in the definition of e in equation (2). Since the explosive and confining
inert are in mechanical equilibrium, the initial pressure of the confining
inert is equal to that in the explosive (1 × 105 Pa). Increasing confine-
ment effects can then be modelled by varying the initial density of the
inert, ρI . While simple, this model allows us to consider all cases from
completely unconfined (ρI → 0, for which the inert then behaves as an
ideal gas) to infinite confinement (ρI → ∞, for which the inert behaves
as a solid, immovable wall). Also, from a numerical perspective, this
is very efficient since it allows us to solve the whole system (explosive
and inert) as a single material with the interface numerically captured,
and hence this avoids unresolved numerical and closure issues involved
in tracking and keeping a sharp interface between the explosive and
inert, which is required when the inert material has markedly different
properties to that of the explosive. Note that [19] and [20] used the
same approach for modelling confinement.

Hence the remaining parameters to vary are the charge diameter,
d, and the initial density of the confining inert, ρI . In order to explore
the effects of both charge diameter and confinement several cases were
considered, for which d and ρI are given in table II.
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8 G. J. Sharpe & M. Braithwaite

3. Numerical method

To perform the numerical simulations in this paper we use the hierarchi-
cally adaptive grid code, Cobra, which has been developed for industrial
applications by Mantis Numerics Ltd., and is described more fully in
[22]. To summarize, it is a second-order Godunov (shock capturing)
scheme, which employs a hierarchical series of grids G0, . . . , GN , such
that the grid Gn has mesh spacing h/2n, where h is the mesh spacing
on the base grid G0. The higher grids only occupy regions where in-
creased resolution is required. Refinement of the grids is controlled by
comparing the solutions of each physical variable, and also their rates
of change, on grids Gn and Gn−1. For detonation calculations we also
ensure that the whole reaction zone is also refined to the highest grid, by
forcing grid refinement whenever the size of the reaction rate is above
some small value. This grid adaptivity makes the code particularly
suitable for detonation simulations, where high resolution is required
in the detonation reaction zone, but this reaction zone usually occupies
only a very small part of the explosive.

The numerical domain is rectangular in (r, z) co-ordinates. The ex-
plosive initially lies in the region r ≤ d/2, with the surrounding inert
initially in the region d/2 < r ≤ R, where R is the width of the domain
in the radial direction. The boundary condition at r = 0 is a symmetry
condition, while an outflow boundary condition was used at r = R, as
in [19]. The thickness of the inert in the domain was 50 mm for all
cases, i.e. R = d/2+50. Outflow/inflow boundary conditions were also
used at the boundaries in the z-direction.

In this study we are interested only in the steady propagation of
the detonation through the explosive. Hence the initial conditions for
the calculations were chosen so that the steady state was reached as
quickly as possible in the simulations. After some experimentation it
was found that this was achieved by initializing the calculations by
placing the steady, planar ZND detonation wave onto the grid in the
explosive region r ≤ d/2, with the shock initially lying along z = 0 and
the reaction zone lying in the region z < 0. Figure 1 shows profiles of
pressure and λ in the ZND (plane) detonation. The detonation speed,
shock pressure, CJ pressure (the pressure at the sonic point at the end
of the reaction zone) and the 99% reaction length (the distance between
the shock and the point where λ = 0.99) for the ZND detonation are

DCJ = 4.797 km/s, pshk = 10.3 GPa, pCJ = 4.88 GPa,

l99 = 23.1 mm.

Note that the simulations are performed in the rest frame of the ini-
tial explosive, so that the detonation propagates through the numerical
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Figure 1. (a) Pressure and (b) reaction progress variable against distance behind
the shock in the plane ZND detonation.

grid in the positive z-direction. The left (rear) z boundary was placed
sufficiently far (160 mm) behind the initial shock position so that it
had little affect during the time of the simulations, while the right z
boundary was placed 800 mm ahead of it. The calculations were run
until the detonation became steady in its own rest frame, i.e. when its
speed and reaction zone structure became independent of time. Once
the steady-state was achieved, the results were transformed back into
the rest frame of the detonation. Hence note that for all the results
below, the axial material velocity corresponds to the shock rest-frame
measured velocity, while the z co-ordinate is the axial distance from
the position of the shock front at the axis.

In the simulations presented here, the interface is captured and hence
becomes smeared across a few grid cells behind the shock. Since we are
using a conservative scheme and considering a single fluid (same eos in
explosive and inert), the flow variables on either side of the captured
interface should be correct provided the resolution is sufficiently high
such that its numerical thickness is much thinner than any other length
scale in the problem. This a standard approach (cf. [19][20]). The thick-
ness of the captured interface can be seen in the density contour plots
in figure 4, which shows that in the detonation driving zone (the part
of the solution which can affect the front propagation) the captured
interface remains very thin on the reaction zone scale. In order to
determine the ‘location’ of the interface, an advecting scalar is also
tracked in the numerics which is initially unity in the explosive and
zero in the inert. The interface ‘locus’ plotted in the figures in this
paper are the contours where this scalar is equal to a half.
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10 G. J. Sharpe & M. Braithwaite

Table I. Properties of axial solution as a function of numer-
ical resolution for ρI = 0.8 g/cm3 and d = 100 mm. ∆ is
the numerical grid spacing in the reaction zone, points/lDDZ

is the number of grid points between the shock and sonic
loci along the charge axis, D is the detonation speed in the
axial direction, pshk is the numerical shock pressure on the
axis, λshk is the amount of burning within the numerically
smeared shock on the axis.

∆ (mm) points/lDDZ D (km/s) pshk (GPa) λshk

0.1 149 3.13 4.32 0.05

0.2 74.5 3.12 4.24 0.09

0.4 37.3 3.10 4.11 0.12

0.8 18.7 3.05 3.88 0.15

1.6 9.3 3.01 3.67 0.21

3.2 4.7 2.93 3.25 0.52

4. Numerical resolution study

An important numerical question is how much resolution is required to
obtain well converged numerical solutions for the steady-state non-ideal
detonation problem? While engineering style calculations often use just
a few (of the order of 10 or less) numerical grid points in the reaction
zone [18], Aslam and co-workers [5][14][16] found that at least about
50 points in the reaction zone were necessary for reasonably accurate
detonation speeds for their model. This is not surprising since the
steady state non-ideal detonation is essentially an eigenvalue problem,
i.e. the speed and structure of the wave are nonlinearly coupled.

Here we are interested in the full solution of the two-dimensional
detonation driving zone (e.g. shock shapes, axial solution, etc.), and
it is therefore important to perform numerical resolution studies in
order to ensure that the full numerical solution (not just the axial
detonation speed) is well converged for non-ideal detonation problems.
Furthermore, such a study is also useful in identifying and determining
the effects of numerical artifacts inherent in shock capturing schemes
on the non-ideal detonation solution (see below).

Table I shows the dependence of the solution along the charge axis on
the numerical resolution for the case d = 100 mm, ρI = ρ0 = 0.8 g/cm3.
Here ∆ is the grid spacing on the finest grid, which covers the reaction
zone, lDDZ is the non-ideal axial detonation driving zone length (i.e.
the distance between the shock and sonic locus along the charge axis)
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Non-ideal detonations 11

in the steady state (14.9 mm in this case), pshk is the shock pressure
at the axis. Note that we are using a shock capturing scheme, as is the
case for all previous simulations of the ratestick problem, which means
that the shock is spread over a few numerical grid points, with the
majority of the pressure rise over 2 to 3 grid points. Since the rate is
maximum just behind the shock in these types of reaction models, there
will also be some burning occurring in the captured shock (cf. [19]), i.e.
the smeared shock and reaction overlap to some extent in the numerical
solution. Hence also given in table I is the value of the reaction progress
variable at the axis at the point where the pressure is a maximum, λshk

(i.e. the degree of burning that occurs in the numerical shock). As the
resolution increases and the shock becomes thinner, particles spend less
time in the shock and hence this effect is decreased. However, one im-
portant ramification of this is that the normal speed of the wave in the
simulation is not related directly to the numerically calculated shock
pressure through the inert shock jump conditions, because some heat
release has also occurred in the numerical shock. Indeed, this burning
in the shock lowers the peak pressure for a given value of D. Hence in
order to determine D, once the wave has reached steady state in the
simulations (typical taken to be once the axial numerical shock pressure
has stopped decreasing), the detonation is allowed to propagate further
over many reaction times (until it is near the right z-boundary) and
the speed determined by the distance it has propagated in this time of
steady propagation.

There is also a further numerical effect acting (and interacting with
the burning within the shock) which results in a lower apparent shock
pressure. For simple pressure dependent rate laws as used here, the
pressures profiles have a well defined von Neumann spike, as in figure
1. When such spiky profiles are discretized and averaged over a grid
cell, the spike is ‘clipped’ resulting in a lower numerical shock pressure
than in the exact solution. The amount of shock ‘clipping’ that occurs
depends on the location of the physical spike with respect to the cell
centre.

Returning to table I, we see that for our highest resolution of 0.1 mm
(or about 150 points in the axial DDZ), the detonation speed is well
converged, and less than 5% of the burning occurs within the numerical
shock structure. The shock pressure is less well converged than the wave
speed because of the well defined von Neumann spike, so that extremely
high resolution would be required to prevent significant shock clipping.
As the resolution decreases and drops below about 50 points/lDDZ , the
solution quickly degrades. For engineering calculation type resolutions
(e.g. the lowest two resolutions in table I), the numerical detonation
speed and shock pressures and significantly below the converged val-
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Figure 2. Numerical shock pressure versus radial position for ρI = 0.8 g/cm3,
d = 100 mm and numerical resolutions ∆=0.1 mm (solid line), 0.2 mm (dashed
line), 0.4 mm (dot-dashed line), 0.8 mm (double-dot-dashed line), 1.6 mm
(triple-dot-dashed line) and 3.2 mm (dotted line).

ues, while a large amount of the burning actually occurs within the
numerical shock (over 50% for 5 points in the reaction zone).

Figure 2 shows the convergence of the shock pressure variation from
the charge axis to the edge with numerical resolution. The lower the
resolution, the more the shock pressure is underestimated across the en-
tire charge diameter, as well as at the axis. However, note the numerical
oscillations in the shock pressure with radius, and that the amplitude
and wavelength of these oscillations decrease as the resolution increases.
This is due to shock clipping, with the amount of clipping being depen-
dent on the relative position of the von Neumann spike with respect
to the cell centre, and the alignment of the shock with the grid. Such
shock pressure oscillations are inherent in shock capturing schemes,
indeed very similar oscillations can be seen in figure 7 of [19], which
have relatively large amplitude due to the low resolutions used in that
work.

With regard to the shock shape, any measure of the captured shock
position in the numerics can of course only be at best accurate to within
one numerical grid cell. Here we take the shock ‘position’ for a given r
to be the cell in which the pressure is a maximum in the z-direction.
Figure 3 shows the numerical shock loci for various resolutions. Clearly,
very high resolution is also required to obtain a good representation
of the shock shape on the grid. Note that it is difficult to determine
local curvatures and shock normal angles from the data due to the
finite resolution, in that on the grid scale the shock can look locally
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Figure 3. Numerical shock position based on cell in which pressure is maximum in
axial direction for ρI = 0.8 g/cm3, d = 100 mm and numerical resolutions, ∆, of (a)
0.1 mm, (b) 0.4 mm, (c) 0.8 mm, (d) 3.2 mm.
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flat (this is especially true for engineering style resolutions, e.g. figure
3(d)). This is also an issue with experiments, due to the finite resolution
of experimental techniques for measuring shock shapes [11][13]. Note
that the radial positions at which the numerical shock location jumps
to lower axial cell positions in figure 3 correspond to the positions of
the local minimums in the shock pressure oscillations in figure 2.

Our approach for determining the shape and local curvatures is to
fit a curve through the data, as is done for experimental shock shapes
[11][12][13]. However, there is still some ambiguity in the fit due to
the local flatness of the data, but the error in the fit decreases with
resolution. On the other hand, for lower resolutions, it can be seen that
it would be very difficult to accurately determine the shock shapes.

In this paper we use a resolution of ∆ = 0.1 mm throughout. A
significantly higher resolution would be computationally prohibitive,
even with our adaptive code. As can be seen above, this resolution is
sufficient to obtain well converged solutions, at least for unconfined and
lightly confined charges. However, as the confinement (ρI) increases, the
shock front becomes flatter, and hence the shock shape and curvature
become less well represented on the grid for a fixed resolution. Also, as
ρI increases (for fixed diameter) the detonation speed and hence shock
pressures increase, resulting in a higher reaction rate in the cells near
the peak pressure and thus more shock burning and clipping for a fixed
resolution. Hence even though our resolution of ∆ = 0.1 mm, which
corresponds to at least 149 points/lDDZ (depending on confinement), is,
as far as we are aware, the highest resolution of ratestick simulations
published so far (in terms of points per reaction zone length), some
caution must still be attached in considering the very highly confined
simulations as being well converged solutions.

5. Results

Consider first a ‘base case’ with d = 100 mm and ρI = ρ0 = 0.8
g/cm3, for which the speed of the steady state detonation in the axial
direction is 3.13 km/s (or 0.652DCJ). Figure 4 shows the pressure,
density and reaction progress variable for the steady-state detonation
in this case. Figure 5 shows the position of the shock, sonic locus and
the explosive-inert interface. The sonic locus is defined as the curve on
which

M =

√
u2 + w2

c
= 1,

where M is the local Mach number. Hence the region which governs the
propagation of the front, or the detonation driving zone (DDZ), is that
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Figure 4. Contour plots of (a) pressure (contours of 0.7, 1.1, 1.5, 1.9, 2.3, 2.7, 3.1,
3.5, 3.9 and 4.3 GPa), (b) density (contours of 0.6, 0.75, 0.9, 1.05, 1.2, 1.35, 1.5,
1.65 and 1.8 g/cm3) and (c) reaction progress variable (contours of 0.01, 0.1, 0.2,
0.3, 0.4, 0.5, 0.6, 0.7 and 0.8), for d = 100 mm and ρI = 0.8 g/cm3.

between the shock and sonic locus. Note that close inspection of the
near edge structures show that for this case the sonic locus intersects
the explosive/inert interface very slightly below the shock front, and
thus the post-shock flow in the explosive at the edge is slightly subsonic.
Hence for this case the detonation is very weakly confined by the inert,
since once the confinement is sufficiently weak that the flow at the edge
becomes sonic, the DDZ becomes decoupled from the inert confiner
because the flow along the explosive-inert interface is supersonic.

Note from figure 4(c) that in this very weakly confined case, the
burning does not proceed to completion in the steady wave. Figure
11(b) shows the axial profile of λ. The burning is effectively quenched
in the expansion behind the sonic locus (λ asymptotes to 0.9 with
distance behind the shock in this case). Note the pressure and hence
reaction rate near the explosive-inert interface is much lower than at
the axis. Hence as one approaches the interface a layer of only slightly
burned material is formed (see figure 4c). However, the quenching of the
reaction rate occurs behind the sonic locus, and hence it is immaterial
to the propagation of the front.
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Figure 5. Shock locus (solid line), sonic locus (dashed line) and explosive/inert
interface position (dotted line) for d = 100 mm and ρI = 0.8 g/cm3.
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Figure 6. Shock locus (dotted line) for d = 100 mm and ρI = 0.8 g/cm3, and ellipse
of the form (5) with α = 31.57, β = 63.37 (solid line).

In order to examine the shape of the shock in the explosive, an ellipse
of the form

(z + α)2

α2
+

r2

β2
= 1 (5)

was fitted through the shock locus data from the simulation. Figure 6
shows the comparison of an ellipse of the form in equation (5) (with
α = 31.57 and β = 63.37) with the numerical shock locus, from which
it can be seen that the ellipse can be fit very well to the locus in the
explosive, i.e. in the region r ≤ 50 mm. Interestingly, it was found in
[12] that experimental shock shapes in highly non-ideal explosives could
also be well fitted to ellipses, which is not true for more ideal explosives
[12].

5.1. Effect of charge diameter

Figure 7 shows the shock, interface and sonic loci when ρI = 0.8 g/cm3,
but now for larger charge diameters of 150 and 200 mm. The wave speed
is 3.73 km/s (0.778 DCJ) for d = 150 mm, and 4.02 km/s (0.837 DCJ)
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Figure 7. Shock locus (solid lines), sonic locus (dashed lines) and explosive/inert
interface position (dotted lines) for ρI = 0.8 g/cm3 and (a) d = 150 mm and (b)
d = 200 mm.

for d = 200 mm. Again, in both cases an ellipse can be fitted well to
the shock locus in the explosive. These fits show that the curvature of
the shock at the axis decreases as d increases (see §5.3). Since the det-
onation speed increases with diameter, and hence the shock pressures
and reaction rates also increase everywhere, the layer of partially burnt
material near the explosive-inert interface becomes thinner. For d = 150
mm, λ asymptotes to about 0.97 with distance along the axis, while for
d = 200 the burning eventually proceeds all the way to completion.

A point to note from figure 7 is that, although the detonation speed
tends to the CJ speed and the front become less curved as d increases,
the lag between the shock position at the axis and that at the edge
increases with d. A similar result was found in [4] for the leading order
DSD theory, where it was shown that as d → ∞, the lag in the edge
shock position tends to infinity.

Figure 8 shows the loci (including the sonic loci) for the three di-
ameters considered, d = 100, 150 and 200 mm, when ρ0 = 0.8 g/cm3,
but with the origin relocated to the shock/interface intersection point
at the charge edge in each case. It can be seen that each of the shock,
sonic and interface loci all overlay for the different diameters in a region
within about 5mm of the edge. Since figure 8 shows the structure of all
the loci sufficiently near the edge is not sensitive to d, this suggests that,
for a given inert, a single simulation could be run for one diameter, and
then the resulting near edge structure could be used to determine the
near edge properties for other diameters without further simulations.
This information could then be used in theoretical approaches to the
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Figure 8. Shock, sonic and explosive/inert interface loci for ρI = 0.8 g/cm3 and
d = 100 mm (solid lines), d = 150 mm (dashed lines) and d = 200 mm (dotted
lines). In each case, the origin has been relocated to the point on the charge edge
where the shocks and explosive-inert interface intersect.

two-dimensional steady detonation problem as edge boundary condi-
tions, e.g. to determine diameter effects, without the need for further
simulations.

Finally, note the qualitative change in the nature of the sonic locus
as the diameter decreases. For larger d, the z-position of the locus
has a local minimum at a radial position towards the charge edge.
However, as d decreases, this minimum in the z-position becomes less
pronounced. This agrees with the result in [19], where it was found that
for sufficiently small diameters the sonic locus has no internal minimum
in the axial position.

5.2. Effect of confinement

Figure 9 shows the shock, interface and sonic loci for a fixed diameter
of d = 100 mm, but for three different densities of the inert (0.6, 2 and
4 g/cm3), giving different levels of confinement.

For ρI = 0.6 g/cm3, figure 9(a) shows that the sonic locus and
shock intersect at the charge edge. For comparison the base case (with
ρI = 0.8 g/cm3) loci are also shown in figure 9(a). For most of the
charge radius the loci for the two cases are in good agreement. However,
as the edge is approached they begin to diverge, especially the sonic
loci. A result of this small difference in structures near the edge is that
slightly less heat release occurs within the DDZ for ρI = 0.6 g/cm3

than in the base case, so that the axial speed is also slightly lower
(3.11 km/s, as compared with 3.13 km/s for the base case). Note that
since the flow is sonic at the edge behind the shock, this case can be
considered to be ‘unconfined’ in that the DDZ is not in communication
with the confinement as the flow along the interface is supersonic. Thus
any further decrease in the inert density does not affect the explosive
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Figure 9. Shock locus (solid lines), sonic locus (dashed lines) and explosive/inert
interface position (dotted lines) for d = 100 mm and (a) ρI = 0.6 g/cm3 (also shown
as dot-dashed lines are the loci for ρI = 0.8 g/cm3), (b) ρI = 2 g/cm3 and (c) ρI = 4
g/cm3.

DDZ (e.g. the axial speed or shock and sonic loci shapes of the steady
detonation) [23], but as ρI decreases further there is an ever stronger
Prandtl-Meyer fan embedded between the sonic locus and the interface
[4]. A fit of an ellipse to the shock locus in the explosive for the uncon-
fined case also shows that at the axis the shock is slightly more curved
than as compared to the base case (see table II).

As ρI , and hence the degree of confinement increases for fixed d, the
detonation tends to that of the planar CJ wave (the infinite confinement
solution). Indeed, the detonation speed increases (see table II), and
as can be seen in figures 9(b,c), the shock front also becomes less
curved, the sonic locus also becomes flatter and the post-shock flow
in the explosive becomes increasingly subsonic at the edge, so that the
distance between the shock and the sonic locus increases there. Thus for
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a given diameter and sufficiently large ρI , the detonation will become
close to CJ and hence the asymptotic DSD theories will become valid.
Note also that the angle between the interface and the axis (i.e. the
flow deflection angle) decreases as the confinement increases. For these
confined cases, ahead of the sonic locus the interface separates subsonic
flow in the explosive from supersonic flow in the inert. Note that for
fixed diameter and increasing confinement the local minimum in the z-
position of the sonic locus moves towards the axis, and for high enough
confinement the sonic locus slope becomes positive across the whole
charge radius.

For the confined cases we find the shock front shape in the explosive
can still be well fitted by the arc of an ellipse apart from a very small
boundary layer region adjacent to the egde [4]. However, for very high
confinements, such as the case with ρI = 4 g/cm3 shown in figure 9(c),
the shock shape becomes too flat to be well represented on the grid at
the resolution we are using.

5.3. Axial solution and quasi-one-dimensional analysis

Table II shows various properties of the axial solution for all of the cases
which were simulated. These have been placed in order of ascending det-
onation speed in table II, from which it can be seen that the properties
of the axial solution depend parametrically only on the axial detonation
speed for both varying diameter and confinement (with the diameter or
confinement serving to modify this speed). For example, figure 10 shows
the numerical data points for the axial radius of curvature of the shock
(Rshk) against the detonation speed, which shows that all the data
points appear to lie on a single curve. Hence as the detonation speed
increases, the shock locus always becomes flatter at the axis. Also, table
II shows that, as expected, for higher detonation speeds the pressure
throughout the reaction zone increases and hence the explosive burns
more rapidly due to higher reaction rates. However, perhaps counter-
intuitively, the axial DDZ length increases as the speed increases. This
is due to the fact that, although the reaction rates are lower for smaller
D, resulting in longer overall reaction lengths, the sonic point moves
to an increasingly unburnt state (smaller λCJ) as D decreases (cf. [7]).

The fact that the axial solution depends only parametrically on the
detonation speed (or alternatively on the radius of curvature of the
shock at the axis), suggests that this dependence is governed by a simple
Dn − κ law, e.g. as determined by a quasi-one-dimensional analysis.

Here we determine if the numerical results do indeed agree with such
a quasi-one-dimensional theory. In order to perform such an analysis,
the steady Reactive Euler equations are first transformed from (r, z) co-
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Table II. Properties of solution along the axis: D is the detonation speed; Rshk is
the radius of curvature of the shock; pshk is the shock pressure; pCJ is the pressure at
the sonic point; lDDZ is the DDZ length (distance between shock and sonic point);
l99 is the 99% reaction length (distance between shock and point where λ = 0.99);
λCJ is the value of the reaction progress variable at the sonic point.

d (mm) ρI (g/cm3) D (km/s) Rshk (mm) pshk (GPa) pCJ (GPa)

100 0.6 3.11 125.5 4.26 1.98

100 0.8 3.13 127.3 4.32 2.01

100 2.0 3.57 177.6 5.63 2.65

150 0.8 3.73 211.1 6.12 2.89

100 4.0 3.98 284.6 6.97 3.31

200 0.8 4.02 309.0 7.09 3.37

100 6.0 4.19 415.7 7.71 3.68

100 8.0 4.32 573.7 8.22 3.92

lDDZ (mm) l99 (mm) λCJ

14.9 - 0.73

14.9 - 0.73

15.6 - 0.83

16.2 - 0.86

16.6 107.0 0.90

17.3 69.5 0.91

17.6 58.2 0.93

18.6 44.9 0.95

ordinates to a shock-attached co-ordinate system (n, ξ) where n is the
normal distance of any point from the shock (with positive (negative)
values corresponding to points ahead (behind) the shock) and ξ is the
arclength along the shock (measured from the charge axis).

In such a co-ordinate system, the governing equations transform to

∂(ρun)

∂n
+

κρ(un + Dn)

1 + nκ
= R1, un

∂un

dn
+

1

ρ

∂p

∂n
= R2,

∂e

∂n
− p

ρ2

∂ρ

∂n
= R3,

∂λ

∂n
− W

un

= R4, (6)

where κ(ξ) is the curvature of the shock and Dn(ξ) is the normal com-
ponent of the shock speed, at an arclength of ξ from the axis along the
shock, while un is the component of material velocity in the n direction.
R1 to R4 contain terms involving partial derivatives with respect to ξ or
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Figure 10. Axial detonation speed versus axial radius of curvature of the shock.
Circles are data points from numerical simulations. The solid line is the Dn − R
relation from the quasi-one-dimensional analysis.

involving uξ, the component of the material velocity in the ξ direction
(these terms are given in [24] or [25]).

The quasi-one-dimensional approximation is then that the variables
vary slowly in the ξ direction along the shock, i.e. that the ξ-derivative
terms in R1 to R4 are negligible. If this approximation is valid, the
variables depend, to leading order, only parametrically on ξ through
the values of κ(ξ) and Dn(ξ). The reduced form of equations (6) can
then be manipulated into the form

dρ

dn
=

−Q(γ − 1)ρW/un + κ∗ρun(un + Dn)

c2 − u2
n

,

dun

dn
=

Q(γ − 1)W − κ∗c2(un + Dn)

c2 − u2
n

, (7)

dλ

dn
=

W

un

,

where κ∗ = κ/(1 + nκ), c is given by equation (4) and

p =
(γ − 1)ρ

γ

[

D2
n − u2

n

2
+ Qλ

]

. (8)

(note that the strong shock approximation has been used to derive
equation (8))

Hence equations (7) are a set of three ordinary differential equations
in three unknowns (ρ, un and λ). These are subject to the shock jump
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Figure 11. Axial profiles of (a) pressure and (b) reaction progress variable against
distance from the quasi-one-dimensional theory with R = 127.3 mm (solid line) and
from numerical simulation with d = 100 mm, ρI = 0.8 g/cm3 (dashed line).

conditions, which determine the values of ρ, un at the shock for a given
value of Dn (note λ = 0 behind the shock), and to a generalized CJ
or compatibility condition that the numerator in the right hand side
of the first two of equations (7) are zero when the flow is sonic (i.e.
when the denominator is simultaneously zero). The resulting boundary
value problem is thus an eigenvalue problem for Dn (for fixed κ). The
numerical shooting method for solving this problem is described in [7]
and [8]. By varying κ one can then map out a quasi-one-dimensional
Dn − κ relation. Note that here that no assumption has been made
regarding the size of κ.

Specializing to the axis, the axial radius of curvature is related to
the curvature by Rshk = 2/κ and hence one can instead determine a
quasi-one-dimensional (Q1D) Dn−Rshk relationship, which is shown in
figure 10. Note that the numerical simulation data points in figure 10
are all in excellent agreement with the quasi-one-dimensional theory,
indicating that the Q1D approximation holds very well for the axial
solution, but importantly note also that the Q1D is not exact on the
axis, one term in R1 is not zero there [14], however higher order DSD
analysis indicate this term is numerically small on the axis (J. Bdzil,
private communication). Indeed, our results show this term has little
influence on the axis, even when the detonation speed is significantly
below the CJ speed. Figure 11 also shows a comparison between the
axial pressure and λ profiles from the base case simulation, with that
predicted by the Q1D theory using the axial shock radius of curvature
determined from the simulation, from which it can be seen that the
Q1D solution gives excellent agreement with the axial solution from
the simulations.
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The fact that, given the axial radius of curvature of the shock,
the Q1D theory gives accurate predictions of the detonation speed
and the axial solution, even for highly non-ideal detonations, is an
important result because in industry Wood-Kirkwood codes tend to
be used for such predictions. However WK theory is incomplete since,
even given Rshk, the theory contains an unknown function, namely
the axial flow divergence (∂u/∂r)r=0, about which some assumption
needs to be made. In terms of the version of the WK theory presented
for example in [26], on the axis the Q1D theory is directly related to
the WK theory: the unknown flow divergence term in WK is simply
replaced by the appropriate Q1D curvature term. However, typically
industrial versions of WK theory involve an additional variable and
equation (the ‘central stream tube area’), as well as further assumptions
[1], than in the simpler form in [26]. Hence the Q1D theory is actually
a simpler system to solve than in these industrial WK theories, with
fewer governing equations, but it is also less obvious how the two are
directly related in this case. Note that for a given explosive model, the
Q1D theory is still incomplete in that, as in WK theory, one still needs
to make some assumptions about how Rshk is dependent on the charge
diameter and confinement. However given such an assumption, the Q1D
theory has no other unknowns, and hence avoids the main uncertainty
in WK theory (namely the unknown axial flow divergence function).
Finally, in the Q1D approximation we have made no assumptions about
the flow being weakly curved (or slightly divergent), instead the full
Q1D equations have been solved numerically for arbitrary Rshk (or
κ). As can be seen from figure 10, this Q1D theory gives very good
results even at detonation speeds significantly below the CJ speed.
Hence, given a reaction rate and an eos model, the Q1D theory offers
a significant improvement to WK codes currently used in defence and
commercial industries.

5.4. Dn − κ shock loci relations

We now investigate the validity of the Q1D approximation off-axis.
Note that, since we have found that the steady detonation shock loci
are well approximated by arcs of ellipses, one can analytically construct
Dn and κ at each point on the shock front from these fits, and hence
obtain a Dn − κ relationship for individual shock loci.

If the Q1D approximation holds off-axis then the Dn − κ relation
along an individual shock locus should be in good agreement with the
Q1D relation. Figure 12, which shows the Dn−κ curves along individual
shock loci from various numerical simulation runs as well as the Q1D
Dn−κ relation, reveals this is not the case. While the shock loci curves
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Figure 12. Normal detonation speed against curvature along individual shock loci
for d = 100 mm, ρI = 0.8 g/cm3 (dashed line), d = 100 mm, ρI = 0.6 g/cm3

(dot-dashed line), d = 150 mm, ρI = 0.8 g/cm3 (double-dot-dashed line), d = 200
mm, ρI = 0.8 g/cm3 (triple-dot-dashed line), d = 100 mm, ρI = 2 g/cm3 (solid
line). The dotted line is the quasi-one-dimensional Dn −κ relation. The squares and
circles mark the points where r is 50% and 90% of the charge radius, respectively.

all intersect the Q1D curve at r = 0, their slopes are different to that
of the Q1D relation. Furthermore, individual shock loci for different
confinements and diameters all lie along different curves. Hence the
Q1D approximation does not hold off axis, and ξ derivatives must be
important for ξ > 0.

This behaviour is in agreement with experimental shock shapes for
highly non-ideal explosives. Indeed, despite the fact that we have used
a simple model, the shock shapes in the Dn−κ plane are in remarkable
agreement with the experimental figures in [12] and [16] for ANFOs.
Also shown in figure 12 are markers which show where the points cor-
responding to 50% and 90% across the charge radius lie, from which
it can be seen that most of the Dn − κ variation along the shock front
occurs closer to the edge than to the axis.

The confined case with ρI = 2 g/cm3 shown as a solid line in figure
12 agrees better with the Q1D result than for the weakly or uncon-
fined cases for the same charge diameter. Indeed, for the confined case
shown, the curvature variation across the charge is much smaller than
for the weakly confined cases, showing that variations with ξ become
less pronounced for higher confinements (as the degree of confinement
increases further, the calculated shock shapes occupy a smaller and
smaller region in the Dn − κ plane). Hence the terms neglected in
equations (6) involving arc-length variations become smaller and thus
the Q1D approximation becomes better, as expected.
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6. Conclusions

In this paper we have used simple eos and rate law models to perform
numerical simulations of steady detonations in cylindrical charges of
non-ideal explosives. It was shown that very high resolutions, typically
an order of magnitude larger than used in engineering simulations,
are required for accurate (well converged) numerical results (for the
detonation speed, shock shapes, etc.), even when such simple rate and
eos models are used. For pressure dependent rate law models, as used
here, where the reaction rate is maximum at the shock front, burning
in the numerically smeared shock is an issue even for reasonably high
resolution.

We then used high resolution simulations to examine the qualita-
tive dependence of the two-dimensional steady solution on the charge
diameter and the degree of confinement. For our model, we found that
the shock shapes could be fitted well to an arc of an ellipse, with good
agreement with experimental shock shape dependencies. We also found
that the axial solution from the numerics depended parametrically on
the radius of curvature of the shock at the axis, with charge diameter or
confinement serving to modify the axial curvature. These axial results
agreed very well with an approximate quasi-one-dimensional theory,
even for highly non-ideal detonations which propagate significantly
below the Chapman-Jouguet speed. This quasi-one-dimensional theory
therefore offers an improvement over industrial Wood-Kirkwood codes,
both in terms of accuracy and mathematical simplicity.

In this paper we have used a simple confinement model since our
purpose was only to examine how different levels of confinement affect
the detonation wave and its structure. However, in many applications
one is also interested in how the passage of the detonation affects a
specific inert confiner, including confining layers of small thickness in
the radial direction. In these cases the eos for the inert model may
be markedly different from that of the explosive, and then simple cap-
turing of the interface as has been done here and in previous works
is no longer viable. Instead the interface must usually be tracked in
some way. However, the applicability and numerical issues involved
with different tracking algorithms for these types of reactive-inert in-
terface problems do not appear to have been properly studied (indeed
‘closure’ issues are known to exist). We intend to examine the strengths
and weaknesses of different tracking algorithms when applied to these
detonations problems in the future.

However, in the case where the confiner is sufficiently strong, one
can perform an asymptotic analysis of how the confiner reacts to a
given pressure loading along the interface, including the dependence on
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the inert thickness [27]. This analysis essentially provides the coupling
condition between the pressure loading and the shape of the deflected
inert. Currently, we are working on using this coupling condition to
develop a complete asymptotic solution to the fully coupled explosive-
inert interaction problem. This includes a DSD approximation for the
detonation in the interior of the explosive, but which includes boundary
layers adjacent to the interface where the DSD approximation breaks
down, and also for the deflection of the confiner.

We have also used simple eos and rate law models calibrated to
an ANFO like material in this paper. More complex semi-empirical
rate law and eos models exist for different types of explosives, but
performing fully resolved simulations with such models can increase the
computational cost dramatically. Indeed, typically these more complex
models have only be used for highly unresolved hydrocode simulations,
but proper mathematical analysis of the solutions and properties of
these models, or even resolved simulations of the steady state deto-
nation problem, are generally lacking. It is hence necessary to begin
examining these points more throughly by building a hierarchy of mod-
els of increasing complexity and examining their applicability. A proper
study and analysis of existing models is currently underway at LANL.

Finally, here we have only considered the final steady state solution.
Another point of interest is the evolution from various initial (initiation)
conditions to the steady state, including run-up distances (the distance
the shock travels from the initiation site to the achievement of steady
state). It would also hence be worth examining this evolution using
simulations of different initiation processes.

7. Appendix

In the main body of the text, the results were given for eos and rate
law parameter choices that were calibrated to an ANFO like material.
However, simulations for several different parameter choices were ad-
ditionally ran for the widely used simple class of model with weakly
pressure dependent rate law of the form kpn(1 − λ)m and pseudo-
polytropic eos e = p/((γ∗ − 1)ρ), to ensure our the main points and
conclusions were not sensitive to the specific choice of parameters. This
was indeed found to be the case. For example, figures 13 and 14 show
some additional results for n = 1, m = 1/2, γ∗ = 3 (i.e. for a different
choice of both the rate and eos parameters than used in section 5). The
point to note from these figures is that the main results and conclusions
described in section 5 also apply for a different choice of the rate and
eos parameters. (NB. since we are not calibrating to a specific explosive
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Figure 13. Shock, sonic and explosive/inert interface loci for n = 1, m = 1/2, γ∗ = 3
and (a) ρI = 1 and d = 30 (solid lines), d = 45 (dashed lines) and d = 60 (dotted
lines) (the origin has been relocated to the point on the charge edge where the shocks
and interface intersect) and (b) d = 30 with ρI = 2 (solid lines) and ρI = 5 (dashed
lines).
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Figure 14. (a) Axial detonation speed versus axial radius of curvature of the shock
from Q1D Dn −R relation (solid line) and from numerical simulations (circles), and
(b) Dn − κ relation from Q1D theory (dotted line) and along individual shock loci
for ρI = 1 and d = 30 (dashed line), 45 (dot-dashed line) and 60 (solid line), when
n = 1, m = 1/2, γ∗ = 3.

for these parameters, the results have been left in dimensionless form,
where the characteristic velocity is the CJ speed, the characteristic
density is the initial explosive density (ρ0 = 1 in dimensionless units)
and the characteristic length is the standard half-reaction length, i.e.
the distance between the shock and the point where λ = 0.5 in the
ZND wave). The resolution was of the order of 100 points in the axial
DDZ.

Acknowledgements

This work was funded by the Hybrid Stress Blast Model Consortium
project (principal project researchers: JKMRC, Itasca and AEL; project
sponsors: De Beers, Debswana, Dyno Nobel, Placer Dome Technical

ratestick.tex; 6/04/2006; 15:48; p.28



Non-ideal detonations 29

Services, CODELCO IM2, Rio Tinto Technical Services and Sandvik
Tamrock). GS also received additional research support and funding
from EPSRC and DSTL (UK) under the Joint Grant Scheme and the
DOE (USA). Cobra was used with permission from Mantis Numerics
Ltd. We would also like to thank Dr John Bdzil (LANL) for many
stimulating discussions.

References

1. I.J. Kirby and G.A. Leiper, A small divergent detonation theory for intermolec-
ular explosives. In 8th Symp. (Int.) on Detonation. Arlington: Office of Naval
Research (1985) pp.176–186.

2. W.M. Howard, L.E. Fried, P.C. Souers and P.A. Vitello, Calculation of chemical
detonation waves with hydrodynamics and a thermochemical equation of state.
In: M.D. Furnish, N.N. Thadhani and Y. Horie, (eds.), Shock Compression of
Condensed Matter. American institute of Physics (2001) pp.161–164.

3. W.W. Wood and J.G. Kirkwood, Diameter effect in condensed explosives - the
relation between velocity and radius of curvature of the detonation wave. J.
Chem. Phys. 22 (1954) 1920–1924.

4. J.B. Bdzil, Steady-state two-dimensional detonation. J. Fluid Mech. 108 (1981)
195–266.

5. J.B. Bdzil and T.D. Aslam, Detonation front models: theories and methods.
Los Alamos: Los Alamos National Laboratory Report LA-UR-02-942 (2000)
51pp.

6. J.B. Bdzil., W. Ficket and D.S. Stewart, Detonation shock dynamics: a new
approach to modeling multi-dimensional detonation waves. In 9th Symp. (Int.)
on Detonation. Arlington: Office of Naval Research (1989) pp.730–742

7. G.J. Sharpe, The effect of curvature on pathological detonations. Combust.
Flame 123 (2000) 68–81.

8. G.J. Sharpe, The structure of planar and curved detonation waves with
reversible reactions. Phys. Fluids 12 (2000) 3007-3020.

9. M. Short and G.J. Sharpe, Failure and ignition limits of three-step chain-
branching detonations. Combust. Theory Model. submitted.

10. T.D. Aslam and J.B. Bdzil, Numerical and theoretical investigations on
detonation-inert confinement interactions. In 12th Symp. (Int.) on Detonation.
Arlington: Office of Naval Research (2002) in print.

11. L.G. Hill, J.B. Bdzil and T.D. Aslam, Front curvature rate stick measurements
and detonation shock dynamics calibration for PBX 9502 over a wide temper-
ature range. In 11th Symp. (Int.) on Detonation. Arlington: Office of Naval
Research (1998) pp.1029–1037

12. D.L. Kennedy, Multi-valued normal shock velocity versus curvature relation-
ships for highly non-ideal explosives. In 11th Symp. (Int.) on Detonation.
Arlington: Office of Naval Research (1998) pp. 1pt181–192.

13. L.G. Hill, J.B. Bdzil, W.C. Davis and R. Engelke, Front curvature analysis and
detonation shock dynamics calibration fro pure and sensitized nitromethane.
In M.D. Furnish, L.C. Chhabildas and R.S. Hixson (eds), Shock Compression
of Condensed Matter. American institute of Physics (1999) pp.813-816.

ratestick.tex; 6/04/2006; 15:48; p.29



30 G. J. Sharpe & M. Braithwaite

14. T.D. Aslam, J.B. Bdzil and L.G. Hill, Extensions to DSD theory: analysis
of PBX 9502 rate stick data. In 11th Symp. (Int.) on Detonation. Arlington:
Office of Naval Research (1998) pp.21–29.

15. R.A. Catanach and L.G. Hill, Diameter effect curve and detonation curvature
measurements for ANFO, In M.D. Furnish, N.N. Thadhani and Y. Horie (eds),
Shock Compression of Condensed Matter, American institute of Physics (2001)
pp.906–909.

16. J.B. Bdzil, T.D. Aslam, R.A. Catanach, L.G. Hill and M. Short, DSD front
models: non-ideal explosive detonation in ANFO, Los Alamos: Los Alamos
National Laboratory Report LA-UR-02-4332 (2002) 11pp.

17. D.S. Stewart and J. Bdzil, The shock dynamics of stable multidimensional
detonation. Combust Flame 72 (1988) 311–323

18. P.C. Souers, R. Garza and P. Vitello, Ignition and growth and JWL++
detonation models in coarse zones, Propell., Expl., Pyrotech. 27 (2002) 62–71.

19. V.N. Gamezo and E.S. Oran, Reaction-zone structure of a steady-state
detonation wave in a cylindrical charge. Combust. Flame 109 (1997) 253–265.

20. J.F. Clarke, S. Karni, J.J. Quirk, P.L. Roe, L.G. Simmonds and E.F. Toro,
Numerical computation of two-dimensional unsteady detonation waves in high
energy solids. J. Comp. Phys. 106 (1993) 215-233.

21. T.L. Freeman, I. Gladwell, M. Braithwaite, W. Byers Brown, P.M. Lynch and
I.B. Parker, Modular software for modelling the ideal detonation of explosives.
Math. Eng. Ind. 3 (1991) 97–109.

22. G.J. Sharpe and S.A.E.G. Falle, One-dimensional nonlinear stability of patho-
logical detonations. J. Fluid Mech. 414 (2000) 339–366.

23. G.J. Sharpe, Supplement to HSBM research report on rate stick simulations.
Hybrid Stress Blast Model Project research report (2004) 5pp.

24. J. Yao and D.S. Stewart, On the dynamics of multi-dimensional detonation, J.
Fluid. Mech. 309 (1996) 225–275.

25. M. Short and J.B. Bdzil, Propagation laws for steady curved detonations with
chain-branching kinetics, J Fluid. Mech. 479 (2003) 39–64.

26. W. Fickett and W.C. Davis, Detonation.Berkeley: University of California Press
(1979) 386pp.

27. G.J. Sharpe and J.B. Bdzil, Interactions of inert confiners with explosives, J.
Eng. Math. (2005) submitted.

ratestick.tex; 6/04/2006; 15:48; p.30


