
This is a repository copy of Timing and tempo in spontaneous phonological error repair.

White Rose Research Online URL for this paper:
http://eprints.whiterose.ac.uk/78902/

Version: WRRO with coversheet

Article:

Plug, L and Carter, P (2014) Timing and tempo in spontaneous phonological error repair. 
Journal of Phonetics, 45. pp. 52-63. ISSN 0095-4470 

https://doi.org/10.1016/j.wocn.2014.03.007

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse 

Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless 
indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by 
national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of 
the full text version. This is indicated by the licence information on the White Rose Research Online record 
for the item. 

Takedown 

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by 
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request. 

mailto:eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/


promoting access to White Rose research papers 
   

White Rose Research Online 
eprints@whiterose.ac.uk 

 

 
 

Universities of Leeds, Sheffield and York 
http://eprints.whiterose.ac.uk/ 

 

 
 
This is an author produced version of a paper published in Journal of Phonetics. 
White Rose Research Online URL for this paper: 
 
http://eprints.whiterose.ac.uk/78902/ 
 

 
 
Paper: 
Plug, L and Carter, P (2014) Timing and tempo in spontaneous phonological 
error repair. Journal of Phonetics, 45. 52 - 63. 
 
 
http://dx.doi.org/10.1016/j.wocn.2014.03.007 

 

http://eprints.whiterose.ac.uk/78902/
http://dx.doi.org/10.1016/j.wocn.2014.03.007


1 
 

Timing and tempo in spontaneous phonological error repair 

 

Leendert Plug & Paul Carter 

University of Leeds 

 

Published in Journal of Phonetics 45: 52-63 

http://dx.doi.org/10.1016/j.wocn.2014.03.007 

 
 

Abstract 

This paper reports on a study of the temporal characteristics of phonological error repair in 

spontaneous Dutch speech, with a focus on how the articulation rate of the correct target word 

production — the repair — compares to that of the preceding erroneous target word attempt — the 

reparandum. The study is motivated by two findings from recent independent studies: first, that self-

repair is generally associated with relative temporal compression — that is, a local increase in 

articulation rate — following the repair initiation; second, that the timing of the repair initiation 

relative to the error is consequential for the prosody of the repair component. This study investigates 

to what extent these findings generalise to a collection of spontaneous phonological error repairs 

sampled from the Spoken Dutch Corpus. The study also asks how best to quantify repair timing, 

considers whether timing is consequential for the duration of the ‘offset-to-repair interval’, and tests 

for effects of lexical frequency. The results confirm that temporal compression following the repair 

initiation is more common than temporal expansion, and that repair timing has a significant effect on 

both offset-to-repair duration and repair tempo — at least in a subset of the data. A frequency effect 

is also observed. The results suggest that proportional measures of target word completeness provide 

the most informative quantifications of repair timing in modelling the overall temporal organisation 

of phonological error repairs. 

 

Key words 

Speech error, Repair, Self-monitoring, Articulation rate, Duration, Dutch 
 
 
 
 
 
 

http://dx.doi.org/10.1016/j.wocn.2014.03.007


2 
 

 
1 Introduction 

Speech errors and infelicities and their repairs have long been of interest to phoneticians and 

psycholinguists alike (e.g. Fromkin 1973, Baars et al. 1975, Nooteboom 1980, Levelt 1983, Levelt & 

Cutler 1983, Blackmer & Mitton 1991, Postma & Kolk 1993, Shattuck-Hufnagel & Cutler 1999, 

Shriberg 2001, Jasperson 2002, Nooteboom 2005a, Hartsuiker 2006, Seyfeddinipur et al. 2008, 

Nooteboom 2010, Plug 2011, Tydgat et al. 2011). For phoneticians, the interest lies primarily in how 

speakers deal with the disfluency associated with repair, while for psycholinguists repair ‘may reveal 

principles of organization of the speech production process that would be hard to discover on the 

basis of laboratory data alone’ (Levelt 1984: 105) — in particular with reference to self-monitoring.  

In fact, insights into the organisation of speech production processes can be gained exactly 

from a careful consideration of the phonetic details of repair, as shown by studies of prosodic 

‘marking’ (Cutler 1983, Levelt & Cutler 1983, Howell & Young 1991) and the temporal organisation 

of repair (Blackmer & Mitton 1991, Oomen & Postma 2001, 2002, Seyfeddinipur et al. 2008, 

Nooteboom 2010, Plug 2011). For example, Blackmer & Mitton (1991) report that a substantial 

proportion of error corrections involve no delay between the abandonment of the erroneous lexical 

item and the onset of the repair item. This is inconsistent with Levelt’s (1989) proposal that the 

repair is planned during this ‘offset-to-repair’ interval: at least in a proportion of instances, planning 

must precede the abandonment of the erroneous lexical item, and therefore take place simultaneous 

with its ongoing articulation. Oomen & Postma (2001) show that offset-to-repair durations are lower, 

and the proportion of zero durations higher, in faster speech. This is inconsistent with the idea that 

fast speech allows for less extensive look-ahead in the speech production process than slow speech 

(cf. Blackmer & Mitton 1991); rather, increasing speaking tempo appears to speed up self-

monitoring for errors as well. More recently, Seyfeddinipur et al. (2008) have used measurements of 

offset-to-repair duration in comparing competing claims regarding error detection.  

In this paper we report on an investigation of the temporal characteristics of phonological 

error — or mispronunciation — repair.1 The primary focus of the investigation is on the speaking 

tempo during the repair, although we will also consider the duration of  offset-to-repair interval. The 

investigation builds on that of Plug (2011), who analysed instances of self-repair in terms of their 

tempo following the repair initiation. Plug reports a predominance of temporal compression — that 

                                            
1 Among the various other terms for the type of error whose repair is considered here are ‘sound-form error’ (Levelt 
1989), ‘sound error’ (Meyer 1992), ‘phonetic error’ (Brédart 1991), ‘sub-lexical error’ (Frisch & Wright 2002), 
‘phonological speech error’ (Frisch & Wright 2002, Nooteboom 2005a) and ‘speech error’ (Nooteboom 2010). We will 
use ‘phonological error’ throughout, following Levelt (1983), Postma (2000), Oomen & Postma (2001, 2002) and others. 
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is, a relative speeding up after the repair initiation, and argues that this is unexpected on the basis of 

the ‘H&H’ theory of speech production (Lindblom 1990, 2000), which predicts a predominance of 

hyper-articulation in the context of repair. While informative, Plug’s study has several limitations. 

First, it is based on a relatively small data set comprising various distinct types of repair: in addition 

to phonological and lexical repairs there are syntactic error repairs and ‘different’ repairs (see Levelt 

1983). It is possible that distinct repair types are subject to differing temporal constraints; however, 

Plug does not address this possibility. Second, Plug’s statistical modelling of repair tempo 

incorporates a small number of candidate predictors only, with a focus on the relevance of the 

distinction between error repairs, in which a factual or linguistic error is corrected, and 

appropriateness repairs, in which a correct but infelicitous phrasing is replaced (see Levelt & Cutler 

1983). Recent findings by Nooteboom (2010) suggest that a factor not considered by Plug (2011) 

may be highly relevant to repair tempo, at least for phonological error repairs. This factor is the 

timing of the repair. 

In a study of elicited errors and their repairs, such as sa … fat soap or sat soap … fat soap, 

Nooteboom (2010) observes that instances in which the repair comes in very early, as in sa … fat 

soap, tend to have a repair component with a high pitch and intensity prominence on the first vowel 

compared with the reparandum. Instances in which the mispronounced word is completed before the 

onset of repair, as in sat soap … fat soap, tend to have a repair component with a low pitch and 

intensity prominence on the first vowel compared with the reparandum. Nooteboom does not 

consider the tempo of the repairs, but if we associate high pitch and intensity with relative emphasis, 

or hyper-articulation (Lindblom 1996, Smiljanić & Bradlow 2009, Niebuhr 2010), we would predict 

that ‘early’ repairs are more likely to be associated with temporal expansion following repair 

initiation.  

In fact, Nooteboom’s account of the prosodic differentiation of phonological error repairs 

suggests exactly the opposite. Nooteboom’s motivation for comparing ‘early’ and ‘late’ repairs is the 

idea that they result from different coordinations of two self-monitoring mechanisms: ‘inner speech’ 

monitoring, which monitors the compilation of a pre-articulatory speech plan, and ‘overt speech’ 

monitoring, which monitors the output of articulation (Levelt 1989, Levelt et al. 1999, Nooteboom 

2005b, Hartsuiker et al. 2005a, b).2 When an error is detected in self-monitoring, the monitor sends a 

signal to abandon ongoing speech and plan a repair. Several studies have suggested a delay of 

                                            
2 Several other terms are used to refer to these two types of self-monitoring (see e.g. Oomen & Postma 2001, 2002): inner 
speech monitoring is also called ‘internal channel’, ‘inner loop’ and ‘pre-articulatory’ monitoring, while overt speech 
monitoring is also called ‘external channel’, ‘auditory loop’ and ‘post-articulatory’ monitoring. We follow Nooteboom 
(2010) in this paper. 
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approximately 150–250 ms between error detection and the abandonment of an ongoing utterance 

(Marslen-Wilson & Tyler 1981, Levelt 1989, Blackmer & Mitton 1991, Hartsuiker & Kolk 2001, 

Slevc & Ferreira 2006) — a delay during which erroneous production may continue (Hartsuiker et al. 

2008, Tydgat et al. 2011). This means that repairs with a reparandum duration below 150–250 ms — 

as is the case for most ‘early’ repair instances such as sa … fat soap — are likely to be occasioned by 

an error detection that precedes the overt onset of the mispronunciation: in other words, an error 

detection in inner speech monitoring (Levelt 1989, Blackmer & Mitton 1991, Nooteboom 2005a, b). 

Repairs with a reparandum duration well above 250 ms — as is the case for most ‘late’ instances 

such as sat soap … fat soap — are likely to be occasioned by an error detection in overt speech 

monitoring instead (Nooteboom 2005a, b, Hartsuiker et al. 2005b).3  

Nooteboom (2010) argues that inner and overt speech monitoring serve different purposes in 

the speech production system, and are therefore subject to different constraints; these different 

constraints can in turn explain the different prosodic characteristics of ‘early’ versus ‘late’ repairs. 

Among other things, he suggests that the purpose of inner speech monitoring is to ‘prevent errors … 

from becoming public’ (Nooteboom 2010: 215); therefore, a major characteristic of the process is 

that it operates under considerable time pressure, and aims to minimise disfluency in production. 

Once the erroneous form has been produced, on the other hand, it is clear that fluency will need to be 

sacrificed and ‘the speaker should take his or her time to make clear to the listener that an error has 

been made’ (Nooteboom 2010: 216). Consistent with this account, Nooteboom reports that ‘early’ 

repairs have significantly lower offset-to-repair durations than ‘late’ ones (Nooteboom 2010: 223–

224; see also Seyfeddinipur et al. 2008).4 If Nooteboom is correct in concluding that repairs of errors 

detected by the inner speech monitor ‘come fast’ and are produced under time pressure, while repairs 

of errors detected by the overt speech monitor ‘come very much slower’ and allow the speaker to 

‘take his or her time’ to produce the repair (Nooteboom 2010: 116, 224), a reasonable prediction is 

that we will observe an effect of repair timing on the speaking rate of the repair component. 

Concretely, if Nooteboom’s theoretical account stands up we would predict that ‘early’ repairs are 

more likely than ‘late’ ones to be associated with temporal compression following the repair onset.  

The study presented in this paper had two main aims: first, to assess whether the 

predominance of temporal compression in spontaneous self-repair reported by Plug (2011) is 

                                            
3 Note that this argument rests on the assumption, formalised by Levelt (1989) as the ‘Main Interruption Rule’, that an 
error is repaired as soon as it is detected. This may well be incorrect, as suggested by Hartsuiker et al. (2008), 
Seyfeddinipur et al. (2008), Tydgat et al. (2011). We will return to this issue in Section 4. 

4 This in turn tallies well with the notion that in the case of ‘early’ repairs, repair planning may have started before the 
error is produced (Hartsuiker & Kolk 2001, Tydgat et al. 2011). 
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observed in a larger and more homogeneous data set — in this case one containing speech error 

repairs only; and second, to assess whether repair timing has any effects on repair tempo in 

spontaneous, unelicited speech error repair. In addressing the latter question, we also assess whether 

repair timing has an effect on offset-to-repair duration, and we compare multiple methods for 

quantifying repair timing, in order to improve our understanding of the units of execution involved in 

speech error repair. The results of the study are presented in Section 3, followed by discussion in 

Section 4 and conclusions in Section 5. In Section 2, we first describe our data set and analysis 

methods.  

 

2 Materials and method 

2.1 Data selection 

The data for this paper comprises 368 instances of speech error repair extracted from four sub-

corpora of the Spoken Dutch Corpus (Oostdijk 2002), containing spontaneous face-to-face 

conversations, interviews with teachers of Dutch, broadcast interviews, discussions and debates, and 

non-broadcast meetings, discussions and debates. We selected these subcorpora on the grounds that 

the recordings are predominantly of unscripted speech. We extracted instances of speech which were 

coded as mispronounced or interrupted — a small subset of which contain subsequent repair — and 

did a number of additional, unsystematic data trawls.5 We discarded many potential instances 

because of poor audio quality or overlapping speech, and only included instances containing at least 

one consonant and one vowel.  We included instances ambiguous between phonological and lexical 

repair if the immediate phonological context contained a plausible trigger for phonological error; 

Shattuck-Hufnagel & Cutler’s (1999) tar … car talk would be an example of this. (1) contains 

representative examples from our data set.  

(1) a. [b]aarbij // [w]aarbij ‘with which’ 
 b. v[r]uch- // v[l]uchtmiddel ‘means of escape’  
 c. vana[l] // vana[f] ‘from’ 
 d. een b[a]nkj- // een b[ľ]nkje ‘a bench’ 
 e. [w]is ik z- // [m]is ik zeker ‘miss I certainly’ 
 f. zel[s]- // zel[f]werkzaamheid ‘ability to work independently’ 

                                            
5 Incomplete erroneous target word attempts are coded as both mispronounced and incomplete in the corpus annotation 
scheme, so the two corpus searches partly yielded the same results.  
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2.2 Segmentation and temporal measures 

We segmented all instances of repair in PRAAT (Boersma and Weenink 2010). We placed boundaries 

at the start and end of the target word attempt and the start and end of the repair stretch, following 

the segmentation criteria set out by Rietveld & Van Heuven (1997). In a small subset of instances 

(N=36), the repair includes the repeat of one or more words preceding the target word attempt: see 

een ‘a’ in (1d) above. We segmented these as part of the reparandum, although separately from the 

target word attempt. Similarly, we included any lexical items following the target word attempt, as in 

(1e), in the reparandum as well as the repair stretch. Finally, in addition to the start of the erroneous 

target word attempt, we marked the start of the first erroneous segment within it — for example, in 

(1b) we marked the start of [r] in v[r]uch-; in (1c) the start of [l] in vana[l]; and in (1d) the start of the 

first vowel in b[e]d[e]-. In instances such as (1a) and (1e), this point of course coincides with the 

start of the target word attempt. Figure 1 illustrates our segmentation method, with reference to the 

repair in (1d). 

 

 

Figure 1. Illustrative segmentation of the repair een b[a]nkj- // een b[ܤ]nkje ‘a bench’ (1d). Boundary 

1 marks the start of the reparandum; boundary 2 that of the target word and boundary 3 that of the 

error portion, at the onset of the erroneous vowel. Boundary 4 marks the reparandum, target and 

error offset. The portion between boundaries 4 and 5 constitutes the offset-to-repair interval, and the 

repair follows between boundaries 5 and 6. 
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We calculated the articulation rate for each segmented portion by dividing the number of surface 

segments articulated during the portion by its raw duration. We also used segment numbers and 

duration measurements independently in subsequent analysis, as measures of repair timing.  

 

2.3 Quantifying repair timing 

Of crucial importance to our study is the question of what constitutes an ‘early’ or ‘late’ repair. In 

Nooteboom’s (2010) study, speech errors and repairs are elicited using the SLIP technique (Baars et 

al. 1975). Subjects are asked to produce a CVC#CVC word pair, such as barn door, after being 

exposed to a number of different CVC#CVC sequences which prime an exchange of the word-initial 

consonants: in this case sequences such as dove ball, deer back and dark bone (Nooteboom 2010: 

219). Nooteboom’s ‘early’ repairs are those in which the erroneous target production is abandoned 

after the first CV sequence, as in da … barn door; and his ‘late’ repairs those in which a full 

CVC#CVC sequence is produced before repair, as in darn bore … barn door. He does not discuss 

‘intermediate’ instances: for example, instances in which the first word of the target two-word 

sequence is completed erroneously, then repaired — as in darn … barn door — or instances in which 

the second word is interrupted — as in darn bo- … barn door.  

 In the case of spontaneous phonological error repairs, it is often difficult to identify target 

word pairs. There are of course instances analogous to elicited (partial) spoonerisms, in which the 

error appears to be occasioned by the segmental make-up of a preceding or following word. 

However, there are also instances of apparently random segment substitution, omission or insertion, 

or erroneous gestural coordination (see Frisch & Wright 2002 for a review). In all such cases, it is 

possible to identify a target word, but not necessarily a target word pair. This means that 

Nooteboom’s comparison between ‘early’ CV repairs and ‘late’ CVC#CVC ones cannot be 

replicated exactly unless sampling is extremely restrictive. We can, however, compare instances in 

which the erroneous production of the target word is interrupted — as in (1b, d, f) above — with 

instances in which the target word is completed before being repaired — as in (1a, c, e). This is the 

approach taken in this study. If repair timing has an impact on repair tempo, we would expect to find 

a difference between these ‘interrupted error’ and ‘completed error’ repairs. Note that for the purpose 

of this study, all morphologically complex words, including compounds, were treated as single 

words: therefore, zels- in (1f) is treated as an interrupted error repair, even though the speaker has 

reached the final segment of the target morpheme zelf, which could be a word on its own in a 

different grammatical context. 
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 Given that this study includes a consideration of a range of instances of repair which in 

Nooteboom’s (2010) terminology can be called neither ‘early’ nor ‘late’, it would seem appropriate 

to implement a continuous measure of repair timing in addition to classifying instances as either   

‘interrupted error’ or ‘completed error’ repair. This seems particularly worthwhile since in 

spontaneous error repairs, target word lengths vary. A repair of a three-syllable target form whose 

erroneous attempt is interrupted just before the final consonant can be considered less ‘early’ — and 

less clearly due to an error detection that precedes error production — than a repair of the same 

target in which the interruption comes after the first vowel. In fact, Nooteboom (2005a) reports a 

bimodal distribution of reparandum length in segments in his collection of elicited repairs, and uses 

this as supporting evidence for a qualitative distinction between  ‘early’ and ‘late’ repairs.6 One 

relevant question is, therefore, whether such a bimodal distribution is observed in our collection of 

spontaneous error repairs.  

Moreover, if repair timing has an impact on repair tempo, we might discover patterns using a 

continuous measure of repair timing that would remain hidden if we implemented only a binary 

classification following Nooteboom (2010). For example, on the basis of the experimental evidence 

reviewed above, we might expect that repairs with a reparandum duration above 150–250 ms have 

different temporal characteristics than those with a duration below 150–250 ms, irrespective of 

whether they involve completed or interrupted target word attempts. Oomen & Postma (2001: 166, 

2002: 168) and Hartsuiker et al. (2005b: 190) have questioned the validity of postulating a 

reparandum duration threshold in classifying error repairs as resulting either from inner or overt 

speech monitoring (see e.g. Liss 1998, who chooses a threshold of 500 ms in a study of repair by 

apraxic speakers). Implementing a continuous measure of repair timing should allow us to assess 

whether the data themselves provide evidence for such a threshold. 

 The matter is complicated by the fact that in spontaneous repairs of the type considered in our 

study, the location of the error in the target word varies. In Nooteboom’s (2010) data, the error is 

always in the initial consonant: in other words, the error onset is simultaneous with the target word 

onset.7 When this is the case, a completed error repair clearly involves either a later detection of the 

error or a later abandonment of speech after detection than an interrupted error repair. On the other 

                                            
6 Nooteboom’s finding tallies well with Schegloff’s (1979: 275) observation that in English spontaneous talk-in-
interaction, repair is commonly initiated ‘after the first sound of a word or just before its last sound’. Fox et al. (2009) 
show that this tendency can be observed to some extent across a number of genetically unrelated languages.    

7 Oomen & Postma (2001: 173) similarly operationalise what they call the ‘error to cutoff time’ as the duration from the 
start of the lexical item that is subject to repair to its end ʊ even though in their data, too, the point of observable error in 
phonological error repairs must vary. Oomen & Postma (2002: 172), on the other hand, start measuring at the ‘onset of 
the first erroneous phoneme’.  
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hand, when the error onset is not simultaneous with the target word onset, it is possible for a 

completed error repair to involve an earlier abandonment of speech relative to the point of 

observable error than an interrupted error repair. In terms of the self-monitoring mechanisms 

involved, the point of observable error constitutes the first point at which the overt speech monitor 

can detect the error, irrespective of how much of the target word has been produced already. If the 

involvement versus non-involvement of the overt speech monitor in the detection of a given error has 

an impact on the prosodic implementation of its repair, the earliest occasion for possible overt speech 

monitor detection would seem a highly relevant reference point for the implementation of a 

continuous measure of repair timing. Therefore, a relevant question in our study is whether 

continuous measures of repair timing which take the start of the first erroneous segment as the 

reference point perform differently from measures that refer to the start of the erroneous word in 

predicting the tempo of the subsequent repair.  

 On the basis of the above considerations, we took various measures of repair timing to enter 

into our statistical analyses. First, we implemented a binary dichotomy between repairs with an 

interrupted and a completed target word attempt. We will refer to this variable as Completeness. 

Second, we took a number of duration measurements and segment counts. These included the 

duration from the start of the reparandum (including any repeated lexical items) up to the 

abandonment of speech (Onset-to-offset duration) and the number of segments in this interval 

(Onset-to-offset segments); the duration and number of segments from the start of the target word to 

the abandonment of speech (Target-to-offset duration and Target-to-offset segments), and the 

duration and number of segments from the first erroneous segment to the abandonment of speech 

(Error-to-offset duration and Error-to-offset segments). We also measured the offset-to-repair 

interval (Offset-to-repair duration), which allowed us to enter the additional variables Onset-to-

repair duration, Target-to-repair duration and Error-to-repair duration. Third, we implemented two 

proportional measures of target word completeness, by dividing the number of segments in the target 

word attempt by the number of segments in the subsequent complete realisation of the target word 

(Proportional target segments), and by dividing the number of segments in the target word attempt 

from the first erroneous segment onwards by the number of segments in the complete realisation of 

the target word, counting again from the first erroneous segment (Proportional error segments). 
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2.4 Statistical modelling 

Our general method in modelling the articulation rate of the repair was to construct a series of linear 

mixed effects regression models with and without individual candidate predictors from the set 

described above, and use likelihood ratio tests to assess whether the inclusion of the relevant 

predictor contributed significantly to the model fit (see Baayen 2008). We also constructed a model 

on the basis of conditional inference regression trees, for reasons we will go into in Section 3.3. In 

Section 3.2, we will report on an analysis of offset-to-repair duration along similar lines. 

 In addition to the repair timing variables described above, which can be taken as our crucial 

candidate predictors, we included a number of other variables which might have some effect on the 

articulation rate of the repair. First, the articulation rate of the reparandum is expected to have a 

strong effect: this is a crucial control variable to include in the model. Second, we included the 

speaker’s identity (Speaker), the subcorpus from which each instance was sampled (Subcorpus), and 

the language variety spoken (Netherlands versus Flemish Dutch, Variety) as random factors, and the 

speaker’s gender (Gender) as a related control variable.8 Third, we included two measures of the 

frequency of the target word: its word form frequency (Word frequency) and its lemma frequency 

(Lemma frequency) as represented in the CELEX lexical database (Baayen et al. 1995). Kapatsinski 

(2010) has shown that in lexical repair, more frequent words are less likely to be interrupted prior to 

repair than less frequent ones; at the same time, it seems reasonable to expect a higher-frequency 

word to allow for a faster repair than a low-frequency word.  

   Prior to statistical modelling, we transformed temporal measurement values in order to make 

their distributions as close to normal as possible. We took the square roots of all articulation rate 

values, and log-transformed raw duration values. We also log-transformed frequency values. 

 

3 Results 

Before turning to repair tempo in Section 3.3, we will first describe the general temporal make-up of 

the repairs in our dataset up to the repair component. In particular, we can compare our instances 

with those of Nooteboom (2005a, 2010) in terms of two temporal characteristics discussed above. 

First, Nooteboom (2005a) reports a bimodal distribution of reparandum duration and length in 

segments in his collection of elicited repairs, and takes this as evidence for a qualitative difference 

between ‘early’ and ‘late’ repairs. Second, Nooteboom (2005a, 2010) reports a significant difference 

                                            
8 We can expect the influence of Speaker to be minimal: the instances in our dataset are produced by 248 speakers, 174 
(70%) of whom contribute one repair only, 65 (26%) contribute two or three repairs, and 9 (4%) contribute four to six. 
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in offset-to-repair duration between ‘early’ and ‘late’ repairs. We address these points in turn in 

Sections 3.1 and 3.2.  

 

3.1 Reparandum duration 

Figure 2 shows the distributions associated with durations, segment counts and proportional segment 

counts in the erroneous target word attempt, both from the start of the target word attempt and from 

the first erroneous segment. Looking first at durations and segment counts, we see that a majority of 

instances have Target-to-offset duration values between 200 and 400 ms, which roughly correspond 

to segment counts between two and five ʊ although durations up to 1500 ms and 13 segments are 

attested. In the latter, speakers either produce an attempt at a very long target word, or complete a 

shorter target word and continue with following lexical material before initiating repair. Counting 

from the first erroneous segment, a majority of instances have Error-to-offset duration values 

between 100 and 300 ms, and segment counts of one to three: that is, an abandonment of the target 

word attempt immediately or very shortly after the erroneous segment. All of these distributions 

show evidence of positive skew, and Shapiro-Wilk tests on the (log-transformed) duration values 

confirm their non-normality (Target-to-offset duration: W=0.9896, p=0.0100; Error-to-offset 

duration: W=0.9840, p=0.0004). However, they show little evidence of bimodality. Hartigan’s dip 

tests on the duration values yields no significant evidence of multimodality, whether performed on 

the raw values (Target-to-offset duration: D=0.0174, p=0.6650; Error-to-offset duration: D=0.0134, 

p=0.9626) or on the log-transformed ones (Target-to-offset duration: D=0.0174, p=0.6650; Error-to-

offset duration: D=0.0202, p=0.3928). 

For the purpose of assessing whether evidence of bimodality emerges when target word 

length is controlled for, we normalised Proportional target segments and Proportional error 

segments by dividing each proportional segment count by the number of errors in the data set which 

could give rise to that proportion. This is to take account of the fact that some proportional segment 

counts require relatively long ʊ and therefore relatively rare ʊ target word lengths: for example, we 

could only arrive at a value in the 0.9–1.0 range for a target word that has at least 10 segments.9 We 

divided proportional counts of 1 by the total number of errors in the data set, since words of any 

length could be produced entirely before a repair.  

 

                                            
9 We are very grateful to an anonymous reviewer for suggesting this method.  
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Figure 2. Density kernel plots for raw durations (leftmost), bar charts for raw and proportional 

segment counts (centre) and bar charts for proportional segment counts normalised for the 

distribution of target word lengths (rightmost) for the complete target word attempt (upper panels) 

and the error portion only (lower panels). 

 

As can be seen in Figure 2, the distributions for Normalised proportional target segments and 

Normalised proportional error segments show no evidence of bimodality. This means we cannot be 

confident that our data are similar to Nooteboom’s (2005a, 2010) with respect to the distribution of 

reparandum lengths, and we cannot claim our data are strongly suggestive of a qualitative difference 
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between ‘early’ and ‘late’ repairs. Furthermore, it is worth noting that a great majority of our 

instances involve a repair initiation around 350 ms into the incorrect target word attempt, and around 

200 ms following the onset of the first erroneous segment.10 In the light of the estimated 150–250 ms 

detection-to-interruption latency discussed above, these values can be considered neither very low 

nor very high, and choosing a reparandum duration threshold to classify the repairs as resulting from 

inner or overt speech monitoring, as done by Liss (1998), would result in fairly arbitrary binning of a 

sizeable proportion of instances.  

 

3.2 Offset-to-repair duration 

With reference to offset-to-repair duration, we can ask two questions: first, whether the timing of the 

repair initiation allows us to predict the duration of the offset-to-repair interval, as found by 

Nooteboom (2005a, 2010); and second, which measure of timing discussed above has the greatest 

predictive value. In order to address these questions, we built linear mixed-effects regression models 

with the duration of the offset-to-repair interval as dependent variable.11 As shown in Figure 3, the 

distribution of the variable is not normal (Shapiro-Wilk: W=0.7307, p<0.0001), as a large proportion 

of offset-to-repair intervals (N=56, or 16%) is zero. Log-transforming the raw values does not result 

in normality (W=0.7668, p<0.0001); however, excluding the zero durations and log-transforming the 

rest does (W=0.9944, p=0.3548). Therefore, we built two models: one to predict whether the raw 

interval duration is zero or not, and one to predict the log-transformed interval duration excluding 

raw zero values.12 In both cases, we started with a base model containing only the random factor 

Speaker,13 and assessed the performance of a subset of the candidate predictors listed in Section 2.2: 

Completeness, Proportional target segments, Proportional error segments, Target-to-offset duration 

and Error-to-offset duration.  

                                            
10 These values are comparable with those reported by Oomen & Postma (2001), who manipulate the time pressure under 
which subjects perform a verbal task: they report mean reparandum durations of 311 ms (normal condition) and 453 ms 
(fast condition). On the other hand, our error duration values are considerably lower than those reported by Oomen & 
Postma (2002), who add a distractor task to a verbal task: they report mean error-to-interruption durations of 419 ms 
(verbal task only) and 313 ms (verbal and distractor task). We do not have an explanation for the latter difference, 
although we can note that Oomen & Postma include various repair types in addition to phonological error repair. 

11 For the purpose of this analysis, we excluded a small subset of instances (5%) with a filled pause (containing several 
combinations of uh and of ‘or’), reducing the dataset to N=349. 
12 By contrast, Nooteboom (2005a) uses arbitrary binning of interval durations, with a lowest bin of 0–100, while 
Nooteboom (2010) presents results of t-tests only, with no indication as to the normality of the interval distribution.   

13 Exploratory modelling suggested that adding Subcorpus and Variety to Speaker in the base model does not improve its 
prediction and is of no consequence to the performance of our candidate predictors ʊ even though Subcorpus and 
Variety subsequently came out of our random forest modelling as stronger predictors than Speaker, as shown in Figure 6 
below. 
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Figure 3. Histogram of raw offset-to-repair durations, excluding instances with filled pauses. 

 

Table 1 lists the predictors whose addition to the base models results in a significant or near-

significant improvement of fit ʊ Table 1(a) for predicting whether the raw interval duration is zero 

or not, and Table 1(b) for predicting the log-transformed interval duration excluding raw zero values.  

We can see that the list is the same in both cases: Completeness, Proportional target segments and 

Target-to-offset duration. In both cases it appears that Completeness is the weakest predictor of the 

three; in fact, in the first model the addition of Completeness only results in a near-significant 

improvement of fit. For predicting whether the raw interval duration is zero or not, Proportional 

target segments outperforms Target-to-offset duration; for predicting the log-transformed interval 

duration excluding raw zero values it is the other way around. The effects are in the expected 

direction: for example, the lower the proportional segment count, the greater the likelihood of a zero 

offset-to-repair interval; and the greater the target-to-offset duration, the greater the offset-to-repair 

duration. 
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(a) Predictor Estimate SE z C p 

 Completeness (incomplete) −0.7509 0.4315 −1.740 0.9685 0.0539 

 Proportional target segments  1.8344 0.7583 2.419 0.9734 0.0097 

 Target-to-offset duration 0.8979 0.4594 1.955 0.9640 0.0349 

(b) Predictor Estimate SE t r² p 

 Completeness (incomplete) −0.1985 0.0879 −2.26 0.0172 0.0241 

 Proportional target segments  0.3904 0.1643 2.38 0.0189 0.0180 

 Target-to-offset duration 0.3314 0.0961 3.448 0.0390 0.0006 

 

Table 1. Constructing linear mixed-effects regression models to predict (a) whether offset-to-repair 

duration is zero or not and (b) the log-transformed offset-to-repair durations excluding raw zero 

values: candidate predictors whose addition to a base model containing Speaker only results in a 

(near-)significant improvement of fit. Values for p refer to likelihood ratio tests of each two-factor 

model against the base model. Binary predictors are given with the value to which the estimate refers 

in parentheses. 

 

 In sum, our dataset is comparable to that of Nooteboom (2010) in that repair timing has a 

significant effect on offset-to-repair duration: the earlier the repair, the shorter the offset-to-repair 

interval. The fact that this effect is captured by Target-to-offset duration and two measures of target 

word completeness, but not by Error-to-offset duration or Proportional error segments suggests that 

for understanding the general temporal make-up of our repairs up to the repair component, 

quantifying repair timing is best done with reference to the start of the target word attempt, rather 

than the start of the first erroneous segment. We now turn to the predictive value of these measures 

of timing for modelling repair tempo. 

 

3.3 Repair tempo: Linear modelling 

In modelling the articulation rate of the repair stretch (including any repeated lexical items),14 we 

initially followed the same procedure as that described above for modelling offset-to-repair duration. 

In this case, we started with a base model containing the articulation rate of the reparandum 

                                            
14 Exploratory analysis not reported here showed that modelling repair articulation rate excluding repeated items leads to 
very similar results to those reported below; there are 56 instances of repairs (15% of the data set) which include repeated 
items in addition to the target word. 
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(including any repeated lexical items) and the random variable Speaker.15 As might be expected, this 

reveals a significant correlation between reparandum and repair articulation rates (pmcmc=0.0001), 

which accounts for approximately 20% of the variance in repair rate (r²=0.1964). The correlation is 

illustrated in Figure 4(a). The figure further illustrates that consistent with Plug’s (2011) results, we 

find that in most instances (72%), the articulation rate of the repair stretch is above that of the 

corresponding reparandum: in other words, temporal compression following the repair initiation is 

considerably more common than temporal expansion.  

 

 

   (a)          (b) 

Figure 4.  Repair rate plotted against reparandum rate. The dotted line indicates values where the 

two rates are identical. In (a), the solid line indicates the prediction of a base model including only 

the additional factor Speaker. In (b), the data are split by the predictor Completeness: instances with 

a completed target word attempt are labelled “c”; those with an interrupted target word attempt  “i”. 

The black line is a locally-weighted polynomial smoother for the subset of data labelled “c”; the grey 

line the same for “i”. 

 

                                            
15 Exploratory analysis not reported here showed that whether reparandum articulation rate is measured including or 
excluding lexical items that are repeated in the repair has no significant effect on the predictive value of the factor 
Reparandum rate in modelling repair tempo. This is consistent with the finding by Plug (2011) that in the context of self-
repair, repetition is not consistently associated with temporal compression ʊ in other words, whether a repair includes 
lexical repetition is itself not a significant predictor of the temporal organisation of the repair. 
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 We then followed a stepwise algorithm to expand the model. We added each of the candidate 

predictors and control variables listed in Sections 2.2 and 2.3 to the base model to assess whether the 

addition resulted in a significant improvement of the model prediction. We expanded the model with 

the candidate predictor that resulted in the greatest improvement, and then assessed the impact of the 

remaining candidate predictors, and any interactions between them, on the expanded model. We 

continued expanding the model until no remaining candidate predictor yielded a significant 

improvement of model prediction. At the final stage, we trimmed 5 outliers (1.4% of the data set) to 

arrive at our best model, which is summarised in Table 2.16 The model has an r² of 0.3558; that is, 

adding the extra predictors to our original base model allows it to explain an additional 16% of the 

variance in the articulation rate of the repair stretch.17 

 The model in Table 2 confirms that repair timing has a significant effect on the articulation 

rate of the repair. The measure with most predictive power is Proportional target segments. Its 

model estimates suggest that the higher the proportional completeness, the lower the articulation rate 

of the repair. In binary terms, the mean repair rate is higher following interrupted target word 

attempts than it is following completed ones, as illustrated in Figure 4(b). However, Figure 4(b) also 

shows that two separate states of affairs exist dependent on how fast the reparandum is: for slower 

reparanda, interrupted target word attempts are followed by a greater speeding up in the repair 

relative to completed ones than for faster reparanda. In other words, the overall effect of 

Proportional target segments is mainly due to an effect at relatively low local speaking rates, while 

the effect is attenuated at higher rates. The inclusion in our final model of an interaction between 

Reparandum rate and Proportional target segments reflects this observation. The model in Table 2 

also includes Lemma frequency and Target-to-offset segments. The effect of Lemma frequency is in 

the expected direction: the higher the frequency, the higher the articulation rate of the repair. We 

return to the inclusion of Target-to-offset segments below. 

  

                                            
16 We present our best model with random intercepts. Additional analysis, not reported in detail here, shows that 
including random slopes does little to improve the model. Including Proportional target segments as a random slope by 
Speaker increases the value of r², but results in the same effect structure. No other inclusions of random slopes increases 
the goodness of fit or alters the effect structure. 
17 Variance due to Speaker is considerably below 0.0001. Note that the effect of Reparandum rate is not significant in the 
final model. This may be due to the interaction between Reparandum rate and Proportional target segments capturing 
most of the correlation between reparandum and repair rates. Likelihood ratio tests show that the model still has a higher 
r2 with Reparandum rate included. Lemma frequency and Reparandum rate are not significantly correlated.  
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Factor Estimate SE t pmcmc 

Intercept 0.1052 0.0125 8.386 <0.0001 

Reparandum rate 0.1179 0.1138 1.036 0.3097 

Proportional target segments −0.0836 0.0181 −4.629 <0.0001 

Lemma frequency 0.0012 0.0002 5.477 <0.0001 

Target-to-offset segments 0.0103 0.0021 5.025 <0.0001 

Reparandum rate * Proportional target segments  −0.4896 0.1566 3.127 0.0022 

 

Table 2. Summary of fixed effects in a linear mixed-effects model predicting the articulation rate of 

the repair. Binary variables are given with the value to which the estimate refers in parentheses. 

Values for p are estimated on the basis of 100,000 MCMC samples. 

 

3.4 Repair tempo: Additional modelling 

One problem in interpreting the linear model summarised in Table 2 is that it contains a certain 

degree of collinearity between variables.18 In particular, Proportional target segments shows 

significant correlations with Target-to-offset segments (r=0.5321, p<0.0001) as well as Lemma 

frequency (r=0.2918, p<0.0001).19 In order to assess the robustness of the model, we turned to an 

analysis based on conditional inference regression trees. As pointed out by Strobl et al. (2009) and 

Tagliamonte and Baayen (2012), this type of analysis, particularly when extended in random forest 

modelling, allows for a direct comparison between multiple, possibly correlated variables without the 

robustness of the final model being weakened by collinearity. Figure 5 plots the output of a 

conditional inference regression tree algorithm using all of the candidate predictors discussed above. 

The tree algorithm establishes which subdivisions in the data provide the most homogeneous 

groupings of observations with respect to the response variable ʊ in this case, the articulation rate of 

the repair stretch. 

  

                                            
18 Together, the predictor variables in this model have a condition number, ț, of 23, indicating that collinearity may be 
approaching a harmful level. 

19 A t-test with Completeness and Lemma frequency confirms that the more frequent the reparandum item, the more 
likely it is to be completed prior to repair (Welch’s t(225)=4.0272, p<0.0001). This is consistent with Kapatsinski’s 
(2010) findings on lexical replacement repair in English.  
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Figure 5. Conditional inference regression tree predicting Repair rate built on all candidate 

predictors and the data set excluding five outliers. 

 

The regression tree analysis is consistent with our findings so far: it shows that the most 

important predictors of the articulation rate of the repair are the rate of articulation of the 

reparandum, a measure of the completeness of the erroneous target word attempt, and an interaction 

between the two. The measure of completeness it selects as having the greatest predictive value is 

Proportional error segments rather than Proportional target segments. The algorithm first splits the 

data into two subsets based on Reparandum rate: a relatively slow subset (left) and a relatively fast 

one (right). In the slow subset, a further split is made based on Proportional error segments, with 

values above 0.8 associated with higher repair articulation rates than values at or below 0.8. All other 

splits are based on the control variable Reparandum rate and point simply to the fact that the 

articulation rate of the repair increases as the articulation rate of the reparandum does. No further 

subdivisions result in an improvement of homogeneity. Lemma frequency and Target-to-offset 

segments do not feature in the analysis. 
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Finally, we constructed a random forest model to predict the repair rate on the basis of all our 

candidate predictors. Random forests (Breiman 2001) construct multiple conditional inference 

regression trees using subsets of the data and subsets of the predictor variables in order to provide 

test and training sets; the resulting predictions can be tested against the observed data and the relative 

importance of variables calculated. Our model grew 500 trees, each with five randomly-sampled 

input variables (approximately the square root of the total number of variables), and fits the observed 

data with r²=0.5691. To calculate the relative importance of variables, we used a conditional variable 

importance measure (Strobl et al. 2008); this version of variable importance avoids a bias towards 

correlated variables. Our main interest was in assessing the robustness of our linear model in Table 2 

and the regression tree in Figure 5. 

 The results are plotted in Figure 6, where bars which extend further to the right are indicative 

of the greater importance of the variable in question. Strobl et al. (2008) point out that the random 

permutations inherent in the algorithm mean that some unimportant variables will end up with a 

negative value on the importance scale. They suggest that variables with a positive value that does 

not exceed the absolute equivalent of the most extreme negative value can be disregarded in 

subsequent analysis. The relevant range of ‘close-to-zero’ measures is delimited in Figure 6 by 

means of vertical dashed lines. Figure 6 confirms that Reparandum rate is the most important 

predictor of the articulation rate of the repair, followed by a proportional measure of target word 

completeness. Like the regression tree analysis, the random forest model points towards 

Proportional error segments rather than Proportional target segments. Looking further down the list, 

we see a series of variables whose importance is rather similar, and substantially below that of 

Proportional error segments. Lemma frequency and Proportional target segments are the most 

important of these, followed closely by a set of segment counts which includes Target-to-offset 

segments. 

In sum, the outcome of the regression tree and random forest analyses suggest we can have 

confidence in the robustness of our linear mixed-effects model, despite the possible collinearity 

between variables: all reveal an effect of repair timing on repair tempo, and all suggest that the best 

measure of timing is a proportional measure of target word completeness, with the possible addition 

of a measure based on simple segment counts. The linear and random forest models further suggest 

that lemma frequency has predictive value, such that higher-frequency words are repaired at a higher 

tempo than lower-frequency words.  
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Figure 6. Barplot representing the conditional variable importance of all variables, according to a 

random forests model. Vertical dashed lines indicate the level of the most extreme negative 

importance and the positive importance with the same absolute value.  

 

 

4 Discussion 

Our study of the temporal characteristics of phonological error repair had two main aims: first, to 

assess whether the predominance of temporal compression in self-repair reported by Plug (2011) is 

observed in a larger, more homogeneous data set; and second, to assess whether repair timing has 

any effect on repair tempo, as suggested by Nooteboom’s (2010) findings on a collection of elicited 

error repairs. In order to address the second question fully, we have also investigated the distribution 

of reparandum durations and the effect of repair timing on offset-to-repair duration. Moreover, we 

have asked what is the most relevant measure of repair timing, with choices between a binary 

classification of ‘early’ vs ‘late’, like the one implemented by Nooteboom, and a continuous 

measure; and between measures from the start of the erroneous target word attempt, and from the 

start of the first erroneous segment. We address the first two aims and related questions in Sections 

4.1 and 4.2, and discuss the issue of how best to quantify repair timing in Section 4.3. 
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4.1 The extent of temporal compression  

Our findings are consistent with those of Plug (2011): in our data set too, the articulation rate of the 

repair stretch is above that of the corresponding reparandum. In other words, temporal compression 

following the repair initiation is considerably more common than temporal expansion, and most 

repairs cannot be described as hyper-articulated on the grounds of their temporal organisation. In the 

case of phonological error repair, this may be due to the fact that this type of repair involves two 

attempts at the same lexical item. This means that the repair stretch has a relatively high level of 

informational redundancy, which would allow for some degree of articulatory reduction (see Aylett 

& Turk 2004, 2006, Pluymaekers et al. 2005). Still, it seems intuitively plausible that following a 

mispronunciation, at least the segments replacing erroneous ones will be produced with hyper-

articulation in the repair stretch. Our analysis does not provide direct evidence to support or refute 

this intuition ʊ but it does suggest that even if hyper-articulation can be observed on individual 

segments, it is either observed in a small minority of instances only, or its effect is too weak to 

counteract the general temporal compression across the repair stretch in the majority.  

 

4.2 The influence of repair timing 

Our findings are consistent in several respects with those of Nooteboom (2005a, 2010). First, like 

Nooteboom (2005a, 2010) we observe a significant effect of repair timing on offset-to-repair 

durations, such that early repairs are associated with shorter offset-to-repair intervals than late ones. 

Second, as predicted on the basis of Nooteboom’s (2010) interpretation of observed prosodic 

differences between early and late repairs, we find a significant effect of repair timing on the 

articulation rate of the repair stretch, such that early repairs are on average produced with a higher 

repair tempo than late ones. Together, these findings provide support for Nooteboom’s contention 

that a systematic relationship exists between the timing of the abandonment of an erroneous 

utterance for the purpose of self-repair and the phonetics of the immediately following stretch of 

speech ʊ in this case, both the time between the abandonment and the start of the repair, and the 

tempo of the repair are to some extent correlated with repair timing. 

 Before we consider Nooteboom’s account for the phonetic differentiation between early and 

late repairs in more detail, we should emphasise that the effect is observed in a subset of instances 

only: both our linear and tree-based models reveal a significant interaction between the articulation 

rate of the reparandum and repair timing, such that the higher the former, the less significant the 

effect of the latter. We cannot at present offer a convincing explanation for this. Notwithstanding this 
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complication, it is worth highlighting that the observed effect of repair timing not only confirms 

Nooteboom’s (2010) contention that repair timing and the phonetics of the immediately following 

stretch of speech are systematically related, but also bears out the most plausible prediction we can 

make regarding repair tempo on the basis of Nooteboom’s theoretical account of this relationship. As 

pointed out in Section 1, Nooteboom (2010) argues that the different prosodic characteristics of early 

versus late repairs can be explained with reference to the distinct functions of inner and overt speech 

monitoring processes — to prevent errors from becoming public for the former, and to address errors 

that have already become public for the latter. The function of preventing errors from becoming 

public can plausibly be associated with execution under time pressure, which does not seem as 

plausible an attribute of addressing errors that are already public. This offers a straightforward 

explanation for Nooteboom’s (2010) observation that early repairs have significantly lower offset-to-

repair durations than late ones (see also Seyfeddinipur et al. 2008). As shown in Section 3.2, this is 

also the case in our data. Our additional finding that early repairs are on average produced with a 

higher repair tempo than late ones is consistent with the idea that early repairs are not only initiated, 

but also completed under a greater degree of time pressure than late ones.  

Nooteboom’s account rests on the hypothesis that early repairs are most likely due to an error 

detection by inner speech monitoring processes, and late repairs due to error detection in overt 

speech (see also Postma 2000). This makes sense if we assume that earlier repairs necessarily follow 

earlier error detection than later repairs. This assumption forms the basis of the Main Interruption 

Rule, or MIR (Nooteboom 1980, Levelt 1983, 1989, Brédart 1991), which dictates that speakers 

‘[s]top the flow of speech immediately upon detecting trouble’ (Levelt 1989: 478). However, the 

Main Interruption Rule has been challenged on the basis of experimental findings (Hartsuiker et al. 

2008, Tydgat et al. 2011) as well as corpus data (Hartsuiker & Kolk 2001, Seyfeddinipur et al. 2008), 

which suggest that speakers can decide whether to initiate repair immediately after detection or to 

postpone initiation, and this decision is based partly on whether they prioritise local accuracy or 

fluency: interrupting an erroneous word maximises accuracy at the expense of fluency, while 

postponing repair initiation until the next word boundary maintains fluency at the expense of 

accuracy. Furthermore, if Kapatsinski’s (2010) finding of an effect of frequency on reparandum item 

completeness, confirmed in this study, can be attributed to a high degree of automatization of the 

production of frequent words, we might wonder whether frequency constrains the speed of repair 

initiation following detection, irrespective of fluency considerations.20 

                                            
20 We are grateful to an anonymous reviewer for this suggestion. 
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Our findings do not provide direct evidence for or against Nooteboom’s (2010) theoretical 

account or the Main Interruption Rule,21 but the absence of evidence in our data of a bimodal 

distribution of reparandum lengths is relevant. Nooteboom (2005a, 2010) takes evidence of a 

bimodal distribution of reparandum lengths, which has also been observed in conversation-analytic 

studies of repair (Schegloff 1979, Fox et al. 2009), as support for a qualitative difference between 

early and late repairs. It is certainly difficult to see why, for example, 10% or 90% complete target 

word attempts should be attested more frequently than 50% complete target word attempts if repair is 

initiated immediately upon error detection by a single monitoring process. Nooteboom’s suggestion 

that two distinct monitoring processes are involved is strengthened by the common understanding 

that inner speech monitoring is faster in detecting errors than overt speech monitoring (Postma 

2000). This offers a straightforward explanation of bimodal distributions in reparandum length: as 

the slower second monitor takes over, there is a temporary lag in the detection of errors not picked 

up by the faster first monitor. Our analysis provides no empirical support for this line of reasoning. 

 

4.3 How to quantify repair timing 

With respect to the question of how best to quantify repair timing, we have seen that proportional 

measures of target word completeness are most informative in modelling the temporal organisation 

of our repairs. In modelling offset-to-repair duration, Proportional target segments performs 

similarly to a binary classification  (Completeness) and a measurement of target word duration 

(Target-to-offset duration); in modelling repair tempo, Proportional target segments outperforms all 

other measures.  

 The fact that proportional measures of target word completeness outperform a binary 

classification confirms our hypothesis that not all interrupted reparanda constitute an equally early 

repair initiation: repairs initiated after 10% of the target word has been completed are not directly 

comparable to repairs initiated after 60% has been completed. The fact that proportional measures of 

target word completeness generally outperform measures of target word duration confounds our 

                                            
21 Seyfeddinipur et al. (2008: 838–839) use the observation of repairs after interrupted target word attempts having lower 
offset-to-repair durations than repairs after completed attempts, which our study has confirmed, as evidence against the 
Main Interruption Rule. Their reasoning rests on an exception to the MIR, formulated by Levelt (1989: 481), which states 
that speakers can postpone repair initiation until the end of a word if the word that is produced when trouble is detected is 
not itself erroneous: for example, in the case of lexical ‘appropriateness’ repair. If this is the case, one might predict that 
repairs initiated following the complete production of a non-erroneous word have shorter offset-to-repair durations than 
repairs initiated following an interrupted word — as the completion of the word allows the speaker some extra time for 
planning the repair. Seyfeddinipur et al. (2008) show that this prediction is not borne out. As our data set only contains 
error repairs, our findings do not provide clear support for Seyfeddinipur et al.’s (2008) argument: in all instances, the 
assumption based on the MIR must be that repair is initiated immediately upon error detection. 
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hypothesis that repairs with a reparandum duration above 150–250 ms may have different temporal 

characteristics than those with a duration below 150–250 ms, irrespective of whether they involve 

completed or interrupted target word attempts. This hypothesis is based on the argument that repairs 

with a reparandum duration below 150–250 ms are almost certainly motivated by an error detection 

in inner speech monitoring, while those with a higher reparandum duration are most likely motivated 

by a detection in overt speech monitoring. Our analysis confirms that cautions against postulating a 

reparandum duration threshold in classifying error repairs as resulting either from inner or overt 

speech monitoring (Oomen & Postma 2001, 2002, Hartsuiker et al. 2005b) are justified: we see no 

split in the data at a particular target word duration or segment count.22  

We noted in Section 2.3 that unlike in Nooteboom’s (2010) data, in ours the location of the 

error varies from target word to target word. We suggested that if the involvement versus non-

involvement of the overt speech monitor in the detection of a given error has an impact on the 

prosodic implementation of its repair, the earliest occasion for possible overt speech monitor 

detection — that is, the point at which the first erroneous segment becomes overt — should be a 

highly relevant reference point for the implementation of a continuous measure of repair timing. Our 

statistical analyses are contradictory on the relative performance of repair timing variables that refer 

to the first erroneous segment and variables that refer to the start of the erroneous target word 

attempt: linear regression modelling suggests that the latter perform best, while modelling using 

conditional inference regression trees and random forests highlights the significance of the former.  

In sum, while there is clearly something to be gained from implementing a measure of 

proportional target word completeness in investigating the phonetics of phonological error repair, a 

measure that refers to the start of the target word is likely to capture similar effects to one that refers 

to the precise error location. Our results can be taken as highlighting the importance of the word as a 

unit in speech production and self-monitoring. We do not find strong evidence to support a model of 

self-monitoring in which the difference between early and late repairs of overt errors is in the 

duration that elapses, or the number of segments that are produced, after the first erroneous segment 

has been articulated. Instead, what appears to matter is how much of the target word is articulated 

before the repair is initiated.  

                                            
22 In constructing our linear regression model, we tested for the significance of a range of thresholds between 150 and 
500 ms by including corresponding binary variables (above vs below 150, above vs below 200 and so on) among our 
candidate predictors. None of these variables resulted in a significant improvement of the fit of our base model. Note that 
conditional inference regression modelling is particularly appropriate for identifying thresholds along a continuous 
parameter: the threshold value or range will give rise to a partition in the tree. As seen in Section 3.4, our duration 
variables do not give rise to significant splits in the data. 
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5 Conclusion 

In this paper we have reported on a study of the temporal characteristics of phonological error repair 

in spontaneous Dutch speech. The study has confirmed Plug’s (2011) finding of a predominance of 

temporal compression — that is, a local increase in articulation rate — following the repair initiation. 

The study has also confirmed Nooteboom’s (2010) finding that the timing of repair initiation 

covaries with aspects of the prosody of the repair that follows, and confirmed that target word 

frequency is a relevant factor, in line with results reported by Kapatsinski (2010). With reference to 

repair timing, the study has revealed that proportional measures of target word completeness provide 

the most informative quantifications in modelling the overall temporal organisation of the repairs.  

 

Acknowledgements 

This work was supported by ESRC grant RES-061-25-0417 ‘Prosodic marking revisited: The 

phonetics of self-initiated self-repair in Dutch’. We thank Christina Englert for her contribution to 

the research reported here, and the associate editor of Journal of Phonetics, one anonymous reviewer 

and Sieb Nooteboom for helpful comments on the first submission of this paper. 

 

 

References    

Aylett, M. & A.Turk 2004. The smooth signal redundancy hypothesis: A functional explanation for 
relationships between redundancy, prosodic prominence and duration in spontaneous speech. 
Language and Speech 47: 31–56. 

Aylett, M. & A.Turk 2006. Language Redundancy predicts syllabic duration and the spectral 
characteristics of vocalic syllable nuclei. Journal of the Acoustical Society of America  119: 3048–
3058. 

Baars, B.J., M.T. Motley & D.G. MacKay 1975. Output editing for lexical status in artificially 
elicited slips of the tongue. Journal of Verbal Learning and Verbal Behaviour 14: 382–391. 

Baayen, R.H. 2008. Analyzing linguistic data: A practical introduction to statistics using R. 
Cambridge: Cambridge University Press. 

Baayen, R.H., R. Piepenbrock & L. Gulikers 1995. The CELEX lexical database. Release 2 [CD-
ROM]. Philadelphia: Linguistics Data Consortium (Distributor). 

Blackmer, E.R. & J.L. Mitton 1991. Theories of monitoring and the timing of repairs in spontaneous 
speech. Cognition 39: 173–194. 



27 
 

Boersma, P. & D. Weenink 2010. Praat: doing phonetics by computer (version 5.1.34). 
http://www.praat.org/. 

Brédart, S. 1991. Word interruption in self-repairing. Journal of Psycholinguistic Research 20: 123–
137. 

Breiman, L. 2001. Random forests. Machine Learning 45: 5–32. 

Fox, B., F. Wouk, M. Hayashi, S. Fincke, L. Tao, M.-L. Sorjonen, M. Laakso & W. F. Hernandez 
2009. A cross-linguistic investigation of the site of initiation in same-turn self-repair. In 
Conversation analysis: Comparative perspectives, ed. J. Sidnell. Cambridge: Cambridge 
University Press. 60–103. 

Frisch, S.A. & R. Wright 2002. The phonetics of phonological speech errors: An acoustic analysis of 
slips of the tongue. Journal of Phonetics 30: 139–162. 

Fromkin, V.A. 1973. The non-anomalous nature of anomalous utterances. In Speech errors as 
linguistic evidence, ed. V.A. Fromkin. The Hague: Mouton. 215–242.  

Hartsuiker, R.J. 2006. Are speech error patterns affected by a monitoring bias? Language and 
Cognitive Processes 21. 856–891. 

Hartsuiker, R.J. & H.H.J. Kolk 2001. Error monitoring in speech production: A computational test of 
the Perceptual Loop Theory. Cognitive Psychology 42: 113–157. 

Hartsuiker, R.J., R. Bastiaanse, A. Postma & F. Wijnen 2005a. Phonological encoding and 
monitoring in normal and pathological speech. In Phonological encoding and monitoring in 
normal and pathological speech, ed. R.J. Hartsuiker, R. Bastiaanse, A. Postma & F. Wijnen. 
Hove: Psychology Press. 1–14. 

Hartsuiker, R.J., H.H.J. Kolk & H. Martensen 2005b. Division of labor between internal and external 
speech monitoring. In Phonological encoding and monitoring in normal and pathological speech, 
ed. R.J. Hartsuiker, R. Bastiaanse, A. Postma & F. Wijnen. Hove: Psychology Press. 187–205. 

Hartsuiker, R.J., C.M. Catchpole, N.H. De Jong & M.J. Pickering 2008. Concurrent processing of 
words and their replacements during speech. Cognition 108: 601–607.  

Howell, P. & K. Young 1991. The use of prosody in highlighting alterations in repairs from 
unrestricted speech. The Quarterly Journal of Experimental Psychology 43A: 733–758. 

Jasperson, R. 2002. Some linguistic aspects of closure cut-off. In The language of turn and sequence, 
ed. C.E. Ford, B.A. Fox & S.A. Thompson. Oxford: Oxford University Press. 257–286. 

Kapatsinski, V. 2010. Frequency of use leads to automaticity of production: Evidence from repair in 
conversation. Language and Speech 53: 71–105. 

Levelt, W.J.M. & A. Cutler 1983. Prosodic marking in speech repair. Journal of Semantics 2: 205–
217. 

Levelt, W.J.M. 1983. Monitoring and self-repair in speech. Cognition 14: 41–104. 

Levelt, W.J.M. 1984. Spontaneous self-repairs in speech: Processes and representations. In 
Proceedings of the Tenth International Conference of Phonetic Sciences, ed. M.P.R. Van den 
Broecke & Cohen. Dordrecht: Foris. 105–117. 

Levelt, W.J.M. 1989. Speaking: From intention to articulation. Cambridge, Mass.: The MIT Press. 

Levelt, W.J.M., A. Roelofs & A.S. Meyer 1999. A theory of lexical access in speech production. 
Behavioral and Brain Sciences 22: 1–75.  

http://www.praat.org/


28 
 

Lindblom, B. 1990. Explaining phonetic variation: A sketch of the H&H theory. In Speech 
production and speech modeling, ed. W.J. Hardcastle & A. Marchal. Dordrecht: Kluwer. 403–
439. 

Lindblom, B. 1996. Role of articulation in speech perception: Clues from production. Journal of the 
Acoustical Society of America 99: 1683–1692. 

Lindblom, B. 2000. Developmental origins of adult phonology: The interplay between phonetic 
emergents and evolutionary adaptations. Phonetica 57: 297–314. 

Liss, J.M. 1998. Error-revision in the spontaneous speech of apraxic speakers. Brain and Language 
62: 342–360. 

Marslen-Wilson, W. & L. Tyler 1981. Central processes in speech understanding. Philosophical 
Transactions of the Royal Society London B259: 317–332. 

Meyer, A.S. 1992. Investigation of phonological encoding through speech error analyses: 
Achievements, limitations, and alternatives. Cognition 42: 181–211. 

Niebuhr, O. 2010. On the phonetics of intensifying emphasis in German. Phonetica 67: 170–198. 

Nooteboom, S.G. 1980. Speaking and unspeaking: Detection and correction of phonological and 
lexical errors in spontaneous speech. In Errors in linguistic performance, ed. V. Fromkin. New 
York: Academic Press. 87–95. 

Nooteboom, S.G. 2005a. Lexical bias revisited: Detecting, rejecting and repairing speech errors in 
inner speech. Speech Communication 47: 43–58. 

Nooteboom, S.G. 2005b. Listening to oneself: Monitoring speech production. In Phonological 
encoding and monitoring in normal and pathological speech, ed. R.J. Hartsuiker, R. Bastiaanse, 
A. Postma & F. Wijnen. Hove: Psychology Press. 167–186. 

Nooteboom, S.G. 2010. Monitoring for speech errors has different functions in inner and overt 
speech. In The linguistic enterprise: From knowledge of language to knowledge in linguistics, ed. 
M.B.H. Everaert, T. Lentz, H. De Mulder, Ø. Nilsen & A. Zondervan. Amsterdam: John 
Benjamins. 213–233. 

Oomen, C.C.E. & A. Postma 2001. Effects of time pressure on mechanisms of speech production 
and self-monitoring. Journal of Psycholinguistic Research 30: 163–184.  

Oomen, C.C.E. & A. Postma 2002. Limitations in processing resources and speech monitoring. 
Language and Cognitive Processes 17: 163–184. 

Oostdijk, N. 2002. The design of the Spoken Dutch Corpus. In New frontiers of corpus research, ed. 
P. Peters, P. Collins & A. Smith. Amsterdam: Rodopi. 105–113. 

Plug, L. 2011. Phonetic reduction and informational redundancy in self-initiated self-repair in Dutch. 
Journal of Phonetics 39: 289–297. 

Pluymaekers, M., M. Ernestus & R.H. Baayen 2005. Articulatory planning is continuous and 
sensitive to informational redundancy. Phonetica 62: 146–159. 

Postma, A. 2000. Detection of errors during speech production: A review of speech monitoring 
models. Cognition 77: 97–131.  

Postma, A. & H.H.J. Kolk 1993. The covert repair hypothesis: Prearticulatory repair processes in 
normal and stuttered disfluencies. Journal of Speech and Hearing Research 36: 472–487. 

Rietveld, A.C.M. & V.J. van Heuven 1997. Algemene fonetiek. Bussum: Coutinho. 



29 
 

Schegloff, E.A. 1979. The relevance of repair to syntax-for-conversation. Syntax and Semantics 12: 
261–286. 

Seyfeddinipur, M., S. Kita & P. Indefrey 2008. How speakers interrupt themselves in managing 
problems in speaking: Evidence from self-repairs. Cognition 108: 837–842. 

Shattuck-Hufnagel, S. & A. Cutler 1999. The prosody of speech error corrections revisited. In 
Proceedings of the Fourteenth International Congress of Phonetic Sciences (ICPhS 1999). Vol. 2. 
San Francisco. 1483–1486. 

Shriberg, E. 2001. To ‘errr’ is human: Ecology and acoustics of speech disfluencies. Journal of the 
International Phonetic Association 31: 153–169. 

Slevc, L.R. & V.S. Ferreira 2006. Halting in single word production: A test of the perceptual loop 
theory of speech monitoring. Journal of Memory and Language 54: 515–540. 

Smiljanić, R. & A.R. Bradlow 2009. Speaking and hearing clearly: Talker and listener factors in 
speaking style changes. Language and Linguistics Compass 3: 236–264. 

Strobl, C., A.-L. Boulesteix, T. Kneib, T. Augustin & A. Zeileis 2008. Conditional variable 
importance for random forests. BMC Bioinformatics 9: 307. 

Strobl, C., J. Malley & G. Tutz 2009. An introduction to recursive partitioning: Rationale, 
application, and characteristics of classification and regression trees, bagging, and random forests. 
Psychological Methods 14: 323–348. 

Tagliamonte, S. & R.H. Baayen 2012. Models, forests and trees of York English: Was/were variation 
as a case study for statistical practice. Language Variation and Change 24: 135–178. 

Tydgat, I., M. Stevens, R.J. Hartsuiker & M.J. Pickering 2011. Deciding where to stop speaking. 
Journal of Memory and Language 64: 359–380. 

 

 

 


