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Abstract

We provide a general method to prove the existence and compute
efficiently elimination orderings in graphs. Our method relies on sev-
eral tools that were known before, but that were not put together so
far: the algorithm LexBFS due to Rose, Tarjan and Lueker, one of its
properties discovered by Berry and Bordat, and a local decomposition
property of graphs discovered by Maffray, Trotignon and Vušković.

1 Introduction

In this paper all graphs are finite and simple. A graph G contains a graph
F if F is isomorphic to an induced subgraph of G. A class of graphs is
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hereditary if for every graph G of the class, all induced subgraphs of G
belong to the class. A graph G is F -free if it does not contain F . When F
is a set of graphs, G is F-free if it is F -free for every F ∈ F . Clearly every
hereditary class of graphs is equal to the class of F-free graphs for some F
(F can be chosen to be the set of all graphs not in the class but all induced
subgraphs of which are in the class). The induced subgraph relation is not
a well quasi order (contrary for example to the minor relation), so the set
F does not need to be finite.

When X ⊆ V (G), we write G[X] for the subgraph of G induced by X.
An ordering (v1, . . . , vn) of the vertices of a graph G is an F-elimination
ordering if for every i = 1, . . . , n, NG[{v1,...,vi}](vi) is F-free. Note that this
is equivalent to the existence, in every induced subgraph of G, of a vertex
whose neighborhood is F-free.

Let us illustrate our terminology on a classical example. We denote
by S2 the independent graph on two vertices. A vertex is simplicial if its
neighborhood is S2-free, or equivalently is a clique. A graph is chordal if it
is hole-free, where a hole is a chordless cycle of length at least 4.

Theorem 1.1 (Dirac [12]) Every chordal graph admits an {S2}-
elimination ordering.

Theorem 1.2 (Rose, Tarjan and Lueker [26]) There exists a linear-
time algorithm that computes an {S2}-elimination ordering of an input
chordal graph.

Motivation, goals, and outline of the paper

We believe that elimination orderings are important, because several classi-
cal hereditary classes, such as perfect graphs or even-hole-free graphs, admit
deep decomposition theorems that are hard to use for algorithmic purposes.
For more details, we send the reader to surveys ([31] for perfect graphs and
[33] for even-hole-free graphs). Sometimes, as we shall see, the existence of
a vertex with some local structural property is more useful for the design of
efficient algorithms than a global description of the class. Even for chordal
graphs that are rather well structured, elimination orderings are the basis
for the fastest algorithms.

Our goal here is to give a general method to prove the existence of
elimination orderings, to compute them efficiently and to use them to design
algorithms solving problems for different hereditary classes of graphs. Our
method relies on two main ingredients that are not new but that were not
put together before:
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1. LexBFS, a classical algorithm discovered by Rose, Tarjan and
Lueker [26], and some of its properties discovered by Berry and Bor-
dat [3].

2. A local decomposition property of graphs discovered by Maffray,
Trotignon and Vušković [23]. This property is called Property (⋆)
in [23], but here we give it a more meaningful name of local decompos-
ability.

In Section 2, we explain the first ingredient, and in Section 3 the sec-
ond. We conclude Section 3 by illustrating how our method reproduces the
classical proofs of Theorems 1.1 and 1.2, so that we may consider the rest
of our work as a generalization of these.

In Section 4 we give two classes of graphs for which the existence of
an F-elimination ordering is proved in previous works (namely even-hole-
free graphs and square-theta-free Berge graphs). We explain for each of
them how our method can be used prove the existence of the ordering.
For even-hole-free graphs, our method leads to speeding up the algorithm
that computes a maximum clique. To be more specific, it turns out that
the classes in Section 4 are slight generalizations of even-hole-free graphs
and square-theta-free Berge graphs, defined by excluding different Truemper
configurations, that are special types of graphs (defined formally at the end
of this section) that play an important role in the study of hereditary graph
classes (see survey [34]). This fact is interesting to us, especially because
Truemper configurations appear also in the following section.

In Section 5, we apply systematically our method to produce classes of
graphs that admit F-elimination orderings for all possible non-empty sets
of graphs F made of non-complete graphs on three vertices (there are seven
such sets F). This leads us to define seven classes of graphs, each of which
having its own elimination ordering by our method. Two of these classes
were previously studied (namely universally signable graphs and wheel-free
graphs) and five of them are new. For almost all these classes, we get
something from the ordering: a bound on the chromatic number, a coloring
algorithm, or an algorithm for the maximum clique problem. To our great
surprise, this systematic application of the method outlined in this paper
leads again to classes that are all defined by excluding some Truemper con-
figurations.

Section 6 is devoted to open questions.
We now sum up the previously known optimization algorithms for which

we get better complexity (each time, we improve the previously known com-
plexity by at least a factor of n):
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• Maximum weighted clique in even-hole-free graphs in time O(nm).

• Maximum weighted clique in universally signable graphs in time O(n+
m).

• Coloring in universally signable graphs in time O(n+m).

Terminology and notation

For x ∈ V (G), N(x) denotes the set of neighbors of x, and N [x] = N(x) ∪
{x}. For a set of vertices S, N(S) denotes the set of vertices not in S that
have a neighbor in S, and N [S] = S ∪N(S). For S ⊆ V (G), G[S] denotes
the subgraph of G induced by S, and G− S = G[V (G)− S].

Recall that a hole in a graph is a chordless cycle of length at least 4,
where the length of a hole is the number of its edges. A hole is even or odd
according to the parity of its length.

Sometimes, we consider weighted graphs, which are graphs given with a
non-negative weight for every vertex. The weight of a subset of vertices is
then the sum of the weights of its elements. The usual problem of finding a
maximum clique generalizes to weighted graphs to the problem of finding a
clique of maximum weight.

In all complexity analysis of the algorithms, n denotes the number of
vertices of the input graph, and m the number of edges. We say that an
algorithm runs in linear time if its complexity is O(n+m).

Truemper configurations

Special types of graphs that are called Truemper configurations appear in
different sections of this work, so let us define them now. A 3-path configu-
ration is a graph induced by three internally vertex disjoint paths of length
at least 1, P1 = x1 . . . y1, P2 = x2 . . . y2 and P3 = x3 . . . y3, such that either
x1 = x2 = x3 or x1, x2, x3 are all distinct and pairwise adjacent, and either
y1 = y2 = y3 or y1, y2, y3 are all distinct and pairwise adjacent. Furthermore,
the vertices of Pi ∪ Pj , i 6= j, induce a hole. Note that this last condition in
the definition implies the following.

• If x1, x2, x3 are distinct (and therefore pairwise adjacent) and y1, y2, y3
are distinct, then the three paths have length at least 1. In this case,
the configuration is called a prism.

• If x1 = x2 = x3 and y1 = y2 = y3, then the three paths have length
at least 2 (since a path of length 1 would form a chord of the cycle
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Figure 1: Pyramid, prism, theta and wheel (dashed lines represent paths)

formed by the two other paths). In this case, the configuration is called
a theta.

• If x1 = x2 = x3 and y1, y2, y3 are distinct, or if x1, x2, x3 are distinct
and y1 = y2 = y3, then at most one of the three paths has length 1,
and the others have length at least 2. In this case, the configuration
is called a pyramid.

A wheel (H, v) is a graph formed by a hole H, called the rim, and a
vertex v, called the center, such that the center has at least three neighbors
on the rim. A Truemper configuration is a graph that is either a prism, a
theta, a pyramid or a wheel (see Figure 1).

2 A theorem on LexBFS orderings

LexBFS is a linear time algorithm of Rose, Tarjan and Lueker [26] whose
input is any graph G together with a vertex s, and whose output is a linear
ordering of the vertices of G starting at s. A linear ordering of the vertices
of a graph G is a LexBFS ordering if there exists a vertex s of G such that
the ordering can be produced by LexBFS when the input is G, s. As the
reader will soon see, we do not need to define LexBFS more precisely. The
purpose of this section is to provide an alternative proof of the following
result.

Theorem 2.1 (Berry and Bordat [3]) If G is a non-complete graph and
z is the last vertex of a LexBFS ordering of G, then there exists a connected
component C of G−N [z] such that for every neighbor x of z, either N [x] =
N [z], or N(x) ∩ C 6= ∅.

Equivalently, if we put z together with its neighbors of the first type, the
resultant set of vertices is a clique, a homogeneous set, and its neighborhood
is a minimal separator. Such sets are called moplexes in [3] and Theorem 2.1
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is stated in term of moplexes in [3]. We find it more convenient for our
purpose to state it as we do. We now give an alternative proof of Theorem 2.1
for several reasons. First, it is shorter than the original proof mainly because
it relies on the following nice characterization of LexBFS orderings instead
of the full description of the algorithm. Second, we believe that Lemma 2.3
that we use in our proof and that was not stated explicitly before is of
independent interest.

Theorem 2.2 (Brandstädt, Dragan and Nicolai [4]) An ordering ≺
of the vertices of a graph G = (V,E) is a LexBFS ordering if and only
if it satisfies the following property: for all a, b, c ∈ V such that c ≺ b ≺ a,
ca ∈ E and cb /∈ E, there exists a vertex d in G such that d ≺ c, db ∈ E and
da 6∈ E.

Let us strengthen a little this property for our purposes.

Lemma 2.3 Let ≺ be a LexBFS ordering of a graph G = (V,E). Let z
denote the last vertex in this ordering. Then for all vertices a, b, c ∈ V such
that c ≺ b ≺ a and ca ∈ E, there exists a path from b to c whose internal
vertices are disjoint from N [z].

proof — By contradiction assume there exists such a triple c ≺ b ≺ a
for which no such path exists from b to c. Choose this triple to be minimal
with respect to the sum of the positions of its elements in the ordering.
Observe that since b cannot be adjacent to c, by Theorem 2.2 there is a
vertex d such that d ≺ c, db ∈ E and da 6∈ E. There must be a path P from
c to d whose internal vertices are disjoint from N [z] otherwise d ≺ c ≺ b
would contradict the minimality of c ≺ b ≺ a. Since db ∈ E, d must be a
neighbor of z otherwise P ∪ {d} is a path that contradicts the hypothesis.
In particular, z 6= a. So we can apply Theorem 2.2 to the triple d ≺ a ≺ z.
Thus there is a vertex e such that e ≺ d, ea ∈ E and ez /∈ E. But again by
minimality of c ≺ b ≺ a, there exist two paths, one from e to c (from the
triple e ≺ c ≺ a), and one from e to b (from the triple e ≺ b ≺ a) whose
internal vertices are disjoint from N [z]. Since e is a non-neighbor of z, the
union of these paths contains a path from b to c whose internal vertices are
disjoint from N [z], a contradiction. 2

With this lemma, we are now able to easily prove the aforementioned
theorem.
proof of Theorem 2.1 — We denote by ≺ the LexBFS ordering. First
observe that V (G)−N [z] 6= ∅, since otherwise by Theorem 2.2 G is complete.
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Let x be a neighbor of z, and assume that N(x) ⊆ N [z]. To show
that in this case N [x] = N [z], let y be another neighbor of z, and assume
xy /∈ E(G). Either x ≺ y or y ≺ x, but in both cases, Lemma 2.3 with
a = z implies the existence of a neighbor of x that is not a neighbor of z,
contradicting the assumption.

Now assume that N(x) 6⊆ N [z]. Denote by u the last vertex in ≺ that
does not belong to N [z], and by C the connected component of G − N [z]
containing u. We now show that C is the desired component. If x ≺ u, then
by Lemma 2.3 applied to x ≺ u ≺ z, there exists a path from x to u which
does not meet N [z], so x must have a neighbor in C. So we may assume
that u ≺ x and that u is not adjacent to x. Since x has a neighbor u′ not
belonging to N [z], we must have u′ ≺ u. Now by Lemma 2.3 applied to
u′ ≺ u ≺ x, u and u′ belong to the same component C. 2

3 Locally F-decomposable graphs

Let F be a set of graphs. We are interested in graphs G that admit F-
elimination orderings (which is equivalent to say that every induced sub-
graph of G has a vertex whose neighborhood is F-free). A much stronger
property is the one of being locally F-free : every vertex of G has a F-free
neighborhood. The following property, that sits between these two, was in-
troduced by Maffray, Trotignon and Vušković in [23] (where it was called
Property (⋆)).

Definition 3.1 Let F be a set of graphs. A graph G is locally F-
decomposable if for every vertex v of G, every F ∈ F contained in N(v)
and every connected component C of G−N [v], there exists y ∈ F such that
y has a non-neighbor in F and no neighbors in C.

A class of graphs C is locally F-decomposable if every graph G ∈ C is
locally F-decomposable.

It is easy to see that if a graph is locally F-decomposable, then so are
all its induced subgraphs. Therefore, for all sets of graphs F , the class of
graphs that are locally F-decomposable is hereditary.

Observe that a complete graph is locally F-decomposable for any set
of graphs F . On the other hand, a complete graph may fail to have an
F-elimination ordering, but this happens only when F contains graphs that
are complete. This is why in the next theorem and in all the applications
to come, we require that no graph of F is complete.
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Here is now our main result. A similar theorem was given in [23] with
another kind of ordering (not worth defining here) instead of LexBFS. This
ordering was also lexicographic in some sense, but it could not be computed
in linear time.

Theorem 3.2 If F is a set of non-complete graphs, and G is a locally F-
decomposable graph, then every LexBFS ordering of G is an F-elimination
ordering.

proof — Let z be the last vertex of a LexBFS ordering of G. If G is
complete, then N(z) is F-free because no graph of F is complete. Otherwise,
the connected component C given by Theorem 2.1 is such that every vertex
of N(z) that has non-neighbors in N(z) has a neighbor in C. So by definition
of local F-decomposability, N(z) must be F-free.

Therefore, any LexBFS ordering is an F-elimination ordering, because
if (v1, v2, . . . , vn) is a LexBFS ordering, then for all i, (v1, v2, . . . , vi) is a
LexBFS ordering of G[{v1, v2, . . . , vi}] (this follows for instance from the
characterization of LexBFS orderings given in Theorem 2.2). 2

Let us now illustrate how Theorem 3.2 can be used with the simplest
possible set made of non-complete graphs: F = {S2}, where S2 is the inde-
pendent graph on two vertices. The following is of course well known, but
we write its proof to illustrate our notions.

Lemma 3.3 A graph G is locally {S2}-decomposable if and only if G is
chordal.

proof — Suppose G is not locally {S2}-decomposable. Then for some
x ∈ V (G) and some connected component C of G−N [x], G[N(x)] contains
an induced subgraph F isomorphic to S2, and every vertex of F has a
neighbor in C. This clearly implies that G contains a hole.

To prove the converse, suppose that G contains a hole H, and let y, x, z
be three consecutive vertices of H. Let C be the connected component of
G − N [x] that contains the vertices of H − {x, y, z}. Then {y, z} is an S2

of N(x), and both y and z have neighbors in C. Therefore, G is not locally
{S2}-decomposable. 2

Hence, as promised in the introduction, we reobtain the proof for Theo-
rems 1.1 and 1.2 by using Lemma 3.3 and Theorem 3.2.
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4 Even-hole-free graphs and perfect graphs

In this section, we show how local decomposability can be used to provide
elimination orderings and algorithms for even-hole-free graphs and some
Berge graphs. A graph G is Berge if G and G are odd-hole-free. In the last
few decades much research was devoted to the study of Berge graphs, odd-
hole-free graphs and even-hole-free graphs (for surveys see [31, 33]). For all
these classes global decomposition theorems are known. Most famously the
celebrated proof of the Strong Perfect Graph Conjecture (which states that
a graph is perfect if and only if it is Berge) obtained in 2002 by Chudnovsky,
Robertson, Seymour and Thomas [7] is based on a decomposition theorem
for Berge graphs. Also decomposition theorems were obtained for even-
hole-free graphs [10], the most precise one by da Silva and Vušković [29].
Unfortunately, up to now, no one knows how these decomposition theorems
can be used to design fast algorithms for optimization problems.

The results that we present here are in fact proved for generalizations
of Berge graphs and even-hole-free graphs, the so-called signed graphs. We
want to state their definitions here, because we find it interesting that they
make use of the same kind of obstructions as the classes of graphs in the
next section. A graph is odd-signable if there exists an assignment of 0, 1
weights to its edges that makes every chordless cycle of odd weight. A graph
is even-signable if there exists an assignment of 0, 1 weights to its edges that
makes every triangle of odd weight and every hole of even weight. In [32]
Truemper proved a theorem that characterizes graphs whose edges can be
assigned 0, 1 weights so that chordless cycles have prescribed parities. The
characterization states that this can be done for a graph G if and only if it
can be done for all Truemper configurations and K4’s contained in G. An
easy consequence of this theorem when applied to odd-signable and even-
signable graphs gives the following characterizations of these classes (see
[11]). A sector of a wheel is a subpath of the rim of length at least 1 whose
ends are adjacent to the center and whose internal vertices are not. A wheel
is even if it has an even number of sectors, and it is odd if it has an odd
number of sectors of length 1.

• A graph is odd-signable if and only if it is {theta, prism, even wheel}-
free.

• A graph is even-signable if and only if it is {pyramid, odd wheel}-free.

We are now ready to obtain two results on vertex elimination orderings
by using local F-decomposability. These results were known already (see
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[28] and [23]), and were obtained by a special kind of lexicographic ordering
of the vertices that is different from LexBFS (but more closely related to
decomposition). Proving the existence of the ordering directly from The-
orem 3.2 allows in both cases for the desired ordering to be computed in
linear-time. A 4-hole is a hole of length 4.

Theorem 4.1 (da Silva and Vušković [28]) 4-hole-free odd-signable
graphs are locally hole-decomposable.

Theorems 4.1 and 3.2 directly imply that 4-hole-free odd-signable graphs
admit a hole-elimination ordering. Theorem 4.1 is used in [28] to obtain a
robust O(n2m)-time algorithm for computing a maximum weighted clique
in a 4-hole-free odd-signable graph (and hence in an even-hole-free graph).
We now show how to reduce this complexity to O(nm).

Theorem 4.2 There is an O(nm)-time algorithm whose input is a weighted
graph G and whose output is a maximum weighted clique of G or a certificate
proving that G is not 4-hole-free odd-signable.

proof — Let H denote the class of all holes and consider the following
algorithm. Compute in linear time a LexBFS ordering (v1, . . . , vn) of G. By
Theorems 3.2 and 4.1, this ordering is an H-elimination ordering if G is a
4-hole-free odd-signable graph. Testing whether a graph is chordal can be
done in linear time [26], and hence it can be checked in O(nm)-time whether
(v1, . . . , vn) is an H-elimination ordering.

So, we may assume that (v1, . . . , vn) is an H-elimination ordering
of G. We suppose inductively that a maximum weighted clique of
G[{v1, . . . , vn−1}] is found in time O((n − 1)m). A maximum weighted
clique of G[N [vn]] can be found in time O(m) [26]. So, we now know a
maximum weighted clique of G[N [vn]] and a maximum weighted clique of
G[{v1, . . . , vn−1}]. A maximum weighted clique among these is a maximum
weighted clique of G. All this takes time O((n− 1)m) +O(m) = O(nm). 2

We now turn our attention to Berge graphs (or more precisely to even-
signable graphs that generalize them). A square-theta is a theta that con-
tains a 4-hole. A long hole is a hole of length at least 5.

Theorem 4.3 (Maffray, Trotignon and Vušković [23]) Square-theta-
free even-signable graphs are locally long-hole-decomposable.

Again, Theorems 4.3 and 3.2 directly imply that square-theta-free even-
signable graphs admit a long-hole-elimination ordering. Based on Theo-
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rem 4.3 an O(n7)-time robust algorithm is given in [23] for computing a
maximum weighted clique in a square-theta-free Berge graph (note that this
class generalizes both 4-hole-free Berge graphs and claw-free Berge graphs).
It relies on a long-hole-elimination ordering. With the machinery presented
here, we can obtain this ordering in linear time, but unfortunately, this does
not improve the overall complexity of the maximum clique algorithm.

5 Seven generalizations of chordal graphs

In this section we apply systematically our method to all possible sets made
of non-complete graphs of order 3. This leads to seven classes of graphs,
two of which were studied before (namely universally signable graphs and
wheel-free graphs).

To describe the classes of graphs that we obtain, we need to be more
specific about wheels. A wheel is a 1-wheel if for some consecutive vertices
x, y, z of the rim, the center is adjacent to y and non-adjacent to x and z.
A wheel is a 2-wheel if for some consecutive vertices x, y, z of the rim, the
center is adjacent to x and y, and non-adjacent to z. A wheel is a 3-wheel if
for some consecutive vertices x, y, z of the rim, the center is adjacent to x,
y and z. Observe that a wheel can be simultaneously a 1-wheel, a 2-wheel
and a 3-wheel. On the other hand, every wheel is a 1-wheel, a 2-wheel or a
3-wheel. Also, any 3-wheel is either a 2-wheel or a universal wheel (that is
a wheel whose center is adjacent to all vertices of the rim).

Up to isomorphism, there are four graphs on three vertices, and three of
them are not complete. These three graphs (namely the independent graph
on three vertices denoted by S3, the path of length 2 denoted by P3 and its
complement denoted by P3) are studied in the next lemma.

Lemma 5.1 For a graph G the following hold.

(i) G is locally {S3}-decomposable if and only if G is {1-wheel, theta,
pyramid}-free.

(ii) G is locally {P3}-decomposable if and only if G is 3-wheel-free.

(iii) G is locally {P3}-decomposable if and only if G is {2-wheel, prism,
pyramid}-free.

proof — To prove (i), first observe that if G contains a 1-wheel, theta or
pyramid H, then H contains vertices v, x, y, z such that {x, y, z} induces an
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S3, {x, y, z} ⊆ N(v), and H ′ = H − {v, x, y, z} is a connected subgraph of
G−N [v] such that every vertex of {x, y, z} has a neighbor in H ′.

To prove the converse, let v ∈ V (G) be such that G[N(v)] contains S3,
and C a component of G−N [v] such that every vertex of S3 has a neighbor
in C. Denote by x, y, z the three members of S3. Let P be a chordless path
from x to y with interior in C. Let Q be a chordless path from z to z′,
such that V (Q) − {z} ⊆ C, z′ has neighbors in the interior of P , and is of
minimum length among such paths (possibly, Q = z = z′).

Suppose that at least one of x or y has neighbors in Q (this implies that
Q has length at least 1). Call w the vertex of Q closest to z along Q, that
has neighbors in {x, y}, and suppose up to symmetry that w is adjacent
to y. Call w′ the vertex of Q closest to z along Q that has neighbors
in P − y. Call x′ the neighbor of w′ in P , closest to x along P . Now,
V (xPx′) ∪ V (zQw′) ∪ {v, y} induces a theta or a 1-wheel centered at y.

Therefore, we may assume that none of x, y has a neighbor in Q. If z′

has a unique neighbor in P , then V (P ) ∪ V (Q) ∪ {v} induces a theta. If z′

has exactly two neighbors in P that are adjacent, then V (P ) ∪ V (Q) ∪ {v}
induces a pyramid. Otherwise, V (P ) ∪ V (Q) ∪ {v} contains a theta.

To prove (ii), first observe that if G contains a 3-wheel H, then H
contains vertices v, x, y, z such that x, y, z is a P3, {x, y, z} ⊆ N(v), and
H ′ = H − {v, x, y, z} is a connected subgraph of G−N [v] such that both x
and z have a neighbor in H ′. To prove the converse, let v ∈ V (G) be such
that G[N(v)] contains a chordless path xyz, and C a component of G−N [v]
such that x and z both have a neighbor in C. Then clearly C ∪ {v, x, y, z}
contains a 3-wheel.

To prove (iii), first observe that if G contains a 2-wheel, prism or pyra-
mid H, then H contains vertices v, x, y, z such that {x, y, z} induces a P3,
{x, y, z} ⊆ N(v), and H ′ = H − {v, x, y, z} is a connected subgraph of
G−N [v] such that every vertex of {x, y, z} has a neighbor in H ′.

To prove the converse, let v ∈ V (G) be such that G[N(v)] contains P3,
and C a component of G−N [v] such that every vertex of P3 has a neighbor
in C. Denote by x, y, z the vertices of P3 in such a way that xy is the
only edge of G[{x, y, z}]. Let P be a path from x to y with interior in C
whose unique chord is xy. Let Q be a chordless path from z to z′, such
that V (Q)−{z} ⊆ C, z′ has neighbors in the interior P , and is of minimum
length among such paths (possibly, Q = z = z′).

Suppose that at least one of x or y has neighbors in Q. Call w the vertex
of Q closest to z along Q, that has neighbors in {x, y}, and suppose up to
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symmetry that w is adjacent to y. Call w′ the vertex of Q closest to z along
Q that has neighbors in P − y. Call x′ the neighbor of w′ in P , closest to x
along P . Now, V (xPx′)∪V (zQw′)∪{v, y} induces a 2-wheel centered at y.

Therefore, we may assume that none of x, y has a neighbor in Q. If z′

has a unique neighbor in P , then V (P ) ∪ V (Q) ∪ {v} induces a pyramid
or a 2-wheel (when P has length 2). If z′ has exactly two neighbors in P
that are adjacent, then V (P ) ∪ V (Q) ∪ {v} induces a prism. Otherwise,
V (P ) ∪ V (Q) ∪ {v} contains a pyramid. 2

The next lemma allows us to combine the results of the previous one.

Lemma 5.2 Let F ,F ′,H,H′ be sets of graphs such that F and F ′ contain
only non-complete graphs. Suppose that the class of locally F-decomposable
graphs is equal to the class of H-free graphs, and that the class of locally F ′-
decomposable graphs is equal to the class of H′-free graphs. Then, the class
of locally (F∪F ′)-decomposable graphs is is equal to the class of (H∪H′)-free
graphs.

proof — Suppose that G is locally (F ∪F ′)-decomposable. From the def-
inition of local decomposability, it follows that G is locally F-decomposable
and locally F ′-decomposable. Hence, G is both H-free and H′-free. It is
therefore (H ∪H′)-free.

Suppose conversely that G is (H ∪ H′)-free. Then G is H-free and H′-
free. It is therefore locally F-decomposable and locally F ′-decomposable.
From the definition of local decomposability, it follows that G is locally
(F ∪ F ′)-decomposable. 2

Table 1 describes eight different classes of graphs C1, . . . , C8, all defined
by excluding induced subgraphs described in the second column of the table
(one of them is the class of chordal graphs that we put back to have a
complete picture). The third column describes a class Fi. The last column
describes the class of Fi-free graphs. Inclusions between our classes and
several known classes are represented in Figure 2 (where the diamond is the
graph obtained from K4 by removing one edge, a cap is a cycle of length
at least 5 with a unique chord joining two vertices at distance 2 on the
cycle, a d-hole is 3-wheel such that the center has degree 3, and the claw
is K1,3). Observe that a d-hole is also a 2-wheel. The following theorem
follows directly from Lemmas 5.1, 5.2 and 3.3.

Theorem 5.3 For i = 1, . . . , 8, let Ci and Fi be the classes defined as in
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i Class Ci Fi Neighborhood

1
{1-wheel, theta,
pyramid}-free

{ }

no stable set of size 3

2 3-wheel-free
{ }

disjoint union of cliques

3
{2-wheel, prism,
pyramid}-free

{ }

complete multipartite

4
{1-wheel, 3-wheel,
theta, pyramid}-free

{

,

} disjoint union of at
most two cliques

5
{1-wheel, 2-wheel,

prism, theta,
pyramid}-free

{

,

}

stable sets of size at
most 2 with all possible
edges between them

6
{2-wheel, 3-wheel,

prism, pyramid}-free

{

,

}

clique or stable set

7
{wheel, prism, theta,

pyramid}-free

{

, ,

}

clique or stable set of
size 2

8 hole-free
{ }

clique

Table 1: Eight classes of graphs
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C7

C1

C3C2

C5

C6

C4

C8

claw-free

diamond-free triangle-free {d-hole, cap}-free

Figure 2: Inclusion for several classes of graphs. An arrow from A to B
means “A is contained in B”. Arrows arising from transitivity are not
represented.

Table 1. For i = 1, . . . , 8, the class Ci is exactly the class of locally Fi-
decomposable graphs.

With Theorem 3.2, this directly implies the following.

Theorem 5.4 For i = 1, . . . , 8, let Ci and Fi be the classes defined as in
Table 1. Then every LexBFS ordering of a graph of Ci is an Fi-elimination
ordering.

Known classes

We now describe the two classes of graphs from Table 1 that (apart from
chordal graphs) were studied before. The first one is C7, i.e. graphs that
contain no Truemper configuration, or equivalently by Theorem 5.4, graphs
that are F7-locally decomposable. These are studied in [9], where they are
called universally signable graphs. The existence of a vertex whose neigh-
borhood is F7-free given by Theorem 5.4 is exactly the following theorem
from [9], that was originally proved through a global decomposition theo-
rem. Theorem 5.4 provides a shorter proof as well as an algorithm that
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outputs the ordering that does not rely on global decomposition. In the
next subsection, we study several algorithmic consequences.

Theorem 5.5 (Conforti, Cornuéjols, Kapoor and Vušković [9])
Every non-empty universally signable graph contains a simplicial vertex or
a vertex of degree 2.

The second class that was studied previously is the class of wheel-free
graphs and its super-class C2. These might have interesting structural prop-
erties, as suggested by several subclasses, see [1] for example for a list of
them. The next theorem (which follows from Theorem 5.4 for i = 2) states
the only non-trivial property that is known to be satisfied by all wheel-free
graphs. The original proof (due to Chudnovsky who communicated it to us
but did not publish it) is by induction, and the proof relying on our method
is much shorter.

Theorem 5.6 (Chudnovsky [5]) Every non-empty 3-wheel-free graph
contains a vertex whose neighborhood is a disjoint union of cliques.

The following corollary extends a well-known fact: a chordal graph G
has at most n maximal cliques.

Corollary 5.7 A 3-wheel-free graph G has at most m maximal cliques.

proof — Induction on m. By Theorem 5.6, consider a vertex v of de-
gree d whose neighborhood is a disjoint union of cliques. By the induction
hypothesis, G − v has at most m − d maximal cliques, and because of its
neighborhhood, v is in at most d maximal cliques. 2

Consequences

Table 2 describes several properties of the classes defined in Table 1. We
indicate a reference for the properties that are already known, or follow
easily from the given references. Let us now explain and prove all these
properties.

Let us analyze the column “χ-bounded” of Table 2. When G is a graph,
we denote by χ(G) the chromatic number of G and by ω(G) the maximum
size of a clique of G. A hereditary class of graphs is χ-bounded (see [17]) if
for some function f , every graph G in the class satisfies χ(G) ≤ f(ω(G)).
The column indicates whether the class Ci is χ-bounded, and if so, gives the
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i χ-bounded Max clique Coloring

1 f(x) = O(x2/ log x) NP-hard [25] NP-hard [18]

2 No [35] O(nm) [26] NP-hard [22]

3 No [35] O(nm) NP-hard [22]

4 f(x) = 2x− 1 O(n+m) ?

5 f(x) = 2x− 1 O(nm) ?

6 No [35] O(n+m) NP-hard [22]

7 f(x) = max(3, x) [9] O(n+m) O(n+m)

8 f(x) = x [12] O(n+m) [26] O(n+m) [26]

Table 2: Several properties of classes defined in Table 1

smallest known function proving so. Classes C2, C3 and C6 are not χ-bounded
because they contain all triangle-free graphs, and these may have arbitrarily
large chromatic number as first shown by Zykov [35]. For classes C1, C4 and
C5, we may rely on degeneracy. Say that a hereditary class of graphs is
ω-degenerate if there exists a function g such that every non-empty graph in
the class has a vertex of degree at most g(ω(G)). It is easy to check that by
the greedy coloring algorithm, if a hereditary class of graphs is ω-degenerate
with a non-decreasing function g, then it is χ-bounded with function g + 1.
The function given for classes C4 and C5 follows from the fact that these
classes are clearly ω-degenerate with function g(x) = 2x − 2. For the class
C1, we use Ramsey theory. Kim [19] proved that for some constant c, every
graph on ct2/ log t vertices admits a stable set of size 3 or a clique of size
t. Therefore, the vertex whose neighborhood is S3-free in any graph in C1
proves that C1 is ω-degenerate with function g(x) = O(x2/ log x). Observe
that the results in this paragraph just improve bounds. Indeed, a theorem
due to Kühn and Osthus [21] proves that theta-free graphs (and therefore
graphs in C1, C4 and C5) are ω-degenerate, but their function is quite big.

Let us now analyze the column “Max clique” of Table 2, that gives the
best complexity of finding a maximum weighted clique in a graph of the
corresponding class. By a result of Poljak [25], it is NP-hard to compute
a maximum stable set in a triangle-free graph. Rephrased in the comple-
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ment, it is NP-hard to compute a maximum clique in an S3-free graph, and
therefore in graphs from C1. Finding a maximum weighted clique in C2 is
easy as follows: for every vertex v, look for a maximum weighted clique in
N(v), and choose the best clique among these. This can be implemented
by running n times the O(n + m) algorithm of Rose, Tarjan and Lueker,
because N(v) is chordal for every v. In fact, this algorithm works in the
larger class of universal-wheel-free graphs.

For C4, we need to be careful about the complexity analysis. Here is
an algorithm that finds a maximum (weighted) clique in G ∈ C4. First
by Theorem 5.4, we find in linear time an {S3, P3}-elimination ordering of
G, say (v1, . . . , vn). This means that in G[{v1, . . . , vi}], N(vi) is a disjoint
union of at most two cliques. We now show that, having this ordering, we
can compute a maximum clique in time O(m). We may assume that G is
connected (otherwise we work on components separately), so m ≥ n − 1.
Suppose inductively that a maximum clique of G[{v1, . . . , vn−1}] is found in
time O(m − d(vn)). We now take the vertices of N(vn) one by one. We
give name x and label X to the first one, and check whether the next ones
are adjacent to x. If so, we give them label X. If some are not adjacent
to x, we give name y and label Y to the first one that we meet. The next
vertices receive label X or Y according to their adjacency to x or y. Note
that exactly one of these adjacencies must occur, since N(vn) is the union of
at most two cliques. At the end of this loop, the vertices with label X and
Y form at most two cliques in N(vn). They are identified in time O(d(vn)).
So, we now know all the maximal cliques of G[N [vn]] and a maximum clique
of G[{v1, . . . , vn−1}]. A maximum clique among these is a maximum clique
of G. All this takes time O(m − d(vn)) + O(d(vn)) = O(m). Observe that
this algorithm relies on a constant time checking of the adjacency, so it
needs the graph to be represented by an adjacency matrix. Therefore, the
time complexity is O(n +m), but the space complexity is O(n2). Observe
also that this algorithm is not robust. If the input graph is not in C4, the
output is a set of vertices, and if it is a clique, we cannot be sure that it has
maximum weight. Since C7 is a subclass of C4, we obtain an algorithm for
the maximum clique problem for universally signable graphs that is faster
than the O(nm)-time algorithm that follows from [9].

For class C6, the algorithm is similar to the previous one. We have to find
a maximum clique in N(vn) in time O(d(vn)). It is easy to verify quickly
whether the neighborhood of vn is a clique or a stable set, and in both cases,
it is immediate to find in time O(d(vn)) a maximum weighted clique in it.
We omit further details.

For C3 (that contains C5), the algorithm is similar to the previous one, ex-
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cept that we rely on a {P3}-elimination ordering of G instead of an {S3, P3}-
elimination ordering. As a result, the neighborhood of the last vertex v is
complete multipartite. We do not know how to find a maximum clique in
N(v) in time O(d(v)), so we do not know how to obtain a linear time algo-
rithm. Instead, we look for a maximum clique in N(v) in time O(m), and
therefore the overall complexity is O(nm).

Let us now analyze the column “Coloring” of Table 2, that gives the
best complexity for coloring a graph of the corresponding class. Since the
edge-coloring problem is NP-hard [18], it follows that coloring line graphs is
NP-hard, and therefore, so is coloring claw-free graphs (that are all in C1).
Classes C2, C3 and C6 contain all triangle-free graphs, that are NP-hard to
color as proved by Preissmann and Maffray [22]. For C7, we first try to find a
2-coloring of the graph by the classical BFS algorithm. If it does not exist,
we look for a max(3, ω(G))-coloring of the input graph G as follows. By
Theorem 5.4 we obtain an {S3, P3, P3}-elimination ordering in linear time.
As a result, the neighborhood of the last vertex of the ordering is a clique
or has size 2. We remove the last vertex v, color recursively the remaining
vertices, and give some available color to v.

6 Open questions

Addario-Berry, Chudnovsky, Havet, Reed and Seymour [2] proved that every
even-hole-free graph admits a vertex whose neighborhood is the union of
two cliques. We wonder whether this result can be proved by some search
algorithm.

Corollary 5.7 suggests that a linear time algorithm for the maximum
clique problem might exist in C2, but we could not find it.

We are not aware of a polynomial time coloring algorithm for graphs in
C4 or C5, but it would be surprising to us that it exists.

Since class C1 generalizes claw-free graphs, it is natural to ask which of
the properties of claw-free graphs it has, such as a structural description
(see [8]), a polynomial time algorithm for the maximum stable set (see [13]),
approximation algorithms for the chromatic number (see [20]), a polynomial
time algorithm for the induced linkage problem (see [14]), and a polynomial
χ-bounding function (see [17]). Also we wonder whether theta-free graphs
are χ-bounded by a polynomial (quadratic?) function (recall that in [21],
they are proved to be χ-bounded).

In [9], an O(nm) time algorithm is described for the maximum weighted
stable set problem in C7. Since the class is a simple generalization of chordal
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graphs, we wonder whether a linear time algorithm exists.
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