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Abstract In 1974 W. S. Hemp constructed a prototype
structure to carry a uniformly distributed load between two
pinned supports. Although Hemp’s structure had a signif-
icantly lower volume than a parabolic arch with vertical
hangers, it was shown to fail the Michell optimality criteria,
and therefore to be non-optimal. In this paper we demon-
strate that if limiting compressive and tensile stresses are
unequal then Hemp’s structure is optimal for the half-plane
provided the ratio of limiting tensile to compressive stresses
falls below a certain threshold. An analytical proof is pre-
sented and the finding is confirmed by results from large
scale numerical layout optimization simulations.

Keywords truss optimization, Michell structure, uniformly
distributed load.

1 Introduction

Optimum structures capable of carrying distributed loads
are of obvious interest to structural engineers. For certain
classes of structures, optimum solutions can be readily de-
duced for a wide range of distributed load and support con-
figurations. So-called “Prager structures” or “optimal arch-
grids” are one such class of structures which has been char-
acterized by Rozvany and Prager (1979). All non-zero mem-
ber forces within a Prager structure must be of the same sign
and, in addition, the vertical positions of external loads must
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be chosen optimally. Rozvany and Wang (1983) show that
these two conditions ensure that Prager structures are always
funicular in form. Current understanding of more complex
classes of optimum structures, which satisfy the Michell
optimality criteria, is more limited (Michell (1904); Hemp
(1973); Rozvany et al (1995)). Whilst elementary examples
of Michell trusses capable of supporting distributed loads
can be obtained using the principle of superposition, the fact
that relatively few Michell structures are known, coupled
with the limited validity of the superposition principle itself,
limits the applicability of the approach.

Details of the first non-trivial example of a Michell-like
structure capable of carrying a distributed load were pro-
vided by Hemp (1974). The structure proposed in Hemp’s
paper transfers a uniformly distributed load to two level
pinned supports. The volume of the resulting structure is
some 3.5% lower than that of a simple parabolic arch with
vertical hangers. The semi-inverse method developed by
Hemp to characterize his structure proved equally effec-
tive when analysing a closely related optimum structure, de-
signed to carry a uniform transmissible load between two
pinned supports (Tyas et al 2011). However, when Hemp
analysed the virtual displacement field corresponding to his
structure, it transpired that the Michell optimality criteria
were violated in a small area near mid-span, indicating that
his solution was not optimal. Chan (1975) partially resolved
this difficulty by showing that Hemp’s structure was, in
fact, optimal for certain non-uniformly distributed patterns
of loading. The present paper is in a sense complementary
to Chan’s, but here it is demonstrated that Hemp’s structure
can be optimal for a uniformly distributed load after all, pro-
vided the limiting compressive stress is sufficiently large in
comparison to the limiting tensile stress.

The structure proposed by Hemp comprises of two re-
gions; Fig. 1 shows the left half-span. The first region is a fan
of fully strained mutually orthogonal bars. The uppermost
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Fig. 1 Half-span of the structure proposed by Hemp (1974).

bar in the fan is a concentrated element which equilibrates
the horizontal thrust at mid-span. At the bottom boundary
of the fan the constituent bars are aligned with the Cartesian
axes; the horizontal components of the bar forces reduce to
zero on this boundary whilst the vertical components of the
bar forces are equilibrated by vertical hangers, which trans-
fer the distributed applied load to the bottom of the fan.

The present study was partly motivated by the re-
cent availability of high resolution numerical data corre-
sponding to Hemp’s problem in its original formulation.
Fig. 2 shows a solution obtained using layout optimiza-
tion software which incorporates the highly efficient adap-
tive ‘member-adding’ procedure developed by the authors
(Gilbert and Tyas 2003). Evidently, the sections of the struc-
ture in the vicinity of supports appear to follow Hemp’s pro-
posed solution quite accurately. Nevertheless, at some point
the vertical hanger bars become inclined and, in order to
equilibrate the horizontal component of the bar forces, a fur-
ther concentrated tie bar emerges along the bottom bound-
ary. This finding coincides with that derived from early nu-
merical analyses by McConnel (1974), and the concentrated
tie bar along the bottom boundary is also evident in numer-
ical output obtained more recently by Gilbert et al (2005).
It is worth remarking that another non-trivial example of
a structure with a functionally similar horizontal tie bar is
given by Sokét and Lewiniski (2010), who also draw on nu-
merical layout optimization techniques to confirm their ana-
lytical results (Sok6t 2011).

The presence of the horizontal tie bar allows some im-
portant observations about the nature of the true optimal so-
lution to be drawn:

e It is evident that the inclined tie bars are not orthogonal
to the concentrated tie bar at the bottom of the structure.
This is therefore an example of a degenerate Maxwell-
type region, where strains are at their (tensile) limit in all
directions. Such regions do not impose any restrictions
on member layout. Rozvany (1997) describes several
other situations when the usual assumptions of member

orthogonality within Michell structures can be relaxed.
Note that an analytical solution for a structure featur-
ing a similar concentrated tie bar, which transmits a uni-
form vertical load along a family of inclined tie bars, has
recently been presented by the authors (Pichugin et al,
2011).

e The curvature of the concentrated compressive mem-
ber at the crown cannot be accurately reproduced using
the rectangular nodal grid employed. This leads to gaps
within the structure, which can be seen to be compara-
tively wide around mid-span. Consequently it is not pos-
sible to accurately determine whether or not the fans of
mutually orthogonal members meet at mid-span.

e The inclined bars must follow the trajectories of ten-
sile members at the bottom boundary of the fan of
mutually-orthogonal fully-strained members. This vio-
lates Hemp’s assumption that members along the bottom
boundary of the fan must be aligned with the Cartesian
axes. This indicates that the regions of mutually orthog-
onal members connected to the inclined tie bars can-
not possibly be identical to the Hencky-type fans con-
structed by Hemp (1974).

The availability of efficient layout optimization software
also allowed the dependence of the optimal solution on the
ratio of limiting tensile and compressive stresses to be stud-
ied. The ensuing computations indicated the length of the
mid-span horizontal tensile member to be strongly depen-
dant on this ratio. It was also observed that the extent of
the section of the structure comprising vertical ties in Fig. 2
extends to cover the whole span when the ratio of limiting
tensile to compressive stresses is sufficiently small, with the
mid-span horizontal tensile member then disappearing com-
pletely. This implied that the structure comprising vertical
ties originally proposed by Hemp could potentially be opti-
mal in some circumstances. The remainder of the paper is
devoted to proving this hypothesis, and to identifying the
critical ratio of limiting stresses for which Hemp’s structure
becomes optimal.

2 Some results from Hemp’s 1974 paper

In the interests of conciseness several useful formulae taken
from Hemp (1974) are presented without derivation in this
section. The notation, where possible, is also the same as
used in Hemp’s article. At the same time, to clarify the rela-
tionship between our and Hemp’s derivations, we will spec-
ify the numbers of relevant equations in Hemp’s paper; these
will be given in square brackets to distinguish them from the
equations in the present paper.

The fan can be conveniently parametrized by a curvi-
linear orthogonal coordinate system («, f3), see Fig. 1. If 3
denotes the angle ¢ from Ox to the local tangent to an o
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Fig. 2 Full span of the optimum structure in the case of equal limiting stresses in compression and tension. This numerical solution was obtained
using a uniform Cartesian grid comprising 181 x 253 nodal points, and involved considering approx. 1.048 x 10° potential members.

line (increasing) and ¢ is the angle of the fan at the support,
then 0 < B < ¢ and

¢=-7m/2+p—a—p. ey

Within this coordinate system, line @ = O corresponds to
the top boundary of the fan and line ¢ = ¢ — B (i.e. ¢ =
—m/2) corresponds to its bottom boundary. Fan angle ¢,
presently unknown, is best thought of as a tuning parameter,
which can be used to ensure the compatibility of the static
and kinematic fields.

The static solution and the geometry of the fan, charac-
terized in the first two sections of Hemp’s paper, are fully
applicable in our case. In particular, the Lamé coefficients
(i.e. the scale factors for the chosen system of orthogonal
curvilinear coordinates) are given at the bottom of the fan
by the following expressions

BL(2¢) —28) (2B —28)
A91—B.B) = 2h/ B om g o @
B, p.p) = 3, CO2P), ®)

cf. equations [23] and [12], respectively. Within (2) and (3)
[ and h denote the half-span and the height of the structure,
see Fig. 1, and I,(x), n=0,1,. .., stand for modified Bessel
functions of the first kind. The general theory of Michell
fields featuring mutually orthogonal members can then be
used to establish the Cartesian coordinates of the bottom of
the fan:

B
x(0—B.B) = [ B0 —£.0)ac. @

B
¥~ B.B) = [ A~ £.)dc. ®)

Since x(0, @) =/, integral (5) can be evaluated at the top of
the fan, yielding

h (91 (2¢; — 2C 201 11
1 7/0 2(¢1 — d¢ = /
=30 (201) + ;(—1>"12n+1(2¢1> = Hi(¢1), (6)

cf- equations [26, 27].

3 The case of unequal limiting stresses
3.1 Virtual displacement field within the fan

It is now necessary to derive a virtual displacement field
which is valid for unequal limiting compressive and ten-
sile stresses, denoted o¢ and or, respectively. The strains
produced by this field must satisfy the requirements of the
Michell criteria, i.e. remain bounded by the maximum al-
lowable values —{c/o¢ and ¢c/or, in which 6 = (o¢ +
or)/2 and / is a positive infinitesimal. It is shown in Hemp
(1973) that within regions of mutually orthogonal members,
such as within the fan region, the rotation is given by

1
w:wo—écS(G—C

+Gir) (a—B). @

The reflection symmetry of the structure requires that the
rotation must vanish at the top of the fan, hence wy =
—Llo(1/oc+1/0or)¢;. The implication is that at the bottom
of the fan one has

1
w=-2lc (— +
Oc

which generalizes [29]. With the rotation known one can use
the standard expressions for virtual displacements (Hemp,

1
G—T> (¢1—B), ®)
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1973, p. 75) to find that at the bottom of the fan
u(¢r—pB.B)

-/ Caw-to+ono-¢0), ©

0

V(q)l 7[3’[3)
[ [Zs0-¢.0+0a@ -0 o)
0 LOc

where u and v denote displacements in directions of increas-
ing o and B respectively. Using (2), (3) and (5), integral (9)
can be evaluated explicitly. The resulting expression

u(¢r—B,B)=—toy(¢1—B,B)/or
(ol? ( 1 1

e G_T) (Io(2¢1) —Io(2¢1 —2B))  (11)

generalizes [33]. Integral (10) is more complicated. Us-
ing (3) and (4), it can be re-written as

V(61— BoB) = —tox(61 — B.B) o
B
260 (Gic+i) [lo-0a0-c.oac. a2

or
At the top of the fan v becomes equal to the horizontal dis-
placement, which must vanish due to the symmetry of the
structure. Therefore, in view of definition (2), equation (12)
implies that

h/l=(1+o0c/or)Ho(¢1), (13)
where
Ho(¢1) =

/0-¢. (01 -0) /OC b (2?;:_22?;2_2_) 2gzaz. a4
Tn Appendix 3 of his paper, Hemp demonstrated that
Ho(¢1) = [Io(21) + 1]H\(¢1) — H2(¢1) , (15)

within which

(o) = [ DDy

=201 [15(201) — I} (261)] — Io(201)11 (291) - (16)

The combination of (6) and (13)-(16) yields the secular
equation for ¢;:

_ 201[13(291) — I (291)] — 1o (291)11 (261)

oc
Io(2¢1) +
0( (Pl) Oor + O¢c

H(¢1)

)

generalising [37]. Equation (17) must be solved numeri-
cally. For example, in the case of equal limiting stresses it
is found that ¢; ~ 1.10176 and, from (6), i/l ~ 0.676885.
Numerical solutions were also computed for the full range of
0 < or/o¢ < 1. The results of these computations are pre-
sented in Fig. 3. Evidently, both ¢; and /1, see (6), increase
(or decrease) together with o7 /oc.

Loize o —= —= — - — - —
1

0.8
‘Dl 0.6
0.4

0.2

0 0.2 0.4 0.6 0.8 1
or/oc

Fig. 3 Dependence of fan angle ¢; on the ratio of limiting stresses.

3.2 Virtual displacement field below the fan

The field below the fan can be conveniently given in terms
of the new coordinate system such that the Cartesian coor-
dinates of any given point (&', ') are found from the Carte-
sian coordinates of the points at the bottom of the fan:

!

B
(e, B') = /0 B(gr— £,0)dC, (18)
yo B = [ A - g0t (19)

see (4), (5) and Fig. 1. Coordinate ' is equal to the value
of ¢ at the point on the bottom of the fan with the same ab-
scissa as the current point, so that 0 < B’ < ¢;. Similarly,
coordinate o' is equal to the angle ¢ at the point on the bot-
tom of the fan with the same ordinate as the current point,
so that 0 < a’ < B’. The boundary with the fan is reached
when o = B’. Lamé coefficients for this coordinate system
have a particularly simple form:

Al = ax \? dy 2—A 1o 20
- (W) +<aa/) - (¢17(X7a)1 (20)

(note that the coordinate system within the fan was right-
handed and the newly introduced coordinate system is left-
handed, hence the rotation below the fan @’ will be of the
opposite sign to the rotation within the fan ®).

The solution below the fan features only vertical ten-
sion members. The corresponding strain field must have
the first principal strain at the maximum allowable limit,
whereas the second principal strain &} = &5(a, ) must re-
main within the allowable limits. The shearing strain must
vanish. These requirements are encapsulated by the follow-
ing system of partial differential equations for virtual dis-
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Fig. 4 The discretized optimum structure in the case when o7 /0¢ ~ 0.417785, i.e. when h =1/2.

placements («',v'):

o’ (o 1 du

a0 "o T T map @
' 1

da =N =g @3)

An equivalent system of partial differential equations was
formulated by Hemp (1973, eqn. (4.17)). Also, «’ and v’ are
assumed positive in directions of increasing o’ and ' re-
spectively.

In view of equality (20), equation (22); can be integrated
directly, and the continuity with (11) leads to the following
result

u = fﬁy(alaﬁ,)/GT
2
8 (L L) o e -2,

Ooc Or

2h

within which we also used equation (4). Since B’ is given
by (21), it is then straightforward to use (22); to establish
the rotation

1 1
o =2c(—+— -p). 25
(ot ) @B es)
The integral of equation (23);, once matched to displace-
ments within the fan, is somewhat more complicated

vV = —tox(a,B")/oc

11 P
s2to (e )| [ 0=t -¢.0ag
6c Or 0
B/
(-8 [ Alon- 000t 6)
Fortunately, we only need this expression to compute the
second principal strain from equation (23);. The result has

the form

,  lo < 1 L) /j/A(@C’C)d?

82:—6—0—1-2&)' — 4+ Bo1— BB

27)
Oc or

It is easily verified that the partial derivative of (27) with
respect to o does not vanish for 0 < o’ < f’. This means
that the extreme values of &) with respect to o are reached
when o' =0 and/or a’ = f3'. In the case when o’ = ', i.e. at
the bottom of the fan, €, = —{c /o¢ which is consistent with
the requirements of the Michell criteria. Thus, to ensure that
the field below the fan satisfies the Michell criteria, we need
to verify that

lo ‘o 1 1\ y(¢1—p',B") lo

AP V7% & (RN [P < i) PR

Gc< o G(GC+GT>B(¢1*[3/aﬁ’)<GT
(28)

First, we note that y(¢; — ', 8")/B(¢1 — B’,B’) is positive
for all 0 < B’ < ¢y. Second, it follows from definitions (2)
and (5) that y(¢; — B’,B’) is a monotonically increasing
function of B’. Third, it is evident upon inspection of (3)
that B(¢; — ', B’) is a monotonically decreasing function of
0 < B’ < ¢1. Therefore, the non-constant term within (28) is
growing monotonically as 8’ increases, and for (28) to be
true we only need to ensure that

lo lo 1 1 ) h < lo
B(0,¢1) = GT.

——<——+2lc (—+
Gc

— 29
Oc Oc or ( )

The inequality on the left is trivial; the inequality on the right
may be shown, after referring to equation (3), to indicate
that (29), and, consequently, (28), are equivalent to

h< (30)

N~

This essentially constitutes the principal result of this pa-
per, namely that the optimal structure suggested by Hemp’s
can only satisfy the Michell criteria provided its height is
less than or equal to the quarter-span. What does this condi-
tion mean in terms of the fan angle and the ratio of limiting
stresses? The condition & = [/2 is equivalent, see (6), to stat-
ing that ¢; ~ 0.878060. Because of equality (17), the latter
condition is equivalent to o7/o¢ =~ 0.417785. In addition,
we stated at the end of Section 3.1 that #/I and ¢ increase
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Strain field I

Strain field I

Fig. 5 A sketch of the virtual displacement field covering the entire upper half-plane (shown for the case when o7 /o¢ ~ 0.417785).

(or decrease) simultaneously with the ratio o7 /o¢. There-
fore, condition (30) may be equivalently reformulated as

or/oc <0.417785. 31)

The discretized version of the tallest Hemp’s arch to still sat-
isfy condition (31) is presented in Fig. 4. Let w denote the
magnitude (per unit length) of the distributed load. It can
then be observed that when & = /2, moment equilibrium at
mid-span requires that the compression force in the concen-
trated top rib of the fan has magnitude wi.

3.3 Proof of optimality for the upper half-plane

The constructed virtual displacement field for the struc-
ture satisfies the requirements of the Michell criteria pro-
vided (30) (or, equivalently, (31)) is satisfied. Generally
speaking, to prove the optimality of the described structure
for the upper half-plane, one needs to construct a continu-
ous virtual displacement field that covers the entire upper
half-plane. Appendix 4 of Hemp’s paper shows how to do
this when the limiting stresses are equal and Hemp’s argu-
ment can easily be applied to the present case, as shown in
Fig. 5. The area above the structure can be covered by the
strain field ‘I’ formed by the normals to the concentrated
compression bar at the top of the structure. For convenience
the coordinate o within this field can be re-defined to repre-
sent the distance from the top of the structure, o < 0, while
B can remain unchanged, i.e. as within the fan, 0 < < ¢;.
In this case

AI:]’ BI:B(OaB)7a7 ¢I:7”/2+¢17ﬁa (32)

and rotation @y remains the same as given by equation (7)
when o = 0. The associated virtual displacement field is
given by

uy+ivi =lo [GiT—i (GichGiT) (0 —B)|a
~toch [ {G_C . (Giﬁc%) (6 fcﬂ B0.£)dC.

(33)

This field may be shown to match with the field at the top of
the fan. It is also worth noting that v; vanishes when f8 = ¢.
Hence, field (33) can be reflected with respect to the verti-
cal line x = [/ to cover the plane above the right hand side of
the structure. The remaining sector of the upper half plane
may be covered by a field ‘I’ consisting of straight lines and
circular arcs. Within this field we can conveniently use the
same definition of o as adopted within field ‘I’ but now re-
define B to denote the polar angle from the line separating
regions ‘I” and ‘IU’, —7/2+ ¢; < B < 0. It is then straight-
forward to establish that

Ar=1, Bi=-a, ¢r=-7m/2+¢—P. (34)
The associated rotation has the form
1 1
=t (ot o) (0B, G5)
with the corresponding virtual displacement field given by
. 1 /1 1
ug +ivp = Vo L;—Tfl(G—CJrG—T) ((])17[3)}06. (36)

Fields (33) and (36) clearly match along the line f = 0. This
completes the proof of optimality for the half-plane.
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Table 1 Analytical, numerical and extrapolated numerical optimum volumes (expressed in terms of wi?/c¢) for various o7 /o¢ values.

Exact analytical Non-optimal analytical Numerical volume, | Extrapolated numerical
or/oc volume, from (39) | volume, from (39) or [48] n, = 360 volume, n, = oo
(diff %) (diff %)
0.2 5.58872 — 5.59301 5.58917
(+0.077%) (+0.008%)
0.3 4.72830 — 4.73136 4.72799
(+0.065%) (-0.007%)
0.4 4.23346 — 4.23600 4.23348
(+0.060%) (+0.0005%)
0.417785 4.16607 — 4.16852 4.16625
(+0.059%) (+0.004%)
1.0 — 3.15548 3.15325 3.15163
(-0.071%) (-0.122%)

THemp (1974) reported a non-optimal analytical volume of 3.152 wi? /o, but his computation was slightly inaccurate.

The result presented here is obtained by a more accurate computation of (39) (identical to Hemp’s [48] when o7 /o¢ = 1).

3.4 Volume of the resulting structure

If, once again, w denotes the magnitude per unit length of
the distributed load, then the volume of the structure can be
determined as the virtual work of the applied load divided
by (o

2 1
Vmin = %/0 —wu'(0,8")dx
_ 2 o ' N OX o
— o | -wilo.p Fatl (37)

By using equations (4), (6), (16), (18) and (24) it is possible
to reduce integral (37) to the following expression

wit (11
Voio=—|—+—|[2L(2¢;)H —H: . (38
min =iz (o0 3 ) ROV (00)  Ha(on)]. 39)
The explicit expressions for H{(¢;) and H,(¢;), equa-
tion (17), and a small algebraic manipulation can now be
used to recast (38) in the compact explicit form

13 1 1 1
Viin = % K—+—) Io(29y) — G—T} , (39)

Oc or

which generalizes Hemp’s equation [48].

4 Numerical verification

As stated earlier, the present study was partly motivated by
the recent availability of high resolution numerical data cor-
responding to Hemp’s arch problem, e.g. as shown in Fig. 2.
Therefore, in addition to performing extensive analytical
checks (e.g. see Appendix), it is clearly also useful to con-
firm the new analytical expressions using numerical layout
optimization techniques. Thus in Table 1 analytically and
numerically determined volumes are presented for various
values of o7 /oc.

For cases when or/o¢ < 0.417785 it is evident from
Table 1 that the volumes computed numerically are, as ex-
pected, all higher than the corresponding exact analytical
volumes. However, the differences are comparatively small
(all within 0.1%), and extrapolated numerical volumes as
calculated by the method described in Darwich et al (2010)
are closer still (all within 0.01%), demonstrating the very
good agreement which exists between the analytical and nu-
merical solutions. In the numerical solutions it was also ob-
served that the hangers remained vertical when or/o¢ <
0.417785, but non-vertical hangers started to emerge as the
ratio of limiting tensile to compressive stresses exceeded
this threshold value.

For the case when o7/o¢c = 1.0 it is evident that the
volume computed numerically falls below the volume com-
puted using (39) or Hemp’s expression [48], providing nu-
merical confirmation of the non-optimal nature of the verti-
cal hanger solution in this case. Given the close correspon-
dence of the other numerical and exact solutions, the extrap-
olated volume given in Table 1, i.e. V = 3.15163 wlz/Gc,
can be expected to represent a very good approximation of
the true optimal volume. This is 0.122% lower than the vol-
ume obtained when vertical hangers are assumed.

Note that to obtain the numerical results, the adaptive
layout optimization described by Gilbert and Tyas (2003)
was used. Nodes were laid out on a rectilinear grid but
to facilitate accurate modelling in the flat crown region of
the arch, the spacing between nodes in the y direction, Ay,
was always taken as half the spacing between nodes in the
x direction, Ax (where Ax = 2[/n,, where n, is the num-
ber of divisions between nodes in the x direction across
the full span, taken as 360 in Table 1). Taking advantage
of symmetry but using full connectivity gave rise to mod-
els comprising 181 x 253 nodal points and 1048476528
potential bars. The individual point loads used to approx-
imate the uniformly distributed applied load were taken
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to have magnitude Wn,/(n, + 1)(n, — 1), denoted ‘Type-
II’ in Darwich et al (2010), where in the present study
W = 2wl. Finally, the extrapolated volumes shown in Table 1
were obtained using the power law extrapolation scheme de-
scribed in Darwich et al (2010), using models comprising
ny = 80,120,160, ..,360 divisions to provide source data.
It is worth noting that McConnel (1974) also used an
extrapolation approach to estimate the volume of optimal
structures of the forms shown in Figures 1 and 2 for an infi-
nite number of point loads. Given the limited computational
resources of the day, it is remarkable that his extrapolated
predictions for these two cases were within 0.01% of the
correct analytical value and the numerical result presented
herein. (Volumes of 3.15528 wi?/oc and 3.15148 wi?/oc
respectively can be deduced from McConnel’s Table 1.)

5 Concluding remarks

It has been demonstrated that the optimal arch structure in-
corporating vertical hanger bars suggested by Hemp can
only satisfy the Michell criteria, and hence be an optimal
solution, when its height is less than or equal to the quarter-
span. Assuming an upper half-plane design domain, this has
been shown to be true when the ratio of limiting tensile to
compressive stresses falls below 0.417785.

It is worth noting that the uniformly distributed load
problem considered here can also be interpreted as the lim-
iting case for a problem comprising N equally-spaced point
loads distributed along the span, as N — o (i.e. N =n, + 1).
In particular, the results by McConnel (1974) cited earlier
were obtained from numerical solutions featuring from 1 to
19 point loads. Full analytical solutions are presently avail-
able for the case when N = 1; see Michell (1904), Hemp
(1973) and a recent paper by Rozvany and Sokét (2012)
who consider the case of unequal limiting stresses. Sokdt
and Lewinski (2010) recently obtained an analytical solution
for the case when N = 2, which is valid when o¢ = o7).

Finally, although the form of the resulting structure is
undeniably complex, it should perhaps be noted that stip-
ulation of a limiting tensile stress which is lower than the
limiting compressive stress is potentially reasonable from a
practical perspective. This is because materials with good
mechanical characteristics in compression (only) are gener-
ally much less expensive than those which also have good
tensile capacity, and can therefore be used to form compres-
sive elements which are efficient provided adequate restraint
against buckling is available.
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Appendix

Various tests can be devised to confirm the correctness of the analytical
derivations presented in this paper. One such test involves computing
the integral of the horizontal strains along the line joining the supports,
at the bottom of the optimum structure, and checking that this equals
zero; details of this test follow.

Using the notation of Section 3.2, and referring to equations (18)
and (27), the sought for integral can be expressed as the sum of two
terms
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Reference to equation (4) immediately indicates that
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The remaining double (in fact, triple, see (2)) integral on the right hand
side of equation (40) can be expressed in terms of the already known
integral Hy (¢ ), by changing the order of integration:
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see also (14). Equations (41) and (42), when considered in conjunction
with identity (15), lead to an immediate conclusion that
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which is as should be expected.
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