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Abstract

A design method for active noise control (ANC) systems operating in a three-dimensional
non-dispersive propagation medium based on an analysis of the relative stability of the
inherent feedback loop is presented. For practical systems the use of absolute stability is
not useful; a system having an extremely long oscillatory response is unlikely to be
accepted and would be liable to instability under small parameter variations. In this respect
a measure of the relative stability can provide a more acceptable design criterion. This
procedure results in a robust design able to operate under changing operating conditions,
with guaranteed system stability under stationary and slowly varying conditions. The fre-
quency domain stability conditions are interpreted as spatial conditions on the geometry of
the ANC system. Practical limitations in the design of the controller owing to the

geometric configuration of the system are also discussed.

1 Introduction

Active noise control uses the superposition of waves to achieve destructive interference
and hence reduction of the sound level of an unwanted noise. This is realized by using
detecting sensor(s) to obtain a signal that is coherent with the unwanted noise. The
detected signal thus obtained is passed thrﬁugh a controller that has a suitable continuous
transfer function. The output of the controller is used to drive a secondary source, the out-
put of which is superimposed on the primary wave (0 achieve a destructive interference

pattern and hence reduction in the primary noise level.

Active noise control was one of the earliest applications of electronics to the control
of physical systems. Lueg filed for a patent in Germany in 1933 and in the USA in 1934
and was granted US Patent No. 2,043,416 in 1936 [1]. There has been considerable effort

devoted to the theoretical and practical development of ANC systems since Lueg’s first



controller [6, 7].

A feature of many noise sources is that they are not compact, noise is not emitted by
one small part of the source but is distributed arbitrarily over the entire surface of the
source. A distributed noise source is equivalent to a number of compact noise sources
(multiple sources), distributed around the source surface, in which case the control prob-
lem is much more complicated than in the case of a single compact source. Here, a single
detector and secondary source may not be sufficient to attenuate the unwanted noise but

rather a number of them, depending on geometry limitations may be required.

The characteristics of many practical sources of noise are found to vary with operat-
ing conditions and hence time. For a time-varying source the performance of a controller
with fixed frequency-dependent characteristics is no longer satisfactory. Here the system is
required to be able to adapt to changes in the characteristics of the source. Moreover, as
the required controller characteristics are found to be dependent on the system geometry,
acoustic response of the medium and of transducers and other electronic equipment used,
a change in any of these factors will reflect into the controller characteristics, hence
requiring the controller characteristics to be updated. Through his experiments of reducing
transformer noise Conover was the first to realize the need for a ‘black box’ controller that
would adjust the canceling signal in accordance with information gathered at a remote dis-
tance from the transformer, as the performance of his ANC system was deteriorating from
time to time due to the time-varying nature of the transformer noise [8]. Later it has been
realized by numerous authors that it is an essential requirement for a practically successful

ANC system to be adaptive [6, 9-18].

An acoustic wave traveling through a propagation medium is affected in amplitude
as well as in phase due to the response characteristics of the medium, so that each com-

ponent frequency of the noise emitted undergoes an amplitude and a phase change from



the point of emission to the point where it is detected. Moreover, acoustic feedback and
reflected waves have a significant effect on the performance of an ANC system. These
factors, together with the geometric arrangement of an ANC system, have a major effect
on the stability of the system and can lead to practical limitations in the design of the con-

troller.

It was realized rather early by both Jessel and Kido that the primary advantage of
ANC systems is their ability to attenuate low-frequency noise [19-20]. This is an area of
considerable interest because of the pervasiveness of low-frequency sources and the high
cost, large bulk, and relative inefficiency of current passive hardware in low-frequency
applications [5, 21]. Besides this, an advantage in the control of the one-dimensional pro-
pagation (duct noise) lies in the fact that active duct noise silencers produce no back-

pressure.

Jessel, and others, also discovered some of the problems associated with reducing
duct noise. Longitudinal duct modes leading to acoustic feedback, due to reflected waves,
tend to confuse the controllers as to the exact level of the noise itself, since the detector
microphone cannot distinguish between the noise and the reflected waves. This leads to
system instability and/or no noise reduction in some frequency bands. To solve the longi-
tudinal mode problem, so that the detector microphone detects the unwanted noise only,
attempts have been made to use loudspeaker/microphone arrays. The acoustic tripole and
acoustic dipole have been developed by Jessel and his co-workers and Swinbanks, respec-
tively [19, 22]. They attempt to provide a canceling signal in the duct that propagates only
in the downstream direction. The Chelsea System, developed by Leventhal, is formed by
two secondary sources with the detector midway between them [4]. The controller is set to
null the resultant of the secondary sources’ waves at the detector location, thus isolating

the detector from secondary source radiation. The performance of these systems shows



that they provide noise cancellation of up to 20-25 dB over a narrow band of less than an
octave; the cancellation provided is optimum at only one frequency that is related to the
physical spacing of secondary dipole sources [4, 23-24]. These systems have obvious
geometry-related limitations. The control problem is also much more complex in such sys-
tems. Their third limitation is the so called ‘tuning effect” due to the physical spacings of
the microphone and loudspeakers relative to each other. By altering these spacings the
system is tuned to a different centre frequency, with no significant improvement in the

bandwidth of attenuation.

To achieve stable operation a design criterion based on relative stability measures of
the system is introduced. In this manner, the design focuses on the derivation of a suitable
transfer function for the controller so that it produces a mirror image of every detected
frequency component of the noise. The dependence of controller characteristics on a
number of frequency-dependent parameters within the system makes it possible to design
and implement such a controller transfer function either in the continuous-time or
discrete-time domain. Moreover, such a dependence provides an insight into the complex-
ity of the controller and possibility of analyzing the system from the stability point of
view so that stable operation of the system is ensured. Such a procedure results in a

robust design of ANC systems.

The analysis focuses on ANC systems in stationary (steady-state) conditions. This
corresponds to an ANC system with fixed controller of the required characteristics under
situations where substantial variations in the characteristics of secondary source
loudspeaker, transducers and other electronic equipment used do not occur. In an adaptive
ANC system the controller adaptation mechanism is designed so that to result in the
required controller characteristics. This means that once a steady-state (stationary) condi-

tion has reached the situation is equivalent to the case of the fixed controller. Therefore, in



an adaptive ANC system the analysis applies to periods where a steady-state condition has
reached and substantial parameter variations do not occur. The stability and convergence
of an adaptive controller in a time-varying (non-stationary/transient) non-linear environ-
ment is difficult to analyze and guarantee. However, the problem of instability under such
a situation can be avoided by designing a suitable supervisory level control within the

adaptive mechanism [18].

The controller design procedure is carried out in the continuous complex frequency,
s, domain. At the implementation stage the controller transfer function is transformed to
the discrete-time domain through an appropriate s to z transformation technique. More-
over, although the controller from this design procedure is obtained in the frequency-
domain the actual implementation of the controller on a digital signal processor is per-
formed in the time-domain [18). Algorithms for implementing controllers in the

frequency-domain have previously been considered by others [12].

2 Active noise control structure

A schematic diagram of the geometric arrangement of the general ANC structure known
as the feedforward control structure (FFCS) is shown in Fig. la. The primary source
emits an (unwanted) wave p(). A detector placed at a distance r, relative to the primary
source and a distance r; relative to the secondary source detects this signal and transfers it
to the controller C. After the detected signal has been adjusted in phase and amplitude it is
emitted by the secondary source to be superimposed on the unwanted noise. The result of
ﬁﬁs superposition is observed at an observation point located at a distance r, relative.to

the primary source and a distance r;, relative to the secondary source.

A block diagram of Fig. 1a is shown in the complex frequency s domain in Fig. 1b

where
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E(s) = transfer function of path r,,

F(s) = transfer function of path rg,

G(s) = transfer function of path rg,

H(s) = transfer function of path ry,

M(s) = transfer function of the detector,

C(s) = transfer function of the controller,

N(s) = transfer function of necessary electronics, and
L(s) = transfer function of the secondary source.

It follows from this block diagram that the secondary path, i.e. through C(s) to the
observation point, attempts to compensate the primary path, i.e. through G(s) to the obser-
vation point, such that the superposition of the primary and secondary waves results in

cancellation at the observation point.

As seen in Fig. 1a the detector gives a combined measure of the primary and secon-
dary waves that reach the detection point through the acoustic paths r, and r; respectively.
The secondary wave thus reaching the detector forms a closed feedback loop (Fig. 1b) that
can cause the system to become unstable. Therefore, a careful consideration of this loop is

necessary in the design stage.

3 Design of the controller

Th§: controller in an ANC system requires a careful consideration in the design stage. A
controller intended for application in an ANC system should be capable of properly
adjusting the amplitude and phase of every frequency component of a detected primary
wave. Moreover, as noted in Fig. 1, due to acoustic feedback from the secondary source

to the detector, stability conditions must be considered so that good system performance is



ensured.

The objective with the structure in Fig. 1 is to reduce the observed signal to zero.
This requires that the observed primary and secondary signals should be equal in ampli-

tude and opposite in phase;
Py(5) == 5,(s) (1)

Obtaining the primary and secondary signals P,(s) and S,(s) from Fig. 1b, substituting

into equation (1) and solving for C(s) yields

) TN
MEONELEAE)

@)

where
A(s) = F(s)G(s) — E($)H(s) 3)

Equation (2) represents the required controller transfer function for optimum cancel-

lation of the unwanted noise over the frequency range of interest.

3.1 Practical limitations in controller design

It follows from equation (2) that for a particular detector and secondary source with neces-
sary electronic components, the controller characteristics required for optimum cancellation
at an observation point are dependent on the characteristics of the acoustic paths from the
primary and secondary sources to the detector and observer locations. Any combination of
the detector and observer locations with respect to the primary and secondary sources
requires a particular controller characteristic. The effect of change in the location of the
detector and/or observer, with respect to the primary and secondary sources must be con-
sidered. In particular, if the detector and observer are located such that A(s) in equation

(2) becomes zero then the critical situation of an infinite-gain controller requirement arises.
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The locus of such points in the medium (as a practical limitation in the design of the con-

troller) is therefore of crucial interest.
Let the the detector and observer be located so as to result in A(s) = 0. Under such

a situation equation (2) for periodic waves (s = jo) yields

F(jo) _ H(o)
E(jo) G(w)

)

E(jw), F(jw), G(jo) and H(jw) are the frequency responses of the acoustic paths

through the distances r,, 5, r, and ry, respectively; thus

g P i
Ejoy=2¢ * ° ; Fioy==e *
r, rf
(5)
A —fﬂ e A ‘J"'zi'"n
Gi@=<e¢ ** ; Hjomy==e *
rg ry

where A is the signal wavelength and A is a constant.

Substituting for E(jo), F(jo), G(jw) and H(jw) from equation (5) into equation (4)

and simplifying yields

. i r)21|: p S r)27€
—jtrp=r) = ~j = 5
( e)e 7\._( E)e
r}r Iy

This equation is true if and only if the amplitudes as well as the exponents (phases) on

either side of the equation are equal. Thus,

(6)

rf-—r,=r;,-rg

Equation (6) define the locus of points for which A(jw) =0 and the controller is
required to have an infinitely large gain for optimum cancellation to be achieved at the

observation point. Note that these equations are in terms of the distances r,, 5 1, and r,
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only. Therefore, the critical situation of A(jw) = 0 in a non-dispersive three-dimensional
propagation medium is determined only by the detector and observer locations relative to

the primary and secondary sources. Two possible cases, a =1 and a # 1, are considered.

Unity distance ratio

This is equivalent to placing the microphone on the centre node of the dipole. In such a

situation equation (6) yields

— and -—'=1 (7)

If the locations of the primary and secondary sources, in the three-dimensional pro-
pagation medium are fixed, then each relation in equation (7) defines a surface plane per-
pendicularly bisecting the line joining the primary and secondary source locations (see
Appendix A). This plane for the primary and secondary sources located at points (0, 0, 0)
and (u,,vs,ws), respectively, with a distance d apart in a three-dimensional

UVW=space, shown in Fig. 2, is described by

u v W
& 2P =3
(Eu—,) (-2—‘}:) (m)

2
which intersects the U—, V—, and W—axes at the points (_Zd%' 0, O, (O, 21- 0), and (0, 0,

3 5

2
{—) respectively. This plane is shown in Fig. 3. If the detector is placed at any point on

5
this plane and if at the same time the observer location coincides with a point on this
plane then the “critical situation’ of A(jw) = 0 occurs and the controller is required to have

an infinitely large gain for optimum cancellation.
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Non—unity distance ratio

For a non-unity distance ratio equation (6) yield

, == =a and — =1 8)

It follows from Appendix A that the first two relations in equation (8) define a
spherical surface. For the primary and secondary sources located as in Fig. 2 in a three-

dimensional UVW-space this surface is defined by

2 2 2 2 2 2 2
a: u as v a” wy ad
u+ +|v+ +|w+t——= | = €)]
[ l—az} [ l—azjl [ l—az] [l—az]

ad
.

which has a radius R = and centre located along the line PS, joining the pri-

l1-a

_ , a* u, a* v, a w;
mary and secondary source locations, at the point O ( - -

1-d YL g T Yol

The third relation in equation (8) requires the equality of the distances between the
detector and primary source, r,, and between the observer and primary source, r,. The
locus of such points in the three-dimensional UVW-space of Fig. 2 (for, say, constant r,)

is a sphere with centre at the primary source location and radius equal to r;

P+ +w=rt (10)

Therefore, the locus of points defined by equation (8) is given by the intersection of the
two spheres in equations (9) and (10). Such a locus is a circle in a plane at right angles
with the line joining the centres of the spheres. The centre of the circle, hereafter referred
rte as the infinite-gain controller (IGC) circle, is also located on this line. Since the centres
of the two spheres are located along the line PS joining the primary and secondary source

Jocations the centre of the IGC circle is also located along the line PS.

To investigate the variation of the 1GC circle in terms of its radius and location of
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its centre in the three-dimensional UVW-space of Fig. 2, let the detector be located at
point E with coordinates (i, Ve w,) and distances r, and ry relative to the primary and

secondary sources respectively. Solving equations (9) and (10) gives the plane of the IGC

circle as
U_ ¥ P (11)
2y &y )
5 vS WS
where
_1 IS SR B O O
B-Q[a‘z (a2 1)r,] 2[d (rf r,)] (12)

Equation (11) defines a plane surface on which the IGC circle is residing. The line PS
passing through the primary and secondary source locations is found to be at right angles
with the plane of IGC circle (see Appendix A). This is shown in two dimensions in Fig.
4a. The corresponding IGC circle is shown in Fig. 4b where r, is the radius of the IGC

circle.

The quantity B in equation (12) gives a measure of the intersection of the plane in
equation (11) with the coordinate axes and, thereby, with the line PS passing through the
prﬁnary and secondary source locations. It follows from equation (12) that B is dependent
on d, r, and r; or, for constant d, B is dependent on the detector location in the three-
dimensional medium. If © denotes the angle between the lines PE and PS in a plane

formed by these lines, Fig. 4c, then equation (12) yields

B=rdcos8 , 0sOsm

from which it follows that as the detection painrchange?posiﬁﬁﬂﬁ'ﬂ%medium%hemm—

for B are found to be
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IBI<rd

This variation in relation to the location of the plane of the IGC circle is shown in two di-

mensions in Fig. 4c.

From Fig. 4c the radius r, of the IGC circle can be written as
r.=r,sin@ , 0£6<n (13)

It follows from equation (13) that the IGC circle has a radius r, that is dependent on
the distance r, between the primary source and the detector and the sine of the angle
formed by the line joining the primary source and detector with the line joining the pri-
mary and secondary sources. The maximum value of the radius, re max is r, and occurs at

the situation where the plane of IGC circle intersects the line PS at point P (Fig. 4¢);

rc max = rt

For a movement of the plane to either side of point P the radius decreases. At the extreme
cases where the line PE is in alignment with the line PS (6 is either 0° or 180°) the ra-
dius . is zero. In general, for constant values of the angle 6 the radius r, is directly pro-
portional to the distance r, between the primary source and the detector. This implies that
for r, to be minimized the detector is required to be placed as close to the primary source

as possible.

An example of the IGC requirement is when, in Fig. 1b, E(s) = G(s) and
F(s) = H(s). This corresponds to the feedback control structure first proposed by Olson
and later investigated by others [25-31]. In this structure the detector and observer loca-

tions happen to coincide with a single point on the IGC circle.
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4 System stability

As noted in Fig. 1b the loop formed by the detector, controller, secondary source and the
acoustic path between the secondary source and the detector is the only feedback loop
present in this structure and may cause instability in the system response. This is due to
the acoustic feedback from the secondary source radiation towards the detector. Therefore,
from a stability point of view, it is sufficient to concentrate the analysis to this part of the
system, Fig. 5 shows a block diagram of this loop where P,(s) is the primary signal as
measured at the point of detection and S(s) is the secondary source output signal. The
controller transfer function C(s) in Fig. 5 is assumed to be the required transfer function

for optimum cancellation, equation (2).

From the block diagram in Fig. 5 the secondary signal S(s) can be written as
5 = MECENGLS) | Pals) + FOS) ]

Simplifying this for the transfer function between P, (s) and S(s) yields

SG) _ MG (SIN(SL(s)
P,(s) 1+ X(s)

(14)

where
X(s) = — M(5)C(S)NS)L(s)F(s) (15)

Equation (14) has been written in a form to correspond to the standard negative
feedback transfer function. It follows from this equation that for the system in Fig. 5 to be
stable the denominator, 1 + X(s), should have roots in the left-hand-side of the s—plane
[32]. Note that equation (14) holds only if the primary source output is observable; i.e. the

detector is not located at a pressure null in the primary sound field.
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4.1 The Nyquist stability criterion

The Nyquist stability criterion is a graphical method for determining the stability of the
system [32]. It is expressed in terms of the polar plot of the transfer function X(s) for

periodic waves (s = jo). Let X(jw) have a magnitude B(w) and a phase 6(w);
X(jo) = B(w) e*@ (16)

Then it follows from the Nyquist stability criterion that for the system in Fig. 5 and hence
the ANC structure in Fig. 1 to be stable the magnitude of X(jw) at some frequency @ for

which 8(w) =— @n+ Dn,n=0, 1,2, - - -, should be less than unity [32];

B(w)<1 when 8@=-2n+N)r , n=0,12, --- an

where the negative angle (clockwise) indicates the direction of approach towards the 7
axis on a polar plot of X(jw). This can be expressed graphically by following the polar
plot of X(jw) from @ = 0 to ® =« and observing each crossing of the = axis. If the point
— 1 lies on the left-hand-side then the system is considered to be stable whereas if the

point — 1 lies on the right-hand-side then the system is unstable.

S(s)

P, (8] . S
—‘>Q——f> M(s) —=1 C(s) N(s) —=1 L(s)
+

F(s)

Fig. 5: Feedback loop in the FFCS.
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4.1.1 Gain and phase margins

For practical systems a measure of absolute stability is not useful; a system that has an ex-
tremely long and oscillatory transient is unlikely to be accepted. In this respect a measure
of the relative stability can provide a more acceptable design criterion. This, using fre-

quency response plots, can be provided in terms of the gain and phase margins.

The gain margin is defined, at some frequency ® for which the phase O(w) is
— 180°, as the additional gain k, required to make the system unstable. In terms of the

amplitude transfer function B(®), k, is given by

1

kg = F(_OS when 9((&)) =—T (18)

Thus, it follows from equations (17) and (18) that for a system to be stable the gain
margin k, must be greater than unity. A gain margin less than unity will mean that the

system is unstable.
The phase margin is defined, at some frequency © for which B(w) = 1, as the addi-

tional phase kg that is required to make the system unstable. This in terms of the phase

0(w) is given by

kg =6(w) +n when B(w)=1 (19)

Thus, it follows from equations (17) and (19) that the phase margin kg at a frequen-
¢y o for which B(w) = 1 is the amount of phase shift that would just produce instability.
For minimum-phase systems to be stable the phase margin must be positive. A negative

phase margin will mean that the system is unstable.
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4.2 Required controller transfer function
Let the controller in Fig. 5 have the required transfer function for optimum cancellation of
noise, as given in equation (2). Substituting for C(s) from equation (2) into equation (15),

using equation (3), and simplifying yields

X(@s) = _............1_.—
E(s)H(s) _ 1
F(s)G(s)
For periodic waves (s = jw) this yields
. 1
X(jw) = 0(@) e @1 (20)
where
E(oH(jo) _ jé(w)
F(o)G (o) O(w) e 1)

Simplification of equation (20) yields the magnitude B(w) and phase 6(w) of X(jw)

I

B(w) = [Qz(co) + 1 — 20(w)cosd(®) ]“
(22)

gl 0(0) sind(w) = ..
6(w) = tan [ T— 0(@) coso(@) ] +2mn , m=0,%1,

To relate the stability of the system to the geometrical arrangement of the ANC sys-
tem in a three-dimensional non-dispersive propagation medium, let the primary and secon-
dary sources, as shown in Fig. 6, be located in a three-dimensional UVW-space at points
P ( 0,0,0) and S (u,, v, ,w, ), respectively, a distance d apart, the detector at point
D (uy, vg,wy) with distances r, and r; from the primary and secondary sources respec-
tively and the observer at point O ( 4, , v, , W, ) with distances r, and r, from the pri-

mary and secondary sources respectively. Thus,
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1
re= [udz+vd2+wd2]2
1 (23)
= [(ud_us )2+(Vd"vs)2+(wd_ws)2]2
1
rg=[ ¢,2+v‘,2+w,,:"]2
: (24)
n= I:(ucu'—'u.v)z"'(vo_V.s)2"'(“}0-'“‘,5)2]‘2
and
1
i [uf+v,2+wf]2 25)

Substituting for E(j), F(jo), G(jw), and H(jw) from equation (5) into equation (21)

and simplifying yields Q(w) and ¢(w) as

VQ 5
(ug s Vg /W)
Ig I'h
D(ud,vd,wd)
r
e  f S(ug,vg ,Wg)
(0,0,0) B -

W

Fig. 6: Components of a FFCS in 3-D coordinates.
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(26)

Equations (26) give the magnitude Q() and phase ¢(w) in terms of the distances r,,

Ip Ty Iy and the signal wavelength only. Using these relations the stability of the ANC

system can be determined in terms of the locations of the detector and observer with

respect to the primary and secondary sources in the three-dimensional propagation medi-

um.

42.1 Gain margin

Substituting for 8(w) from equation (22) into equation (18) yields

tan—l[ O(w)sind(w) }+2m,;=_n , m=0,%1, -

1 - O(w)cos(w)

or-

O(w)sind(w)
Q(w)cosh(w) — 1

=tan(2m+Hn , m=0,%1, ---

from which it follows that the following conditions should hold

O(w)sind(w) =0
Q(w)cosh(w) —1 <0

Since Q(w) is strictly a positive real number the above equations reduce to
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sing(w) =0 , cosp(w)=+1 and Qw)<1
27)
sinp(@) =0 , cosp(w)=-1 and Q(w)>0

where in the second of equation (27) Q(w) > — 1 is replaced by Q(w) > 0 to correspond
with its realistic range.

Simplifying equation (27) yields the angle ¢(w) as

2nm for Q(w) <1
d(w) =

, h=0,%1, ---
@n+ Dr  for Q(w) >0
or
{(2n+ Dr for Q(w) =1
o(w) = ,h=0,x£1, --- (28)
nm for 0<Q(w)<1

Substituting for ¢(w) from equation (26) into equation (28) and simplifying yields

A
2n+1) 3 for QW) =1
rgh_ref= , n=0,x1, --- (29)
n (%) for 0<Q(w) <1

Equations (28) and (29) give the necessary conditions under which the phase 0(w) of the
transfer function X(jo) is — 180 °. In this case the gain margin k, of the system is given
by equation (18).
Substituting for ¢(w) = 2n7 into equation (22) and using equation (18) yields, after
simplification, the gain margin as
1

kg=[Qz(w)+1—2Q(w)]2=lQ(m)—1|

As it follows from equation (28) that Q(w) is to be less than unity for this case, the above

equation simplifies to
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kg=l—Q(m) for 0<Q(w)<1 and ¢(w)=2nn s m=0,%£1, -~~~ 30)

If (@) = ( 2n +1 )7 then equations (18) and (22) yield the gain margin as
1

ke = [QZ(m)+1+2Q(m)]2=tQ(m)+1t

and as in this case Q() is greater than zero, equation (28) shows that the above equation

simplifies to
kg=Q(m)+1 for Qw)>0 and ¢ =(2n+1)m , n=0,x1, --- (31)

Combining equations (30) and (31) yields the gain margin as

k. =

14

{ 1 - 0(w) for o6(w) = 2nw and 0< Q) <1
(32)

14+ 0@ for &(w)=(2n+1)xn and Q@) >0
where n=0,x1, ---

Using Nyquist’s stability criterion, defined in equation (17), it may be concluded that
for stable operation of the system the gain margin should assume values greater than uni-
ty;

ke > 1 (33)

To find the specified regions in the three-dimensional UVW=-space of Fig. 6

corresponding to equation (32) and analyze system stability in these regions consider the

two cases of Q(w) 2 1 and Q(w) < 1.
Q(w) greater than or equal unity
Substituting for Q(w) = 1 into equation (26) and simplifying yields

2Ly . (38)
f
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r,
where a is a positive real number denoting the distance ratio —£;
Th

a=-% (35)
It follows from Appendix A that the distance ratio a in equation (35) defines a fami-
ly of spheres in the three-dimensional UVW-space of Fig. 6. Substituting into equation

(35) for ry and r, from equation (24), using equation (25), and simplifying yields the

locus of points O ( u, , v, , W, ) in Fig. 6 defined as

a* u . av * atw i ad 5
u, + ol o+ v, + =+ | w,+ = | = (36)
S TR ] el 1= [1-—a2}

This expression for a distance ratio a equal to zero corresponds to point P (location of the

primary source) and for an infinitely large distance ratio to point S (location of the secon-
dary source). If the distance ratio is equal to unity then equation (36) defines a plane sur-
face that perpendicularly bisects the line PS joining the locations of the primary and

secondary sources;

ua vO wﬂ
= =] 37)
(Eu_,) ( 2, ) W, )

It follows from the above that for Q(w) = 1 the detection point in Fig. 6 should
remain inside the sphere defined by equation (36). In terms of the distance ratio a, this
means that for @ < 1 the locus of points D (ug, v4, wy ) in Fig. 6 should define the re-
gion on and inside the sphere in equation (36); for a = 1 point D should be on and in the
region on the side of the plane defined by equation (37) that contains point P; and for
a > 1 point D should be on and outside the sphere defined by equation (36). Substituting
for r, and ry from equation (23) into equation (34), using equation (25), and simplifying

gives for the above cases:



26

<1 ,a=1 (38)

Pu, | v, | 2w, | d V

s K s a

ug— “+ Vv, - + | w,;— > — ’a>1
[d a*-1 L -1 [az—l}

This is shown in two dimensions in Fig. 7, where the shaded regions indicate the detector

locations D.

It follows from the preceding discussion that if the observer O and detector D are
restricted to the regions of the UVW-space defined by equations (36) and (38) respective-
ly, then the gain Q(w) will be greater than or equal to unity. In terms of equations (29)
and (32) this means that for such observation and detection points where the distance
difference rgy — 1 is an odd multiple of half the signal wavelength (implying that the an-
gle ¢(w) is an odd multiple of m and the angle 6(w) in equation (16) is — 180 °) the gain

margin k, of the system in Fig. 7 is given by equation (32) as

ky=1+Q(w) for ¢(w)= 2n+ 1D and Q(w) 21 (39)

wheren=0,x£1, ---

It follows from equation (39) that under this situation the gain margin assumes

values that are either equal to or greater than 2;

kg22 for ¢(w)= 2n+1r and Q(w) =1

Using the condition for stability of the system given in equation (33) implies that if the
observer and detector are restricted to the regions defined by equations (36) and (38) of
the three-dimensional UVW-space of Fig. 6 then at locations for which ¢(w) is an odd

multiple of 7 (the feedback loop in Fig. 5 having a phase B(w) = — 180 %) the system will



(a)

(b)

(c)

Fig. 7: Region of observer O and detector D for Q1.
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be stable.

QO(w) less than unity
Substituting for Q(®) < 1 into equation (26) and using equation (35) yields

2 (40)
e

It follows from the results obtained above for Q(w) 2 1 that equation (40), for points
of observation O and detection D, defines a region of the three-dimensional UVW-space
in Fig. 6 which is the complement of that given in equations (36) and (38); i.e. for the

observer restricted to the locus defined by equation (36) the detector is to be restricted to

the following
2 2
% ks 2+ + z v, + | wy+ & w, 5 | 2 <1
u Vv, w s, a
T8 TP T 1-a?
B b S 21 ,a=1 @1)
L) (d_) (_Q.._)
(2us 2v 2w,

2 2 2 2 2 2 2
u_aus +V_GV_, +w_aw, < ad a>1
4 a =1 . =11 4 &-1 at -1 '

This is shown in two dimensions in Fig. 8 where the shaded areas indicate the detector

locations D.

If the observer and detector are restricted to their respective regions defined by equa-
tions (36) and (41), then at locations for which the distance difference ry, — r; (defined in
equation (29)) is an integral multiple of the signal wavelength (implying that the angle
®(w) is an integral multiple of © and the phase 6(w) in equation (16) will be — 180 °) the

gain margin of the system in Fig. 5 is given by equation (32) as



(a)

(b)

(c)

ald

[a® =1|

and R= —g— ]

e=

Fig. 8! Region of observer O and detector D for Q<1:

20
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1-0(w) for ¢(w) = 2nn
ke = n=0,x1, --

1+ Q0w for ¢(@)=C2n+ n
From which the ranges of the gain margin are obtained as

kg <1 for ¢(w)=2nn
=0, %1, »=~ 42)
ke>1 for ¢(w)=Q@2n+ Dr

Equation (42) when compared with equation (33) implies that for such detection and
observation points in the region of the mrec-dimensional_ UVW=space defined by equation
(40) for which ¢(w) is an even multiple of m, the gain margin of the feedback loop in Fig.
5 is less than unity and hence the system will be unstable. However, if at such points ¢(w)
is an odd multiple of =, then the gain margin is greater than unity and hence in such a si-

tuation the system will be stable.

4.2.2 Phase margin

The phase margin, kg, of the feedback loop in Fig. 5 is given by equation (19). Substitut-

ing for B(w) from equation (22) into equation (19) yields

i
2—

[QZ((D) + 1 -2 Q(w) cosp(w) ] =1
Simplifying this yields

cosd(w) = Q(z_ml 43)

The amplitude Q() is strictly a positive quantity; moreover, for ¢(w) to have a realistic

value satisfying equation (43), Q(®) should not exceed 2;
0<Q(w) <2 (44)

Equations (43) and (44) yield the range of ¢(w) as
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4";—%-:ct:(m)<i——““;1 T for 0<Q@)S2 , n=0,%1, - (43)

Substituting for ¢(w) from equation (26) into equation (45), and simplifying yields

the allowable distance difference rgy, — r,s as

(4n-1)%<rg,,—r,f<(4n+1)-1£ for 0<Q@)<2 , n=0,%£1, ---  (46)

Equation (46), or equivalently equation (42), is the necessary condition for B(w) = 1
in equation (19). Under this condition the phase angle 6(w) follows from equation (22).

Using equations (43) and (45) the following is obtained

r

% Va— Q@) for 0<o() < ii”;—lﬂ
sind(w) = 3 , 0<Q(w) £2 (YD)

V4 - Q%w) for —(—4-'3—%1—)—"- < &(®) < 0

where n=0,% 1, - --. Substituting for cosd(w) and sind(w) from equations (43) and

(47) into equation (22) and simplifying yields the phase angle 6(w) as

( NIy
tan 1 Q(u)z) _4Q2(§)(m) +2mn for 0<6(@)< W
8(w) = (48)
) QO V0@ |y for L= g <0
| 2 - 0X(w)
where 0 < Q(@)£2,m=0,%1, -+ andn=0,%1, --+. This is shown as a function

of O(w) in Fig. 9a (for m = 0).

Substituting for 6(w) from equation (48) into equation (19) yields the gain margin as



ot
0<d< (4n+1) w2
T /
//
\ _-7
TC/Z" _ //
(a) - 1 ; . -
0 1 2 0
-T2 + /
- T+

(4n-1)m/2 < <0

O<d< (4n+1) w2

W

a

[y}
}
\

\

\
\
\
\'\

(b) T ="

(dn-1)m2 < <0

l L
I T T

0 1 2 o)

Fig. 9: (a) Phase, (b) Phase margin of the feedback loop.
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_1 0@ V4 - 0%w) ; 4n+ 1
tan™ ! Mz iy tOmE DT for 0Se@)< Lantlhm
kg =1 (49)
—tan~ 1 Q((D) N4 — Qz(m) Y (2m =t I)TB for dn—1)m < q)((D) <0
| 2 - Q%(w)

where 0 < Q(w) < 2 and m and n are integer numbers. This, shown as function of Q(w) in
Fig. 9b (for m = 0), is the phase margin of the feedback loop in Fig. 5. To find the
corresponding region of the three-dimensional UVW=-space of Fig. 6 in terms of the loca-
tions of the observation and detection points we consider equation (44).

Substituting for Q(w) from equation (26) into equation (44) and using equation (35),

yields after simplification,

r
—205a (50)
Iy

Substituting for r, and r; from equation (23) into equation (50), simplifying, and using

equation (25) yields the locus of points D ( Uy, V4 » Wa ) as

au ? atv 3 a*w 2 2 ad 1

5 5 5

U+ + | v+ + | wy+ 2 , a<?2
4T 4 - P 4T 4-d [4-&]

u v w

‘2’ + ‘;’ +——21 ,a=2 (51)
Ly By )
(2u, 2v, 2w

Pu, | v, | Ew, | 2ad I

s s s a

Uy — + [ vy— + | wy— < , a>2
P-4 S S [02—4}

These are shown in two dimensions in Fig. 10.

It follows from the above analysis that for the detector and observer locations, in the
region of - the three-dimensional UVW-space of Fig. 6 defined by equation (44), or
equivalently by equation (51), for which equation (43) holds, the amplitude B(w) (defined

in equation (16)) is unity and in such a case the phase margin kg of the feedback loop in



(a)
a=0.7

(b)
a=2

Fig. 10: Region of observer O and detector D for Q<2.



35

Fig. 5 is given by equation (49). In this case, for a minimum-phase situation (all zeros
inside the stability region) the system will be stable for locations of detector and observer
in the regions defined by equation (51), where the phase margin assumes positive values;

however, for negative values of kg the system will be unstable.

5 CONCLUSION

An analysis and design procedure for ANC systems under stationary conditions, in a
three-dimensional non-dispersive propagation medium, in the general form of a feedfor-
ward control structure has been presented and a stability analysis of the system has been

given.

Full cancellation over a broad frequency range of an unwanted noise at an observa-
tion point in three dimensions requires a controller with a frequency-dependent transfer
function that can produce a wave which is an exact mirror image of the noise at the point.
The characteristics of such a controller are found to be dependent upon the transfer
characteristics of transducers, secondary source and propagation paths from the primary

and secondary sources to both the detector and observer locations.

The dependence of controller characteristics, for full cancellation of noise, on the
characteristics of system components and geometry can sometimes lead to practical
difficulties in the controller design and system stability. A particular combination of these
characteristics requires a controller with a particular transfer function. A change in any of
these characteristics, such as changing the location of either the detector and/or observer,
requires a controller with a new transfer function to suit the new situation. In particular,
there are combinations of detector and observer locations which lead to the critical situa-
tion of an infinite-gain controller requirement. Moreover, for given system-components

and controller transfer function the stability and relative stability of the system will be
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dependent on the observer and detector locations in the medium. There are combinations
of the observation and detection points in the medium which can cause the system to
become unstable. However, the region of space that is occupied by the locus of IGC
requirement can be minimized as well as stable operation of the system assured by a

proper geometrical arrangement of system components.
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Appendix A: The locus of constant distance ratio

Theorem A

Let P and S be two fixed points in a three-dimensional space and a distance d apart from

each other, and let T be an arbitrary point in this space. If the ratio of the distances PT

and ST is constant then the locus of points T defines

(a) a sphere with centre located along the line PS, for a non-unity distance ratio.

(b) a plane perpendicularly bisecting the line PS, for a unity distance ratio.

Proof

Consider a three-dimensional UVW-space with P (0, 0, 0) and S ( ug, v, wy) representing

two fixed points and 7 (u, v, w) an arbitrary point. The distances PS, PT and ST are
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respectively denoted by d, r, and ry;

1
d= [;,:f+vf+w,2]2 (A1)

ry= [u2+v2+w2]5

' (A2)
2
r,= [(u—us)2+(v-vs )2+(w—w,)2]
r
Let the distance ratio —& be denoted by, a positive real number, a;
T
#
L =aq (A3)

Ip

This gives the locus of points in the three-dimensional UVW—space that corresponds to a

particular distance ratio a.

Non—unity distance ratio

If a # 1 then substituting for r, and r, from equation (A2) into equation (A3), simplifying

and using equation (A1) yields

' 2 2 2 2 2 2 2
w2 g g | g et | = | 2 a#l (A4)
=g 1-d 1= gt '

2
a U
— 88 __ .nd centre at 0 (- 2

T i 1-a*'

Equation (A4) represents a sphere with radius R =

av, aw : . . o
- - . ). Through simple mathematical manipulation the point Q is found to
-a -a

be located along the line PS and, specifically, if P is chosen as reference, then for a > 1
the centre is located on the portion of PS corresponding to points away from P towards
and beyond S whereas for a < 1 the centre of the sphere will be on the portion of PS

corresponding to points away from P and opposite to S. In either of these situations, point
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Q lies outside the range ( P, S ).

Unity distance ratio

If a = 1 then equation (A3) yields
rg = rh (AS)

Substituting for r, and r, from equation (A2) into equation (AS5), simplifying, and using

equation (A1) yields

u Vv w

d* d? d*
2u, )« 2v; ) 2w,

=1 (A6)
(

)

This represents a plane surface which intersects the U, V and W axes, respectively, at the

2
points (?d::, 0, 0), O, iivs 0), and (0, O, 'szu:)' It is simple to prove that the plane

defined by equation (A6) perpendicularly bisects the line PS. The following corollary fol-

lows from Theorem A.

Corollary A

Let P and S be two fixed points in a two-dimensional UV—space and a distance d apart
from one another, and let T be an arbitrary point in this space. If the ratio of the distances

PT and ST is constant then the locus of points T defines
(@) a circle with centre located along the line PS, for a non-unity distance ratio.
(b) a straight line perpendicularly bisecting the line PS, for a unity distance ratio.

The proof of this corollary follows directly from the proof of Theorem A by elim-

inating the W-axis (equating the w—coordinates in equations (A1) - (A6) to zero). .
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