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Abstract

A coherent method for the design of active noise control (ANC) systems operating in a
three-dimensional non-dispersive propagation medium (acoustic free field) is presented. An
analysis of the basic control structures is provided and conditions for the robust operation
of such systems are determined. Finally these conditions are interpreted as constraints on

the geometric compositions of the ANC system.

1. Introduction

Active noise control uses the intentional superposition of acoustic waves to create a des-
tructive interference pattern such that a reduction of the unwanted sound occurs. This is
realised by a single or a number of secondary (cancelling) sources of sound, driven by
electrical signals derived from the primary (unwanted) noise through detection sensors and
then passed through an electronic controller, so that when the secondary wave is superim-
posed on the primary wave the two destructively interfere and reduction of the sound
occurs. It follows from the above that, from a practical point of view, the active attenua-
tion (or cancellatioq) of an unwanted sound wave through wave interference consists of

the three main processes of detection, negation and superposition.

In the process of detection the main aim is to obtain a signal coherent with the
unwanted noise over the frequency range of interest. In this case, the device to be used as
a detector is required to have a suitable response charaderistic to provide this information.
Microphones which have a reasonably flat amplitude and a linear phase characteristic, are
commonly used as detectors. Here the detector is placed at a fixed distance relative to the
source of noise (primary source) in which case the amplitude and phase of the noise sig-
nal will, before detection, be altered due to the acoustic properties of the space between

the primary source and the detector.



An altemative to direct detection is to detect unwanted noise through obtaining a
non-acoustic signal that is coherent with the primary source noise [1-4]. Many sources of
noise, for instance, vibrate continuously when in operation and the vibration is found to be
coherent with the acoustic waves they emit. In these circumstances vibration-sensitive dev-
ices can be used as detectors. Flame noise is another example where the coherence
between light and noise has been found to be as much as 99% [2, 4]. An advantage of
indirect detection is that acoustic feedback that can sometimes lead to problems of insta-
bility, is avoided. However, indirect detection must be used with care to ensure that a

good measure of the noise is obtained.

The most important part, and the main body of ANC, is the process of negation of
the signal. The device performing this task (the controller) should be capable of not only
adjusting the amplitude but also shifting the phase of each frequency component of the
detected signal, accordingly, by 180° relative to the primary wave. The controller is,
therefore, defined by a continuous transfer function representing the required amplitude
and phase characteristics. Thus, when the processed wave emitted by the secondary source
is superimposed on the primary wave destructive interference results. The required con-
troller characteristics are dependent upon the characteristics of the transmission paths from
the primary and secondary sources to the detection and observation points as well as the
characteristics of the secondary source and transducers used in the system. Therefore, the

measurement of these characteristics is essential in obtaining a suitable controller.

After the detected signal has been processed by the controller, the output of the con-
troller is used to drive the secondary source. This leads to an acoustic wave that interacts
with the acoustic wave from the primary source. Here a loudspeaker placed at a set dis-
tance froi:ﬁ the primary source can be used as a secondary source. The result of superim-

posing the component waves can be observed by using an observer microphone. From



the above discussion it follows that processes of detection and superposition are relatively
straightforward whereas the main task in active noise control is the design of a suitable

controller.

This report presents a coherent method for the design of ANC systems operating in a
three-dimensional non-dispersive propagation medium. An analysis of the basic control
structures; namely, feedback control and feedforward control is presented and conditions
for the robust performance of such systems are determined. The resulting controller design
equations are then related to the system geometry. Using such a relation and the acoustic
properties of the medium as mapped onto, say, pressure fluctuations due to a sound wave,
which in this case vary in amplitude inversely with distance from the source and in phase
directly with the product of frequency and distance from the source, the above conditions

are interpreted as constraints on the geometric composition of the ANC system.

2. Active noise control structures

Active noise control requires a suitable interconnection of detector, controller and secon-
dary source. The various arrangements of detector(s), controller and secondary source(s) in
single/multiple detector and/or source configurations have resulted in various control struc-
tures for ANC systems. These structures can be classified into two basic types: feedback

control and feedforward control.

2.1. Feedback control structure

The geometric arrangement of the feedback control structure (FBCS) is shown schemati-
cally in Fig. 1a. The primary source emits a wave p(f). This is detected by a transducer
(detector), placed at a fixed distance relative to the primary source, and passed to a con-

troller C. The controller is required to adjust the phase as well as the amplitude of each



Primary
source

C
Controller
P(s) R(s)

E(s) =

Secondary

source

D(s)

(a)

M(s)

—=

L(s)

Detector/Observer

S(s)

c(s)}—arﬂs>}4>

(b)

F(s) |=

Fig. 1: Feedback control structure;

(a) Schematic diagram,

(b)

Block diagram.



frequency component contained in the detected signal such that when emitted by the
secondary source a zero sound pressure level results at the detector location. Hence, the

detector can at the same time be an observer.

A block diagram of the FBCS in the complex frequency s domain is shown in Fig.

1b, where
E(s) = transfer function of acoustic path between primary source and detector,
F(s) = transfer function of acoustic path between secondary source and detector,
M(s) = transfer function of detector,
C(s) = transfer function of controller,
N(s) = transfer function of necessary electronics, in addition to the controller,
L(s) = transfer function of secondary source.

Fig. 1b clearly shows the feedback nature of the structure; a (control) signal S(s) is
emitted by the secondary source that is fed back to the detector, through the acoustic
transmission path between the secondary source and detector, where it adds to a (refer-
ence) signal R(s) to produce a (residual or error) signal D(s). The detector signal D(s) can

be written as
D(s) = R(s) + F(s)S(s)
or
D(s) = E(5)P(s) + F(s)M()C(S)N()L(s)D(s)

Thus, the above, after simplification, yields the transfer function between the detector sig-

nal D(s) and the primary source signal P(s) as

DGs) _ E(s)
P(s) 1 = M(8)C(S)N(S)L(S)F(s)

M



Assuming the controller always reverses the polarity of the signal, equation (1) can thus

be written as

D(s) _ E(s)
P(s) 1 + M(S)C (S)N(S)L(S)F(s)

@

where C'(s) = — C(s). Equation (2) corresponds to a standard negative feedback structure.

The FBCS corresponds to that proposed by Lueg in his patent where the controller is
realised by an electronic transmission line providing a constant time delay and hence
phase inversion of a single frequency [5]. Similarly, Olson employed the FBCS in his
electronic sound absorber with an amplifier as a controller, providing only gain adjustment
and no frequency compensation adjustment [6-8]. Following Olson’s work a significant
amount of consideration has been given to the investigation and performance improvement

of this structure in various applications [9-13.

2.2. Feedforward control structure

A schematic diagram of the geometric arrangement of the feedforward control structure
(FFCS) is shown in Fig. 2a. The primary source emits a wave p(f). This is detected by a
detector placed at a distance r, relative to the primary source and a distance ry relative to
the secondary source and passed to the controller C. After the detected signal has been
-adjusted in phase and amplitude it is emitted by the secondary source to be superimposed
on the unwanted noise. The result of this superposition is observed at an observation point
located at a distance r, relative to the primary source and a distance r, relative to the

secondary source.

A block diagram of Fig. 2a in the complex frequency s domain is shown in Fig. 2b,

where
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E(s) = transfer function of path r,,
F(s) = transfer function of path r,
G(s) = transfer function of path r,,
H(s) = transfer function of path r,
M(s) = transfer function of the detector,
C(s) = transfer function of the controller,
N(s) = transfer function of necessary electronics,
L(s) = transfer function of the secondary source.
From the block diagram in Fig. 2b the detector output D(s) and secondary source
output S(s) are
D(s) = E(s)P(s) + F(5)S(s) 3)
and
8(s) = M(s)C(IN(s)L(s)D(s) @
Substituting for D(s) from equation (3) into equation (4) and simplifying yields the
transfer function A(s) between the secondary source and primary source outputs as

_ S(s) _ _ M@SC(SN(S)LIS)E(s)
A® =) = T = MECEONGLEFE) )

Thus, using A(s) Fig. 2b can be represented in a simplified form as shown in Fig.

2c.

It follows from the block diagrams in Figs. 2b and 2c that, in the FFCS, the secon-
dary path, i.e through C(s) to the observation point, attempts to compensate the primary
path, i.e. through G(s) to the observation point, such that the superposition of the primary

and secondary waves results in cancellation at and in the vicinity of the observation point.



As seen in Fig. 2a the detector gives a combined measure of the primary and secon-
dary waves that reach the detection point through the acoustic paths r, and ry respectively.
The secondary wave thus reaching the detector forms a closed feedback loop (Fig. 2b) that
can cause the system to become unstable. Therefore, a careful consideration of this loop is
necessary in the design stage. Alternative techniques attempting to avoid the instability
problem in one-dimensional propagation (duct noise) by isolating the detector from secon-
dary source radiation through using either uni-directional detectors or multiple-detector/
multiple-source configurations such as acoustic dipole and tripole have been reported [14-
17]. 1t is possible to avoid the instability problem in three-dimensional propagation by
using uni-directional detector(s) or by employing indirect detection. However, a stability

analysis of the system based on relative stability margins will lead to a robust design.

Note, in Fig. 2b, that moving the observation point so that to coincide with the
detection point will lead to the FBCS of Fig. 1a. Therefore, in the subsequent develop-
ments the FFCS is given a relatively more detailed consideration, whereas, the FBCS is

considered as a special case of the FFCS.

The FFCS corresponds to that proposed by Lueg in his patent where the time delay
is implemented by the physical separation between the primary and secondary sources [5].
A significant amount of consideration has subsequently been given to this structure in
various applications. Conover, Hesselman and Ross have employed this structure in the
cancellation of transformer noise [18-21]. Ross has considered the design, Roure has
analysed the stability, Eriksson, et.al. have considered the implementation of this structure
in the cancellation of the one-dimensional duct noise [17, 22-26]. Nelson, et.al. have
analysed the performance of this structure in the cancellation of enclosed sound fields
[27-29]. Tokhi and Leitch have considered the design, performance and implementation

of this structure in the cancellation of noise in three-dimensional propagation medium
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[30-32].

3. Design of the controller

As stated earlier the controller in an ANC system requires a careful consideration in the
design stage. The controller should be capable of altering the amplitude and phase of
every frequency component of a detected primary wave properly. Moreover, as noted
above, due to acoustic feedback from the secondary source radiation to the detector, stabil-

ity conditions must be considered so that good system performance is ensured.

3.1. Feedback control structure

The objective in a FBCS (Fig. 1) is to reduce the detected signal to zero. Thus,
D(s)=0 (6)

This, using equation (2) and the Shwartz inequality, means that the following should hold

[33]

| D(s) 1 €11+ M(s)C'(S)N(S)L(s)F(s) |~ VIE@) 11 Ps) | )

Equation (7) implies that for a given detector, necessary electronics and secondary source
)
the factor 11+ M(sﬂsjﬁ(s)L(s)F () 1~} should tend to zero which in turn implies that

C’(s) or, equivalently, the controller transfer function C(s) should have infinite amplitude;
1C(s) | =e ®

In practice this is not feasible as the transfer characteristics M(s), N(s), L(s), F(s) and C(s)
itself will induce instability in the loop. The maximum value of | C(s) | can be determined
from the Nyquist stability criterion, and for satisfactory operation a suitable stability mar-

gin is required. This represents a major limitation of the feedback control structure: to
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achieve good cancellation a high gain controller is required but this can lead to instability
in the system. Therefore, in designing the controller the loop formed by M(s), C(s), N(s),
L(s), F(s) should be analysed and a compromise made between controller gain and system

performance.

3.2. Feedforward control structure

The objective with the FFCS, Fig. 2, is to reduce the observed signal to zero. This
requires that the observed primary and secondary signals should be equal in amplitude and

opposite in phase; i.e
Pa(s) = Sa(s) (9)

From Fig. 2b the primary and secondary signals P,(s) and S,(s) are

P(5) = G(s)P(s)

(10)
§,(5) = H(5)S(s)

Substituting for P,(s) and S,(s) from equations (10) into equation (9), using equation (5),

and simplifying yields
G(s) = = H($)A(5) 1n)

Equation (11) is the required condition under which optimum cancellation is
achieved in a stationary (steady-state) environment. Substituting for A(s) from equation (5)

into equation (11) and solving for C(s) yields

G(s)

€O = S ONCLOAG)

(12)

where

A(s) = F(5)G(s) — E(s)H(5) S a3)
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Equation (12) represents the required controller transfer function for optimum cancel-

lation of the unwanted noise over the frequency range of interest at steady state.

3.3. Practical limitaions in the controller design

It follows from equation (12) that for a particular detector and secondary source with
necessary electronic components, the controller characteristics required for optimum (full)
cancellation is dependent on the characteristics of the acoustic paths from the primary and
secondary sources to the detector and observer locations. Any combination of the detector
and observer locations with respect to the primary and secondary sources requires a partic-
ular controller characteristic. In particular, if the detector and observer are located such
that A(s), equation (12), becomes zero then the critical situation of infinite gain controﬂef
requirement arises. The locus of such points in the medium (as a practical limitation in the

design of the controller) is therefore of crucial interest.

3.3.1. Locus of the infinite—gain controller

If A(s) in equation (12) becomes zero then infinite gain is required of the controller. Under

such a situation equation (13) for s = ja yields

F(jo) _ H(o)
E(o) G(o)

(14)

E(jo), F(jo), G(jo) and H(jw) are the frequency responses of the acoustic paths
through the distances ., 1y, rp and ry respectively;

=, o -
E(im)=rie A F(fo))::f-e »
4
(15)

.2n
o )
Gimy=A e ™" . Hjoy=Le
Ty ry

T,

2%
' L
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where A is the signal wavelength, and A is a constant.

Substituting for E(jo), F(jo), G(jo) and H(jw) from equations (15) into equation

(14) and simplifying yields

re -itrE o —it-r) 3
(=)e =(=)e : (16)
rf ry

This equation is true if and only if the amplitudes as well as the exponents (phases) on

either side of the equation are equal. Equating the amplitudes and the phases, accordingly,

yields

a7)
rf- Te=Tp— .?'g

where a, the distance ratio, is a positive real number.

Equations (17) define the locus of points for which A(jo) = 0 and the controller is
required to have an infinitely large gain. Note that these equations are in terms of the dis-
tances r,, Tp Iy and ry only. Therefore, the critical situation of A(jw)=0 in a non-
dispersive three-dimensional propagation medium is determined only by locations of the

detector and observer relative to the primary and secondary sources.
Eliminating ry and r, in equations (17) and simplifying yields
r.(a=1)=r,(a=1) (18)

Two possible situations, namely a = 1 and a # 1, are considered separately.

(i) Unity distance ratio

For a unity distance ratio, @ = 1, equation (18) yields the identity 0 = 0. Therefore, sub-

stituting for a = 1 into equations (17) yields the locus of points for which infinite gain is
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required of the controller as

<=1 and £=1 (19)

If the locations of the primary and secondary sources are 'ﬁxed then each of eqan
tions (19) defines a surface plane perpendicularly bisecting the line joining the primary
and secondary source locations (see Appendix A). This plane for the primary and secon-
dary sources respectively located at points (0, 0, 0) and ( u, , Vs, Ws) with a distance d

apart in a three-dimensional UVW-space (see Fig. 3) is given by

B 4 et s e ] (20)
Ly Ly (£
2ug 2v, 2w,
o : ; & &
which intersects the U—-, V-, and W-axes respectively at points (E:" 0, 0), (O, Ve 0),
£ v.l'

&

and (0, O, Ev——). This plane is shown in Fig. 4. If the detector is placed at any point on

5

this plane and if at the same time the observer location coincides with a point on this
plane then the ‘critical situation’ of equation (14) occurs and the controller is required to

have an infinitely large gain.

(i) Non unity distance ratio

For a non-unity distance ratio, a # 1, equations (17) and (18) yield the locus of points for

which an infinitely large gain is required of the controller as

, £=g and <=1 @1)

It follows from Appendix A that the first two relations in equations (21) each define
a spherical surface. These surfaces for the primary and secondary sources located as in

Fig. 3 are defined by
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+ a” u 2+ v+ a v, 2+ + a w; 2 ad_ | (22)
u w =
] =g y - 1-4° 1o o=

ad
2|

which has a radius R = and centre located along the line PS, joining the pri-

—-a

a* u, & v, aw,

mary and secondary source locations, at the point Q (- i -
v = 2 1 T 1-a)

This is shown in two dimensions in Fig. 5 which implies that both the detector and the

observer locations should coincide with points on this sphere.

The third relation in equation (21) requires the equality of the distances between the
detector and primary source (r,) and between the observer and primary source (r,). The
locus of such points in the three-dimensional UVW-space of Fig. 3 (for, say, constant r,)

is a sphere with centre at the primary source location and radius equal to r;

P+ +w=rl (23)
Y
d g Q
P v U

Fig. 5: Locus of constant distance ratio.
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This is shown in the two dimensions in Fig. 6. Therefore, the locus of points defined by
equations (21) is given by the intersection of the two spheres in equations (22) and (23).
Such an intersection results a circle, hereafter referred to as the infinite gain controller
(IGC) circle, located in a plane that is at right angles with the line joining the centres of

the spheres. The centre of the circle is the point of intersection of the plane and the line.

To investigate the variation of the IGC circle in terms of its radius and location of
its centre in the three-dimensional UVW-space of Fig. 3, let the detector be located at
point E with coordinates (u,, v, w,) and distances r, and ry relative to the primary and
secondary sources respectively, as shown in Fig. 7. Substituting for ? + v* + w? from

equation (23) into equation (22) and simplifying yields the plane of the IGC circle as

Vi

Fig. 6: Locus of points r = rg.
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I s e s (24)
2y &y &)
u: vs W,
where
p=d|e-konn|=d[e-cp-rd) @s)
2 az L4 2 f €

Equation (24) defines a plane surface on which the IGC circle is residing. In accordance
to the procedure described in Appendix A it is found that the line PS passing through the
primary and secondary source locations is at right angles with the plane of IGC circle.
This is shown in two dimensions in Fig. 8a. The comresponding IGC circle is shown in

Fig. 8b where r, is the radius of the IGC circle.

VA

\
H
all

W

Fig. 7: Location of detector relative to
primary and secondary sources.
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The quantity B in equation (25) gives a measure of the intersection of the plane in
equation (24) with the coordinate axes and, thereby, with the line PS passing through
locations of the primary and secondary sources. It is evident from equation (25) that B is
dependent on d, r, and 7y or, for constant d, is dependent on location of detector only. If
0 denotes the angle between the lines PE and PS in a plane formed by these lines (Fig.

8c) then the following holds
¢ =d* +r} - 2rdcosd (26)
Substituting for rf2 from equation (26) into equation (25) yields
B = rdcosf 27

Therefore, as the detection point changes position in the medium the limits for B are

found to be
IBl<rd (28)

This variation, in relation to the location of the plane of IGC circle, is shown in two
dimensions in Fig. 8c. For rfz - rf > d?, in which case 0 > B > — r,d, the plane passes
through points along the line PS which are outside the range ( P, S ) and their distances
from P are smaller than those from point S. As rf -2 decreases the plane moves
towards point P. At point P where rf2 - rf = d? the quantity B is zero. If rfz -r2is
further decreased so ﬁlat a is still less than unity the plane moves towards the midpoint

between P and S. Midway between P and § the distance ratio a is unity (ry=r,),

B = — d° and the plane coincides with the plane in equation (20), (Fig. 4). After the point

1
2
midway between P and S (@ > 1) as the distance ratio a is increased the plane moves

towards point S and further beyond it. At point § where P2 - rfz = & the quantity B is

equal to d.
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From Fig. 8c the radius r, of the IGC circle can be written as

r.=r,sin@ ; 0<6<=x ; (29)

Thus, the radius of the IGC circle is dependent on the distance r, between the pri-
mary source and the detector and the sine of the angle formed by the line joining the pri-
mary source and detector with the line joining the primary and secondary sources. The
maximum value of the radius, r, ., is 7, and occurs at the situation where the plane of

IGC circle intersects the line PS at point P (Fig. 8c);
Temax = Te (30)

Movement of the plane to either side of point P will lead to a decrease in the radius. At
the extreme cases where the line PE is in alignment with the line PS (8 is either 0° or
180 °) the radius r, is zero. In general, for constant values of the angle 6 the radius r, is
directly proportional to the distance r, between the primary source and the detector. This
implies that in order for r. to be minimised the detector is required to be placed as close

to the primary source as possible.

It follows from the above that the requirement of an infinitely large gain controller in
a FFCS is directly linked with the locations of the detector and observer relative to the -
primary and secondary sources. This derives from the dependence of the controller charac-
teristics on the transfer characteristics of the acoustic paths from the detector and observer
to the primary and secondary sources which demand ’a particular controller transfer func-
tion for a particular combination of the detector and observer locations in the medium.
The above analysis reveals that combinations of the detector and observer locations in the
medium exist that for optimum cancellation require the controller to have an infinitely

large gain. These form the locus of infinite gain controller requirement which are:

(@) If the detector and observer are equidistant from the sources the locus is a plane sur-
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face that perpendicularly bisects the line joining the locations of the primary and

secondary sources.

(b) If the detector and observer are not equidistant from the sources the locus is a circle,
with centre along the line joining the locations of the primary and secondary sources,
and on a plane that is parallel with that in (a). The radius of the circle is given by

the distance between the detector and the line.

Note in equation (21) that if the first two of the relations are divided side-by-side

(assuming a # 0) then the following equivalent equations are obtained

.
ot pll L et 31
rg r,,

This means that starting with equations (31), rather than equation (21), will also lead to

exactly the same results obtained in the preceding paragraphs.

The crucial situation of infinite-gain controller requirement was shown in the above,
on the basis of using omni-directional sensors and sources, to exist with the general ANC
structure. The problem can be avoided by confining the detector and observer to regions
of the medium that are outside the loci in (a) and (b) above. A further possibility of
avoiding this problem is to isolate the detector from secondary source radiation. A method
of achieving this is to use a uni-directional detector such that it is subjected to the primary
wave only. Alternatively, indirect detection, as discussed earlier, can be used. Either of
these methods, in terms of the FFCS of Fig. 2, are equivalent to making F(s) = 0, under

which the controller transfer function in equation (12) becomes

G(s)
M(s)N(S)L()E(s)H(s)

C(s)=- for F(s)=0 (32)

The use of uni-directional microphones as an attempt to avoid the infinite-gain controller

requirement has be considered by Roure in the case of one-dimensional propagation (duct
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noise) [17]. Others have reported alternative configurations of multiple-detector/ multiple-
source for the one-dimensional duct noise problem as attempts at isolating the detector

from secondary source radiation [14-16].

3.3.2. Feedback control structure

As noted earlier, if the observer in a FFCS shown in Fig. 2a moves to coincide with the
detector then the FBCS is obtained. In such a process the distances r, and r, are
effectively made to approach the distances r, and rp respectively. This in terms of the
transfer functions E(s), F(s), G(s) and H(s) leads to

G(s) = E(5)

33)
H(s) = F(s)

Projecting the above modifications into the controller design equations of a FFCS the
corresponding controller design equations for the FBCS are obtained.
Substituting for G(s) and H(s) from equations (33) into equation (13) and simplify-
ing yields
As)=0 (34)

Equation (34) corresponds to the critical situation of impractically large-gain con-
troller requirement discussed above. Therefore, as also derived earlier from a different per-
spective, for optimum cancellation of the noise the FBCS will always require a controller
with an infinitely large gain. With a practically acceptable compromise between system
performance and controller gain, and careful consideration of the stability of the system,

reasonable amounts of cancellation of the noise can be achieved with this structure.
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4. Conclusion

An analysis and design procedure for ANC systems in a three-dimensional non-dispersive

propagation medium has been presented.

The optimum cancellation of an unwanted noise in three dimensions requires a con-
troller with a frequency-dependent transfer function that can produce a wave which is an
exact mirror image of the noise so that when superimposed on the noise results in silence.
The characteristics of such a controller are found to be dependent upon the transfer
characteristics of transducers, secondary source and propagation paths from the primary

and secondary sources to both the detector and observer locations.

The dependence of controller characteristics on the characteristics of system com-
ponents and geometry can sometimes lead to practical difficulties in the controller design
and system stability. A particular combination of these characteristics requires a controller
of a particular transfer function. A change in any of these characteristics, such as chang-
ing the location of either the detector and/or observer, requires a controller with a new
transfer function to suit the new situation. In particular there are combinations of detector
and observer locations which lead to the critical situation of infinite-gain controller

requirement. Two situations in general lead to the IGC requirement

() When both the observer and detector are equidistant from the primary and secondary
sources. In a FBCS, where both the detection and observation points are the same,
this situation corresponds to the detector beiné on a plane that perpendicularly
bisects the line joining the locations of the sources. In a FFCS this situation

" corresponds to when both the detector and observer are on this plane.

(if) 'When the ratio of the distances from detector and observer to primary source and
ratio of distances from detector and observer to secondary source are each equal to

“unity; i.e. the detector and observer are both on a circle (the IGC circle) which is in
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a plane that makes a 90 degrees angle with the line passing through locations of pri-
mary and secondary sources. In a FBCS where the detector and observer are both
located at the same point this situation of IGC requirement is always satisfied. In a
FFCS, however, it is possible to minimise the region of space occupied by the IGC

circle by a proper geometrical arrangement of system components.
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Appendix A: Locus of constant distance ratio

Theorem A

Let P and S be two fixed points in a three-dimensional space with a distance d apart from

each other and let T be an arbitrary point in this space. If the ratio of the distances PT and

ST is constant then the locus of points T defines

(@) a sphere with centre located along the line PS, for a non-unity distance ratio.

(b) a plane perpendicularly bisecting the line joining the points P and S, for a unity dis-

tance ratio.

Proof:

Consider the three-dimensional UVW-space of Fig. A.1 in which P (0,0,0) and
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S ( uy, vy, wy) TEpresent two fixed points and T ( u, v, w ) an arbitrary point. The distances

"
PS, PT and ST are respectively denoted by d, ry and r,. Let the distance ratio £ be

T
denoted by, a positive real number, a;
¥
£ =a (A.1)
T
It follows from Fig. A.1 that
Lt
= [u_,2 +v2+ w,2 ] 2 (A2)
1
= [+ 402 ]
(A3)

1
r;.=[(u—u,)’+(v—v,>2+(w—w,)2]2

Substituting for r, and ry, from equations (A.3) into equation (A.1), simplifying and using

equation (A.2) yields

(1-a) P +2ad uu+(1-a*)V+2a v+
(1—.:12)w2+2az\ru_,w=aza‘2 (A4)

This gives the locus of points in the three-dimensional UVW-space that corresponds to a

particular distance ratio a.

(i) Non—unity distance ratio

If the distance ratio a is different from unity then equation (A.4), after completing squares

and simplifying, yields
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2

This equation represents a sphere with radiusR:—a—d— and centre at Q (— ol ;
11-a*| 1-d*
a v, a® w, )
1-a&" 1-a"

In order to prove that the centre of the sphere Q is located along the line PS let the
coordinates of this point be denoted by ( u,. v, W, ), unit vectors in the directions of U, V
and W axes respectively be denoted by i, j, and k and a unit vector along some line AB

pointing towards point B be denoted by I, Thus,

_duy
a v,

A

a* w,
1-a*

uqz

Vq—-

(A.6)

Wy =—

and

U i+ v j+wg k
Ips =
‘\}u,§+ 'v_,z-i-w,2

; Ug i+ v, jtwok

Pq
\}uq2 + qu + qu

(A7)

Substituting for u,, v, and w, from equations (A.6) into equation (A.7), simplifying and

using equation (A.2) yields

1
I =~

l1-al 1 .
lpq=——:2—-a-(u,z+v,;+w,k)

(u,i+v,j+w,k)
A8

which implies that



31

+1,, for a>1

fra = -1, for a<l G

It follows from equations (A.9) that the centre of the sphere Q is located along the

line PS and, specifically, if P is chosen as reference then for a > 1 the centre is located on

the portion of PS corresponding to points away from P in the direction of /,; whereas for

a <1 the centre of the sphere will be on the portion of PS corresponding to points away

from P in the direction of — I,;. In either of these situations, as follows from equation
(A.6), the centre of the sphere lies outside the range ( P, § ). This is proved as follows

Let the distance between points P and Q be denoted by r,, and that between points

Q and S be denoted by 7,,; thus

r

m=\luq +Vq +Wq

rsq=\[(uq—u,)2+(vq—v,)2+(wq-—w,)2

Substituting for u,, v, and w, from equations (A.6) into the above, using equation (A.2)

and simplifying yields

- a*d
B 11—t
(A.10)
__ d
T 1-a?

from which it follows that

Tog>Tsq and rp,>d for a>1

Tpg<Ts and ry>d for a<l

This proves that Q is always outside the range (P, S ).

Let the line passing through points P and S intersect the sphere in equation (A.5) at
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point N ( u,, V, W, ) with distances r,, and r,,, respectively, relative to points P and §

and let the unit vectors pointing towards N, respectively, from points P and § be /,, and

I,,; thus
Tpn = ‘\/u,,i + V,F + w,,z
(A.11)
r,,,=’\]a,,—u,)2+(v,,—v,)12+(w,,—w,)2
and
U i+v,j+wk
pn P :
(A.12)

_ (u,,—u,)i+(v,,—v,)j+(w,,—w,)k

L,

'r.ﬂl

Since N is a point along the line PS the vectors I, and [, are either pointing to the same

direction or in opposite directions. Thus, it follows from equations (A.12) that

lu, | Tuy—u

= (A.13)

P
Since —£= represent the distance ratio a, equation (A.1), equations (A.13) can be written
rJl’l .

as

V)
ul=a*(u,—u;)

vi=a (v, —v ) (A.14)

w,,2=c12(v,',,—w_,)2

Solving the above for u,, v, and w, yield
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u,.=(-'l;‘2_-ia2—a)u,
v, =( :% ) v, (A.15)
m=(ZEEL ),

It follows from equations (A.15) that the line passing through points P and S and the

sphere in equation (A.5) intersect at two points E and F with coordinates ( u,, v, w, ) and

(up vy wy) respectively;

u,=—2—u
" 1+a °
a
Ve=T.2 Vg (A.16)
= a
[4 1+a 5
and
_ a
uf—-l_au,
V= lfa Vs (A7)
_ a
W=y

Equations (A.16) and (A.17) imply that E'is a point that is always located inside the
range ( P, S ) and F outside this range. In particular, if a > 1 points E and F are nearer to
point § whereas if a < 1 then points E and F are nearer to point P. If the distances from
pdints E and F respectively to points P and § are denoted by rp., 75, and rpp, ry then using

equations (A.2), (A.16) and (A.17) these are



__ad
=114
(A.18)
_ d
e = Twa
and
ro=—a d
A= 1 1-al
(A.19)
T = d
7 I1-al
(it) Unity distance ratio
If a = 1 then equation (A.1) yields
rg =T (A.20)

Substituting for r, and r, from equations (A.3) into equation (A.20), simplifying and using

equation (A.2) yields

- _ LI, A21
(i)+<i)+(i) A
2u, 2v, 2w,

This represents a plane surface which intersects the U, V and W axes, respectively, at the

. d* d* d?
ts (=, 0, 0), (0, =—, 0), and (0, 0, )
poin (Zu, ) ( 2, ), and ( 2%)

The direction of the plane (A.21) is represented by a unit vector at right angle to the

surface and pointing outward from the surface. Let such a unit vector be denoted by /.

Simplifying equation (A.21) yields

2uu+2v,v+2wow—dt=0

Let the left-hand side of the above equation be denoted by some variable Z;
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Z=2uu+2v,v+2ww—d (A.22)

So that as Z varies from — e 10 + e equation (A.22) defines an infinite set of plane sur-

faces parallel to the plane in equation (A.21), thus the unit vector / is given by

92 ., 0Z ., 6 oZ
o i3 B8, 5 L5
I = auH- 8vj+8w

= : 4 (A.23)
2z 2+ 2z 2+ z 2
ou av ow

)

where ai, -a%- and g respectively denote the partial derivatives with respect to ¥, v and
u w

w. Substituting for Z from equation (A.22) into equation (A.23), simplifying and using

equation (A.2) yields

U . v: . wS
i+ j+—k (A.24)

I,=—
‘T d d d

comparison of which with equations (A.8) gives
I, =1, (A.25)

Equation (A.25) implies that the line PS is perpendicular to the plane surface in
equation (A.21). Mbreover, it follows from equation (A.20) that the point of intersection .
of the plane surface and the line PS is equidistant from points P and §. Therefore, the

plane in equation (A.21) perpendicularly bisects the line PS.

Corollary A

Let P and S be two fixed points in a two-dimensional UV-space with a distance d apart
from one another and let T be an arbitrary point in this space. If the ratio of the distances

PT and ST is constant then the locus of points T defines

(a) a circle with centre located along the line PS, for a non-unity distance ratio.
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us v
w, = 0 gives coordinates of the point of intersection of the two lines as ( —5—,7’ ) the dis-

tance of which from point P is found to be equal to g— i.e. midway between points P and

S. The slopes m, and m, respectively of the lines in equations (A.27) and (A.28) are

u:
My = = =
1 v,
v
my =+ =
u.!’
i.e.
1
rmx = - —
my

which implies that the two lines make a 90 ° angle at their point of intersection. There-
fore, the line in equation (A.27) perpendicularly bisects the line PS.
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