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Abstract:

A new recursive parameter estimation algorithm is derived for a general class of stochastic
nonlinear systems which can be represented by a rational model defined as the ratio of two poly-
nomial expansions of past inputs, outputs and prediction error terms. Simulation results are
included to illustrate the performance of the new algorithm.

1 Introduction

Recursive identification plays an important role in the identification of complex,
possibly time varying systems, adaptive control and adaptive signal processing (Ljung
and Soderstrom 1983). The recursive procedures are ideally suited to implementation
on a digital computer, they are computationally elegant and provide alternative formu-
lations of the conventional batch algorithms. Recursive parameter estimation provides a
new dimension to system identification, providing the possibility of online data pro-
cessing, prediction and adaptive control.

Most of the existing recursive parameter estimators were derived for linear sys-
tems described by the ARMAX (AutoRegressive Moving Average with eXogenous
inputs) model or variants of it. There are several well known algorithms including
recursive least squares (RLS), recursive instrumental variables (RIV), recursive
extended least squares (RELS), and recursive maximum likelihood (RML). Ljung and
Soderstrom (1983) showed how all these methods can be unified and provided an
elegant convergence analysis. Recently some of these algorithms have been applied to
nonlinear systems which can be described by the linear-in-the-parameter polynomial
NARMAX (Nonlinear ARMAX) model (Billings and Voon 1984, Chen and Billings
1988, 1989a).

The nonlinear rational model (Sontag 1979, Chen and Billings 1989b) can be con-
sidered within the class of NARMAX models and provides a very concise structure
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which can be used to describe a wide range of nonlinear systems. The rational model
is defined as the ratio of two polynomial expansions of past inputs, outputs and predic-
tion errors and is therefore nonlinear in the unknown parameters. If the model is multi-
plied out to yield a linear-in-the-parameters description the presence of even additive
white noise induces severe bias in the parameter estimates which can not be eliminated
by conventional noise modelling procedures. This problem has constrained the
development of parameter estimation algorithms for nonlinear rational models to
methods which can accommodate nonlinear in the parameter models (Marquardt 1963,
Billings and Chen 1989). Whilst these provide excellent results in many cases the
necessity of numerical minimization techniques means that they can be rather complex
and computationally demanding. In an attempt to avoid these difficulties Billings and
Zhu (1990) have recently shown that the identification of rational models can be per-
formed based on a linear in the parameter expansion if the induced bias terms are
properly accommodated in the algorithm. The resulting rational model estimator
(RME) provides unbiased estimates of the model parameters using essentially a
modified least squares formulation.

In the present study a new recursive implementation of the RME algorithm is
derived. It is shown that multiplying the rational model out to be linear-in-the-
parameters will induce severe bias. An iterative solution is proposed to overcome this
problem and it is shown how this can be formulated to provide a new recursive or on-
line algorithm for stochastic nonlinear rational models. The new algorithm which will
be called RRME (Recursive Rational Model Estimator) is illustrated using simulation
studies.

2 The rational model

2.1 Input-output description
A input and output stochastic rational model (Chen and Billings 1988) is defined

as the ratio of two polynomial expressions of past system inputs, outputs and noise,
that is

G = a(y(e=1), - - -, y(t=nr), u(t=1), - - -, u(t-r), e(t=1), - -+, e(t=r)) + el
by(t-1), - - -, y(t=n), u(t=1), - - -, u(t-r), e(t-1), - * -, e(t=r))

2.1)

where u(r) and y(r) represent the input and output at time t t=1,2, --*)
respectively, r is the order of the model, and e(?) is an unobservable independent noise



with zero mean and finite variance G2,

In order to use model (2.1) as a basis for identification, a means of parameterisa-
tion is required. Define for the numerator

num

a(t) = X pn(18, (2.2)
=1
and for the denominator
den
b(t) = Y. p4(18y; (2.3)
j=1
where Pri(D), P4t are terms consisting of
y(-1), - - -, y(t-r), u(t=1), - - -, u(t-r), e(¢t-1), - - -, e(t-=r) and the total number of

unknown parameters is num + den.

2.2 A linear-in-the-parameters expression

Identification based on the model in eqn (2.1) is complex because the model is
nonlinear in the parameters. A prediction error algorithm can however be formulated
(Billings and Chen 1989) but this is computationaly expensive. An alternative
approach is to multiply out eqn (2.1) so that the model becomes linear in the parame-
ters. Thus multiplying b(f) on both sides of egn (2.1) and then moving all the terms
except y(1)p41 ()04 to the right hand side gives

den
Y(1) = a(ty- y(1) L py(n6q; + b(D)e(®
2
num den
= Y P08, — X y(Opy(084 + C(1) (2.4)
1 =2

where

Y() = y(Op gy (Do

=pa(t) —= + py(De(r) (2.5)

a()
b(r)
Alternatively divide all the right hand side terms by 6,; and redefine symbols to give
essentially 8, = 1. Notice that

L) = b()e(r)

den

= (Zpdj(t)edj)eu)
Fl

den

= pa1(De() + (X p4(184)e(r) (2.6)
=2
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where providing e(f) has been reduced to an uncorrelated sequence as defined in eqn
2.1

E[E(] = E[b(n]E[e(n]) =0 2.7)

Inspection of eqgn (2.5) shows that all the denominator terms y(1)p4;(t) implicitly
include a current noise term e(s) which is highly correlated with {(#) and will introduce
bias in the parameter estimates even if e(r) is a zero mean white noise sequence. This
problem has been induced by making the rational model linear in the parameters. If a
polynomial NARMAX model were used in eqn (2.4) then b(r) = 1 and there would be
no terms on the right hand side involving y(7).

Eqgn (2.4) can be expressed as

num den
Y(1) = 3 Pni(1)8y = iy(r)pdj(:)edj + b(De()
= ;
= X Pn(1)8y = Z e )Pd,(f)ed, + par(De(®) 2.8)
1

In vector notation this becomes

Y() = 60O + L)

= $(D© + pgy(De(?) (2.9)
where
0 = [0,(8) 040
= [P (®) * * * Prnam® =P 2O¥(®) - - - —Pagen®y(0)]
= Pat® " * * P PO ‘;2 ; ) Pagenld) ‘;2 ; re@]  (210)
=[0, 0,4
=61 " Opuam O~ * * O] (2.11)
and
(1) = [0, Hy(0)]
= i) Pran® P ~Paten® el (2.12)
a®

Notice that the matrix ¢(:) cannot be obtained directly because ——— cannot be meas-

b()

ured.
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En bloc least squares parameter estimation

The least squares technique is well known in system identification because it pro-

vides a simple analytical solution to the parameter estimation problem, Billings and

Zhu (1990) have recently proved that most of these properties can be retained even for
rational model estimation providing the noise problem discussed above is suitably

accommodated.

In the following sections, the error sources are analysed by evaluating the least

squares bias and covariance and it is shown how these results can be used to produce

an off line or en bloc linear-in-the-parameter rational model estimator (RME). A new
on line version of the estimator called RRME, the recursive rational model estimator,
is then derived. The structure of the model is assumed to be known as is the case for
most recursive estimation algorithms.

3.1 Least squares estimation and error analysis

The well known least squares estimate is given by

where

6 =01 @'Y

o =[o'(1) - -

oh(1) . .
oh(1) . .

pnl(l)

Prnum(1)

= a(l)
Pa(1)( b T e(1))

- a(l)
P dden(1)( » T e(1))

r=1ra--

- o7 (N)]

. OhN)
. 0LV

pn](N)

Ponam )

P (NX( g% + e(N))

a(N)

b(N)
- YW)IT

(3.1)

(3.2)
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It is clear from egns (2.1), (2.4), and (2.9) that ® may include lagged noise model
terms and N is the data length.

The parameter estimates of eqn (3.1) will only be unbiased if E[©] = ©. It is con-
venient in the present analysis to study the bias associated with the least squares esti-
mate using probability limit theory.

The probability limit of the estimated parameters is given by
Plim[©] = Plim[[®T®]™! ®TT]
= Plim[[®T®]™! | Plim[®"Y) (3.3)

Assuming that both the input and output sequences are stationary it follows that
for a sufficiently large data length N

.1 1 .1
— = e (0]
Pltm[NCDTCD] N(I)
1T 1 .71
— =—o 34
Pltm[N(DYi = Y (3.4)

where

B b

N N T
Y oln0,0) TOND0LD)
=1

=1

oo = N N
T OLD0.() X0k
| =1 =1 i
] N N To ] [ N
S OTM0.) TOLN0LD) 0 X0
=1 =1 =1

N AT N AT, o 2N 7
Y 0400, 3 04(D0,(1) 0 oY pa(DpA1)
=1

| =1 ] L =1



and
N N
Z¢£(t)pd1(r) ‘;E ; 03
=1 =1
&P = i N (3.5)
E¢d(:>pdl<r> o2 2pu(Dpa(®)
=3 b(t) r-l o
where
PdD) =pn(® - Pagen(] (3.6)
and (1) is defined in eqn (2.12)
Rewritting eqn (3.6) gives
(DT?= [(DTﬂ(x_]) + 03 Y (37)
where the definition of terms follows directly and
, 0 0 "
W= N Zp np() = Z‘P(t)
0 Ypipgn | =
=1
0 T
v=| N Ep (a1 (1) = Zw(t) (3.8)
SpyOpa@® | =
=1
p(®) = [0 p4(0)] (B9

All terms involving e(f) appear in 62 ¥ and o2 y which are called error terms and the
subscript (7—1) indicates that only lagged noise terms (eg e(t—j) j 21 ) are present.

The estimate given in eqn (3.1) can therefore be written as
6 = [dTo]! OTY

= [[®7®] .y + 02 ¥ [Ty + OF V] (3.10)

Even for the case of additive white noise therefore the two terms 0‘3 ¥ and o2 y
will cause bias. This is an inherent problem associated with the rational model
expanded to be linear in the parameters because the denominator terms ¥(Opgi®) in eqn
(2.4) implicitly contain e(f) and this causes an o2 in the least squares estimates. This
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problem does not arise for the ARMAX and polynomial NARMAX models and hence
unbiased estimates can be directly obtained.

Probability limit theory can also be used to formulate the asymptotic covariance
matrix of the estimated parameters as follows

Cov® =
Plim{[[®T®]" &'7 - O] [[@'®]"! &'V - 6]T)
= Plim([[®7®]! &T(®O +T) - O] [[®7®]! &T(@6 +T) - 617
= Plim{[[®"®]™ ®'TY[[®'®] &)} (3.11)
where with reference to egn (2.6) and eqn (2.9)
T=1km -+ W’
= [b()e(1) - -+ bN)e)] (3.12)

Assuming that both the input and output sequences are stationary it follows that
for a sufficiently large data length N

CovO =
= Plim{[[®"®]"! ®TQI[[@"®]" &TTIT)
= Plim[TC"] Plim{®'®]!

= 620} ®T®]™! (3.13)
where
11X 2
o; = — Y [b()] (3.14)
N =1

which is the mean squared value of the denominator.

3.2 A least squares estimator for the rational model

Eqn (3.10) indicates that an unbiased parameter estimator for the rational model
could be obtained if the error terms were removed. Define the new estimator

0 =[0"® - o2 V]! [®T7 - 62 y]
= [["I)TCD](;_])]—‘l [(DTﬁ(;_l) (3.15)

as the rational model estimator (RME) providing that ®®, ¥, @'Y, and w can all be
calculated when the noise sequence e() is available.
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In practice the noise sequence e(r) and the noise variance o> will be unknown.
However, a predicted noise sequence and an estimated noise variance GE can be
obtained using a simple extension of the traditional extended least squares algorithm.
Billings and Zhu (1990) have implemented this idea to formulate the RME algorithm.

The covariance matrix of the estimates using RME can be derived with reference
to eqn (2.9) and eqn (3.13) for the special case when Gg < 1 to yield

Cov® = cZaf[[DT®) ()] (3.16)

this shows that the effect of removing the bias is to increase the covariance of the esti-
mates because [(DT(D](,_U =®Id - 62 ¥. A detailed derivation of the covariance
matrix of the estimates is given in appendix A.

For the ARMAX and NARMAX models, eqn (3.16) becomes
Cov® = c2[d7 ]! (3.17)
because 67 = 1 and [[®T®]_,]" = [®TD] L.

4 Online least squares estimator for the rational model

A unified recursive least squares (RLS) based algorithm (Soderstrom, Ljung and
Gustavsson 1978) may be written as

O = 03-1) + Ke®
K@) = P()oT ()

P(t=1)0"()0(H)P(1=1) YA
A + 0(PE-1)07(r)

Al = ).Ol(p-l) + (1 - 7\.0)
() = Y(1) — o()O(-1) (4.1)

P(t) = (P(+=1)

where A(7) is a variable forgetting factor and ¢(z) is defined és in eqn (2.10).
Eliminating K(¢) yields

O@) = B(-1) + PO )[Y() - 0(1)O(-1)]

e _
P() = (P(-1) —2U=10 (DOWP (’TU YAG)
AMD) + o()P(-1)0" (1)

A = AA(-1) + (1 — Ap) 4.2)

such that the algorithm consists of three updating formulae, the parameter vector o),
covariance matrix P(f), and forgetting factor A(r).
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To obtain the unbiased estimates for the rational model, a modified version of the
recursive algorithm which implements the ideas from RME will be necessary

From eqn (3.15)
6@ = [®'D - 62 ¥]! (@'Y - 62 y]
= P(t) f1) 4.3)
Updating expressions for P(¢) and f(¢) can be derived as
PO =D -2 ¥

-1
= 26" 00() - oZp®p(®] + 67 (H0() — oZpT (Dp(1)]

i=1

= [P(=1)]"" + o' (Do) — o2pT(Dp(2)

and

fi) =0V - o2 y

-1
= Y 0TOYW) — o2p) py ()] + 7Y (D) — 62pT ()p gy (8)

i=1

= fi-1) + T (Y (D) = 62pT (Op 41 (©) (4.4)

From eqn (4.3)
f) = PO ©0)
and hence
fa=1) = [P-1)]! O@-1) (4.5)
Eqn (4.3) can now be written in the recursive form
O@) = [P] v
= [P(@0)] (fe=1) + 'Y (1) - o2p Wpar (D)
= [P@] (IPE-D)T BG-1) + ¢"(0)Y () - 62T ()par ()
= [PO] ((POI" - oT(10@) + o2pT(1)p(0)OC-1)
+ 0T (Y@ - o2pT(p 4 (0))
= 0@-1) + [PO] (6T()Y () — o2pT(Dpar(8)
— [07()0() — o2pT(p(HIO(-1)) (4.6)
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which will be used to update the parameter estimates.
A recursion for the covariance matrix P(¢) can be derived from eqn (4.4)
[P(5)] = [IPC=DI™" + 6T ()60 — o2pT()p()] ™ 4.7
By the well known matrix inversion lemma
(A+BCy'=41-A"B¢+ cA'ByIcA™! (4.8)
let
A= [P-DI" + 0 (1o
B =-o2p'()
C =p() (4.9)
then egn (4.7) becomes
[PO]1=A""+ (10_21:,31;;(22(:1:;)1)—1 (4.10)
Repeating the matrix inversion lemma for A™!
A7 = [[PG-DIT + o' (o] ™
P(=1)0"(DO(OP(-1)
L+ 0(P(-1)¢" (1)

Finally the RRME (Recursive Rational Model Estimator) algorithm can be sum-
marised as

= P(t-1) - (4.11)

O(1) = 6(-1) + POLIOT(Y(D]ry — (070D -1y -1))
oA pT()p(1)A~!
(1 - oZpnA~p ()™

SLEVN L
A7l = (P(-1) - P(r—=1)0 (t)q)(t)P(tTl) VAGE)
AD) + O(P(-1)" (D

AD) = Agh(=1) + (1 = Xp)
DT OY(D) ey = OTOY (D) — B2y (@)
(07 ()01 = OT(DOG) — S2—1)¥ (1)
&) = (Y(1) — 6O 1))/b(0)

2 2
6%(1) = (t;:l) 62(-1) + ((r@ - q)(r)?(t-l))/b(t)) (4.12)

PH=A1+
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Implementation of the algorithm consists of the following steps:
(i)  Set initial values ©(0), P(0), A(0), Ag, €(0), 63(0), and r=0.
(i) Set =1+t and form the vectors ¢(¢) and p(z)
(iii) Compute [6T(DY (D] (1) [OT(VO(D](-1). and P().
(iv) Estimate the parameter vector (:)(r).
(v) Predict the noise é(r) and compute the noise variance Gz(t).
(vi) if <N go back to step (ii), otherwise end with =N.

The RRME algorithm depends on the following assumptions which arise from
eqn (3.5) and eqn (3.8)

plim[6T ()Y ()] 1) = (@77 = 02 y] = [®"T ]y
plim[oT (DO -1y = [®TD - 62 ¥] = [®TD],y (4.13)

For the noise free case, the RRME algorithm reduces to the classical recursive
least squares algorithm, this is easily proved by setting Gg(t—-l) =0 to give eqn (4.2).

For a recursive algorithm, initial values for the parameter estimates (:)(t), covari-
ance matrix P(¢), and forgetting factor A(z) must be set before starting the algorithm.
The choice of the initial values has been studied extensively by Ljung and Soderstrom
(1983), a large value of P(0) makes the value of ©(0) only marginally important, the
parameter estimates will change quickly in the transient phase (for small values of 1).
A small value of P(0) will give only small corrections of O(r) since the gain for the
error correction will be small for all t, convergence will then be slow unless @(O) is
close to the convergent limit.

Assuming no a priori information about the initial values, we set P(0)=10000%/,
where I is an identity matrix, é(0)=0, predicted noise sequence é(0)=E[e(n]=0, M0)=1,
Ao=1, and 62(0)=0.

5 Simulation studies

Three simulated examples were selected to illustrate the application of the on line
RREM algorithm for parameter estimation of nonlinear stochastic rational models.A
zero mean uniform random sequence with amplitude range +1 (variance o’ = 0.33)
was used as input and a zero mean Gaussian noise sequence e(?) with variance
62 = 0.01 was used in all three examples. 500 data pairs were used in each case.



-13 -

Example S; consisted of the model

0.8y(r—=1) + u(t—1)
1 + u?(-1) + y(—1)y(t=2)

o) = +n0) (5.1

where

0.5e(t—1) + e(?)
1 + k3 (-1) + y(r=1)y(t=2)

n = (5.2)

Expanding S, to give a linear in the parameter model yields
Y(2) = 0.8y(=1) + u(r—1) — y(©)u(—1) — y(&)y(t—1)y(t=2) + 0.5e(t-1) + e(2)
(5.3)

where
Y1) = y() (5.4)

The input and output data sequences for this example are illustrated in Fig. 1.1.
The evolution of the parameter estimates are illustrated in Fig. 1.2 (a) to (e). The lines
parallel to the time axis in plots (a) to (e) indicate the corresponding true parameters.
Inspection of Fig. 1.2 shows that the estimates associated with the terms from the pro-
cess and noise model converge rapidly after about 250 data samples. The estimated
noise variance 63 illustrated in Fig. 1.2 (f) which is used to check the performance of
the algorithm shows a steady convergent characteristic.

The estimates obtained using the RLS and RRME algorithms at =500 are given

in Table 1 and these results show the significant improvement of the RRME algorithm
for rational model parameter estimation.

Example S, consists of the same process model as example S,

@) = 0.8y(r—1) + u(r—1) +10) (5.5)

1+ u?(e=1) + y(e=1)y(e=2)

but with a much more complex noise model
n) = 0.5y(t=1)e(r—=1) + e(r) (5.6)
The linear in the parameter expansion for model S, is
Y(0) = 0.8y(=1) + u(=1) = y(@u?(:=1) = yOy(-1)y(:-2) + bN(®)
(5.7)
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where

Y@ =y
b = [1 + u?(=1) + y(t=1)y(=2)] [0.5y(t—1)e(r-1) + e(2)]
(5.8)
The input and output data sequences for this example are illustrated in Fig. 2.1.
The evolution of the parameter estimates are illustrated in Fig. 2.2 (a) to (e). Again the

parallel lines in each plot indicate the corresponding true parameter values. The
estimated noise variance 63 is shown in Fig. 2.2 (f).

During the iteration, the denominator polynomial b(z) in eqn (5.8) was replaced
by 5(:), the estimate of b(r), hence eqn (5.8) is expressed as

bm(@) = 0.56()y(-—De(t=1) + b()e(?) (5.9)

The estimates obtained using the RLS and RRME algorithms at =500 are given
in Table 2 and clearly show how RRME provides unbiased estimates.

Example S3 was modelled as

_ 0.5y(t=Du(=2) + u(t-1)
1+ u2(-1) + y*(=1)

() + N (5.10)

where

0.7e(t=1) + e(2)
1 + u?(-1) + y*(r-1)

ne = (5.11)

Multiplying the rational model out to be a linear in the parametes gives
Y(0) = 0.5y(t=1)u(t=2) + u(t-1) — y(Out@-1) — y(t)y*(t=1) + 0.7e(t-1) + e(r)
{5.12)

where
Y() = y(0) (5.13)

The input and output data sequences for this example are illustrated in Fig. 3.1.
The evolution of the parameter estimates are illustrated in Fig. 3.2 (a) to (e), where the
parallel line in each plot represents the corresponding true parameter value. The evolu-
tion of the estimated noise variance is shown in Fig. 3.2 (f). Once again the fast con-
vergence of the estimated parameters and noise variance is demonstrated in this
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example.

6 Conclusions

A new recursive least squares type parameter estimation routine has been derived
for nonlinear stochastic rational models. A major advantage of the new algorithm is
that unbiased parameter estimates are obtained from a linear-in-the-parameter model
formulation. Simulation results suggest that the algorithm has good convergence pro-
perties but a thorough theoretical analysis of convergence is left for a later publication.
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7 Appendix A

The covariance matrix of the estimates is defined as

CovO®=plim[(6-0)(6-0)] (A1)
Consider

0 - 0 = [[DTD] )" [@TT](y) - ©

= [[®7 D] _y)]"! [@T (@O +T) - c2y] - ©
= [[®T®] (] [((P"P)_) + 2O + DT~ oZy] - ©
= @ + [[®T®],_)I! [62¥O + DT - o2y}~ ©

= [[@T®] )] [62¥0 + BT - o3y] (A.2)
Define

A =62¥0 + T - o2y = O'T + 625 (A.3)

where
0=YO-vy (A4)

Now the asymptotic covariance matrix can be written as
Cov(:)=plim[((:)—®)((:)—®)T]
= plim{ [[®T®]_p)]”" AAT [[®TD], )] }
= G2} DTD] I+ [[DTD)y)) " [G2HTT
+ 20207C8 T+ 62887] [[DTD] .y (A.5)
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where
AAT = OTBLLT + 20207C8" + 628567
= [@T®],_;, + S2¥[TT" + 202078 + 62887
= [®T®],_ T + O2¥LL + 20207T8T + o58" (A.6)
Inspection of eqn (A.5) shows that the three terms G‘Z"PCC'T, GECDTST, and 2887
all include a multiplier 6. It is reasonable to assume therefore that the effect of these

terms on Cov © can be ignored when 0§<1, such that eqn (A.5) reduces to the approx-
imate expression

Cov® = o2 [PTD) (1)1 My (A.7)
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T Parameter Estimates
erms
Oprme(500) | Oprs(500) | Ope
y(t=1) 0.8094 0.7045 0.8
u(t-1) 1.0025 0.8420 1.0
Youb(-1) -1.0373 -0.6262 | -1.0
Ny(t=1)y(-2) -1.0709 -0.6990 -1.0
e(1-1) 0.5886 0.4858 0.5
Table 1 Parameters estimated for example S,
Parameter Estimates
Terms
Oraue(500) | Oprs(500) | Ope |
y(=1) 0.7792 0.6502 0.8
u(t-1) 0.9788 0.7674 1.0
y(Ou(e-1) -0.9489 04037 | -1.0
YOy(t-1)y(+=2) -0.9711 -0.4916 -1.0
y(t-1)e(t-1) 0.3905 0.3082 0.5
Table 2

Parameters estimated for example §,

Parameter Estimates
Terms

Orrme(500) | Oprs(500) | O
y(t=1)u(t-2) 0.5272 0.3694 0.5
u(t-1) 1.0604 0.7235 1.0
y(Ou*(e-1) -1.1374 -0.4281 -1.0
y(OyHe-1) -1.0953 0.2552 L0
e(t-1) 0.6934 0.5405 0.7
Table 3

Parameters estimated for example §;
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