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Abstract
The celebrated Beale-Kato-Majda (BKM) criterion for the 3D Euler equations has been updated
by Kozono and Taniuchi (2000) by replacing the supremum with the Bounded Mean Oscillation
(BMO) norm. We consider this generalized criterion in an attempt to understand it more intuitively
by giving an alternative explanation. For simplicity, we first treat the Constantin-Lax-Majda
equation %—C: = H(w)w for the vorticity w in one-dimension and identify a mechanism underlying
the update of such an estimate. In particular, we obtain an example of a set of dynamical equations

0
for its Fefferman-Stein (FS) decomposition w = wg + H[w;]. In its simplest form, it reads % =

woH wy] — w1 H|w1] and % = woH[w1] + w1 H[wg]. The equation for the second component wy,
responsible for a possible logarithmic blow-up, is linear and homogeneous; hence it remains zero if
it is so initially until a stronger blow-up takes place. This rules out a logarithmic blow-up on its
own and underlies the generalized BKM criterion. Numerical results are also presented to illustrate
how each component of the FS decomposition evolves in time. Higher dimensional cases are also
discussed. Without knowing fully explicit F'S decompositions for the 3D Euler equations, we show
that the second component of the FS decomposition will not appear if it is zero initially, thereby

precluding a logarithmic blow-up.

PACS numbers: Valid PACS appear here

*Electronic address: K.Ohkitani@sheffield.ac.uk



I. INTRODUCTION

It is not known whether smooth solutions of the 3D Euler equations persist globally in
time or not (see, e.g. [8] for the problem and its relevance to turbulence). We do know a
number of conditions under which they remain smooth over a finite time interval [0, 7']. One
of the fundamental result is the so-called Beale-Kato-Majda (BKM) criterion given in terms
of a supremum of the vorticity [1]. Later, it has been improved by Kozono and Taniuchi
replacing the L> norm with the weaker BMO semi-norm [20, 21]. The proof is based on
highly non-trivial applications of inequalities obtained in harmonic analysis and is rather
lengthy. In particular, the absence of a logarithmic blow-up is an immediate consequence of
this update.

The purpose of this paper is to make the update a bit more transparent by giving its
alternative interpretation. More specifically, we consider a simpler 1D model vorticity equa-
tion of Constantin-Lax-Majda (CLM) [6] as a test problem. We write down the equations
for the Fefferman-Stein (FS) decomposition [12] explicitly. On this basis we interpret the
same result using equalities. The same method is applied to higher-dimensional equations
such as the 3D Euler equations.

In Section II, we review the BKM criterion and its extension. In Section III, we briefly
review the CLM model equation. In Section IV, we study the FS decomposition for the
CLM model. In Section V, we present numerical results on the F'S decomposition for the
CLM model. In Section VI, we discuss the 3D Euler equations and SQG equations. Section

VII is a summary and an outlook.

II. THE BKM ANALYSIS AND ITS EXTENSION

The Beale-Kato-Majda criterion states the condition of the existence of classical solutions

in terms of higher Sobolev norms [1]. In R?, a non-dimensional time integral of the form

T
/ lw||pedt < o0 (1)
0

is a condition for the existence of smooth solutions on [0, T]. A work by Kozono and Taniuchi

[20] has updated this to
T
/ ||wHBModt < 00, (2)
0



using the slightly weaker BMO norm, see also [21]. Basic techniques of proofs used therein
may be found in [3, 4, 18, 19]

The BKM criterion is necessary and sufficient for the existence of classical solutions to
the 3D Euler equations. Then what is the benefit of the update ? Let us consider a question
whether the vorticity can blow up logarithmically in space variables. If we have only the
BKM criterion, we cannot answer this question because the L norm of a logarithmic
function is unbounded; such a blow-up may or may not occur. However, with the criterion
generalized by BMO, we can safely rule out such a possibility because log |x| € BMO, which

contradicts with (2).

ITI. THE CONSTANTIN-LAX-MAJDA MODEL

For simplicity and illustration, we consider the 1D model of vorticity equation, known as

the Constantin-Lax-Majda model. The model reads

& Hw, 3
with a smooth initial condition
w(z,0) = wo(x). (4)

Here

e =1 f 2y, )

m ol Y

denotes the Hilbert transform and  a principal-value integral. Its useful properties are

HIH[f)] = —f (reciprocity), (6)

and

Hlfg] = fHIg]+ H|[flg+ H[H[f]H[g]] (convolution property) (7)

for any functions f and g.

Blow-up of solutions to the model was proved by an ingenious non-constructive argument
in an unpublished work[5]. Note that the same argument was used in the work [7].

Later, a method of exact solutions was discovered by complex functions [6]. Introduce a
complex-valued function

F(z) =w(z) +iH|[w](z) (8)



and analytically extend it into the upper-half plane z = = + iy (y > 0). It can be checked

that the real and imaginary parts of a complex-valued equation

OF(z) i 5
HOBEIC )

reproduce the CLM equation together with its Hilbert transform. It should be noted that
(9) is a local ordinary differential equation and exactly solvable. Blowup is then proved for
a certain class of initial data. We note that the CLM equation, originally introduced as a
model for the vorticity equations, has some physical relevance in plasma physics [2, 33]. See

also [26, 28] for related works on the CLM equation.

IV. THE FEFFERMAN-STEIN DECOMPOSITION
A. Fundamentals

It is possible to work out a BKM criterion or its BMO-extension for the CLM model. On
the basis of the CLM model we consider why has the update been possible or what is the
underlying mechanism which enables such an improvement. The proofs of such an update
depends on inequalities obtained in harmonic analysis and are rather long. The rationale of
this paper is to give an alternative view based on equalities.

To this end we recall the Fefferman-Stein decomposition in 1D, which states
Vf € BMO <= f = fo+ H[f1], (10)

for some fy, fi € L, H is the Hilbert transform. This was obtained by the H*-BMO
duality and Hahn-Banach theorem, hence the proof is not constructive. Thus, we have no
idea on where fj, fi come from, or how they behave locally. This decomposition is far from
unique; assuming that (10) is obtained, we may write it equivalently f = fo —w + H[f1 + v]
for any v, w such that w = HJv] holds. See [29-32] for related real analytic methods.

Our strategy is as follows. First we write down the dynamical equations for each compo-

nent of the F'S decomposition for the vorticity w in the CLM model:

w = wo + H[W1], (11)
<~
bounded potentially unbounded

where wg,w; € L*. Second, we interpret what we get.
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B. The Fefferman-Stein decomposition for the CLM model

Soon after Fefferman-Stein’s paper on H*-BMO duality [12], attempts have been made to
construct BMO explicitly. This was first successful in one spatial dimension. It is based on
the following results see e.g. [35, 36, 38]. For completeness, we present the formulas needed
for such a construction, while they are not going to be used explicitly in what follows. Only
the idea of use of a complex function g is essential.

The first part is valid in any n dimensions. Setting

@) = [[, Pt = auto (12)

we have
I fllsmo < Cflplle, (13)
where
1 ¢
P _ = _ 14
() T2+ 12 (14)

denotes the Poisson kernel and |||, the Carleson norm associated with the Carleson measure
p. For any compact supported f € BMO, there is a Carleson measure y and b € L>(R")
such that

f@) = [ Pla = p)dnty.t)+ bGo) (15)
Il < 1l flBao (16)

1bllee < ClIflIBMO (17)

hold. These show a connection of the Carleson measure to BMO.
A formula relating the Carleson measure p and a complex function g was obtained by

Jones [16]. Jones’ powerful formula is the following. For z € R',( € R, if we set

Kluz,0) = %%m [//mm< (C_—iﬁ = c‘) dr’rﬁ‘u(g)] L)

ow) = [[ Ko ducc) (19)
CERi
then we have
19llse < Cllpllc (20)
and
// P,(z —y)du(y,t) = Re g(z) + H(Im g)(z), modulo const. (21)
R2

+



By combining the above results we can construct BMO explicitly. (It should be noted
that unlike the function F' above, the function ¢ is not harmonic in half-plane; its real and
imaginary part are independent.) It says that in handling a BMO-valued function, we may
handle a complex function g instead, through a suitable Carleson measure.

Thus we need to evolve

g = wo + Wi (22)
somehow to represent the dynamics of the CLM equation. As a simplest choice, we try

9g
— = gH|qg], 23
% = gHlg (23)
which is nothing but evolving g itself by the CLM equation. In fact, we can prove that this
is a correct choice.

By taking the real and imaginary parts of (23), we find it is equivalent to the following

set of equations

0
% = on[wo] — le[wl],
(24)
0
% = wOH[wl] + le[wo].

This is the set of equations we are after. We prove that (24) is a F'S decomposition of the
CLM equation.

Proof

Applying the Hilbert transform on (24)s, we have

o0H [wl]
ot

= H [woH [w] + w1 H [wo]]

= H[wO]H[wl] — Wow1
by the convolution property. Taking the time derivative of the FS decomposition w =
wo + Hw], we have by (24),
Ow Owo N OH [w]

ot ot ot
= WOH[W()] — le[wl] + H[Wo]H[wl] — Wow1

= (wo + Hlwi]) (H[wo] —w1)
= (wo + H[w1]) H [wo + H[w1]]
— WHL),



where the penultimate line follows by the reciprocity property. Thus (24) reproduces the
CLM equation correctly. O

Now that we have found an expression for the FS decomposition of the CLM equation,
we can generate infinitely many others. Consider the time derivative of w = wy + H[w;] we

have
ot ot ot

_&uo 8w1
=2 erH[at Jrv],

for any w,v such that w = H[v]. Here, we have made use of non-uniqueness of the FS

Ow  Owg " [&ul]

w
decomposition for the time derivative —. This should be distinguished from similar non-

ot

uniqueness for w itself used in numerical computations below.

We may consider the following more general decomposition

0
% = WQH[WU] — le[wl] + UJ(WQ, wl),
(25)
8w1
ﬁ = wOH[wl] + le[wo] + H[U)(WO, wl)].

Needless to mention, it is applicable even if wg, w; are smooth, although in practice it is
not efficient to solve the CLM equation numerically using two variables rather than one.

We make some observations in the simplest case w = 0 (24).
1. The first equation reduces to the original CLM equation if w; = 0, as it should.

2. More importantly, the second one is linear in w; and homogeneous. Hence we conclude
that if wy = 0 at t = 0, it will continue to be so unless wy goes singular. In other words,
the second component can never drive a formation of singularity on its own. Thus, a

logarithmic blow-up cannot take place without a breakdown of the first component.

3. The equation (24) becomes invalid when wy becomes unbounded, or when H [w,] de-
velops a logarithmic singularity (we know that the latter does not happen by the exact

solution).

It is known [13, 34] that if w € BMO, then H[w] € BMO. But generally wH|[w] ¢ BMO
and notably
sgnx - log|z| ¢ BMO. (26)



Hence, the right-hand-side of (24) is no longer in BMO once w takes a genuine BMO value.
Now we are in a position to answer our original question: “Why has the update of the
BKM criterion by the BMO norm been made possible ?7. As far as the CLM model is
concerned, it is because the equation for w; has a simple structure of a linear homogeneous
equation.
It is straightforward to obtain a FS decomposition for the 1D inviscid Burgers equation
(omitted). We will see below that the same mechanism actually works in physically more

relevant higher-dimensional cases.

V. NUMERICAL RESULTS

It is of interest to illustrate how each component of the FS decomposition (24) behaves
for the CLM model. We consider the CLM equation on a periodic interval [0,27] and a
simple initial condition

w(z,t=0) = cosuz. (27)

Note that under periodic boundary conditions the Hilbert transform takes the form

1) = - wteor (S5 ) an

=5 :
The exact solution for this initial condition was already given in the original paper [6].
Numerical computations are performed by 2/3-dealiased Fourier spectral method with
time-stepping by the fourth-order Runge-Kutta scheme. The number of grid points is N =
4096 and a time step is At =1 x 1073,
By making use of the non-uniqueness of the F'S decomposition on the initial data w =

wo + H[w], we can consider more general initial conditions of the form
wo(x,0) = acosx — (1 — ) H[sin z], (28)

where « is a parameter; 0 < o < 1. (Recall that H[cosz| = sinz, H[sinz] = —cosz.) We
make the following choices for the numerical computations of (24).

Case 1: a natural choice (o = 1)

wo(x,0) = cosz,wq(z,0) =0 (29)



Case 2: an awkward choice (o = 1/2)
1 1.
wo(z,0) = 5 cos z,wi(x,0) = —gsine (30)
Case 3: an extreme choice (o = 0)
wo(z,0) = 0,w;(z,0) = —sinzx (31)

We start with the usual choice 1). We show the time evolution of the vorticity w and the

strain rate H[w] in Fig.1. The solution is known to break down at ¢ = 2. At that time, w

behaves like oc —= 7 and H [w] like the Dirac delta function at = = 7/2.

1.5 ‘ ‘ ‘ ‘ 07 1.5
1 1 b
05 | 05 |
3 3
= 0 = 0
] ]
05 | 05 |
_1 . _1 L
15 : : ‘ ‘ : : -1.5
0 1 2 3 4 5 6 0 1 2 3 4 5 6
X X
2 ; ; 10 — ‘ ‘ : :
1=1.0 | =1.8
] 8t | 1
6 I l
Al ‘
E E
T T 2|
3 3 0
-2 L
4 |
-6

FIG. 1: The vorticity w(solid) and the strain rate H|[w] (dashed) for Case 1.

For the choice 2) we plot in Fig.2 the time evolution of the enstrophy (that is , squared

L2-norm of the vorticity) for each component defined by

Qult) = 5 (el 1?) and Qi) = 5 (wr (. 1)?),

N —
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where the brackets denote a spatial average. We observe a clear equi-partition Qo(t) = Q1(t)

for all time, whose sum is of course equal to the total enstrophy

Q(t) = = (w(z,1)%).

DO | —

We show the time evolution of wy and H|wyg| in Fig.3. Actually, they coincide completely

throughout the evolution.

102 |

Qo(1),01(1)

102

FIG. 2: The evolution of the enstrophy Qo(t)(solid) and Q;(t)(dashed) and their sum (dotted) for

Case 2. Note that Qo(t) and Q1(t) are indistinguishable as they coincide.

Finally we consider the case 3). We plot the evolution of enstrophy in Fig.4. We observe
that Qo(t), starting from 0, catches up with @Q;(¢) towards the end of the computation and
they collapse in the final stage, again showing an equi-partition in L2

The time evolution of wy and H |w;] is shown Fig.5, which is of some interest. The vorticity
wy starts to grow generating oscillations with a half period of the initial w;. We observe a
perfect cancellation of the strain and the vorticity in the vicinity of x = %w.

We summarize the features of the numerical solutions as follows:

1. We can confirm that if wy(0) = 0, then wy(¢) = 0 for any ¢ > 0 up to a blowup,
consistent with the mathematical fact. (not shown in Fig.1) This means that the

dynamics of w; does not suffer from serious instability.

2. If w1 (0) # 0 both wy(t) and wy(t) blow up at the same time, showing an equipartition
in the L? norm, both in Cases 2 and 3. In particular, a complete equipartition in Case

2 is striking.

10
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FIG. 3: The vorticity wp(solid) and H[w;] (dashed) for Case 2. They are indistinguishable because

they coincide. Note that the amplitudes are scaled down by a factor of 2 in comparison with Fig.1.
Note that w = wg + H[wy].

3. In particular, even if wy(0) = 0, wo(t) # 0 at later times. Because unlike the second

component w, the equation for the first component is nonlinear and inhomogeneous,

it can emerge from ws(0) = 0.

VI. HIGHER DIMENSIONAL CASES

A. Fundamentals

We have identified a mechanism underlying the update of the BKM criterion by the
BMO norm for the CLM model. As mentioned above, the BKM criterion for the 3D Euler

equations has been generalized by the BMO norm in [20, 21]. In two dimensions, there is a

11
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FIG. 4: The evolution of the enstrophy Qo(t)(solid) and Q;(t)(dashed) and their sum (dotted) for

Case 3.

similar result on the SQG equation [17]. We expect that a similar mechanism underlies these
generalized estimates. One way to confirm this view is to seek the dynamical equations for
the FS decomposition of the 3D Euler equations or the SQG equation.

In n dimensions, we have formally

n

BMO(R") = L™(R") + Y R;[L™(R")] (32)
j=1
as the dual of .
1 ey = NNy + D IRl s (33)
j=1

where ‘H*® denotes Hardy space, R; the j-th component of Riesz transform. The F'S decom-

position states that for f € BMO(R"), we can find fo, f1,..., f, such that

f=fo+ ) Rilf)] (34)
j=1
and its norm is given by
£ 1130 = [ folloo + D 11£lloo- (35)
j=1

A constructive proof of the F'S decomposition was given by [37] in any spatial dimensions,
but it entirely rests on the real analytic methods. For this reason, that result cannot be
applied directly to obtain FS decompositions e.g. for the 3D Euler equations. It seems

difficult to determine the FS decompositions for higher-dimensional equations explicitly.

12



ao.Hlwi]

wo.Hl o]

0.8

0.6
04
02

-0.2
-04
-0.6 |
-0.8

=02 .7
:
/ E
TN T
: §
‘/
7/
4 5 6
=
S
T
§

FIG. 5: The vorticity wg(solid) and H|w;] (dashed) for Case 3. Note that w = wo + H[w1].

B. The 3D Euler equations

Before considering the 3D problem, we reconsider the FS decomposition for the CLM

model by setting

to write

The function w(wy,wy), quadratic in wy, w,, must satisfy the condition that

W= wy + w,, with w, = H|w]

% = woH [wo| + we H w.] + w(wo, we),
Ow,
Erale Hwolws + woH [w.] — w(wo, wy).

w(wo,wy) =0, if w, =0,

13
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because (37); should reduce to the original CLM equation when w, is missing. In other
words, the quadratic term in wg should be absent from w. Except for that, w(wp,ws) is
arbitrary. We know in the case of the CLM equation that the simple choice w(wy,w,) =0
does give one decomposition by direct computations.

In view of this, for the 3D Euler equations in vorticity form

)
o (u Vw = (@ V), (38)
ot
where
u=-VxAtw (V-u=0), (39)
we consider ,
w=wy+ Y Rjw,] (40)
j=1

=Wx

by re-grouping of the F'S decomposition for w. Here, care should be taken that the index
J. (j = 0,1,2,3) in w; denotes components of the F'S decomposition, not those of the
vorticity vector. See [22] for a related work.

We consider (40) at each instant of time and its time derivative
ow (%Jo Oow;
= R; N
=[]
Because of non-uniqueness of the FS decomposmon it can be written as
ow 8&)0
5= (Ge-w) el
for any w, w1, wy, w3 such that
3
w = Z Rj [’LUJ]
j=1

In terms of w,, we have simply

Ow _ (Owy N (9w
a o ¥ ot '

We can thus write for the F'S decomposition of the 3D Euler equations

3(00
ot
= (wU : V)u() + (w* : v)u* + 'UJ('U:U, wWo; WU, w*)v

+ (UO . V)WO + (U* . V)w*

(41)

Ow,

ot

= (wo - V), + (w, - V)ug — w(ug, wo; vy, w,),

+ (ug - VIw, + (u, - V)wy

14



where ug = —V x A lwy, u, = —V x A lw, and V- uyg = V -u, = 0. The equation
(41) says nothing but that w = wy + w, solves the 3D Euler equations. Here w denotes an
arbitrary quadratic function of ug, wg, u, and w,. We do not know how to determine its

complete functional form, but we do know that
w(wg, wp; 0,0) =0,

because the equation (41); must reduce to the original 3D Euler equations if u, = w, = 0.
That is, the quadratic terms in wy or wy themselves should not appear in w. It is crucial
to note that this information alone suffices to deduce the mechanism for excluding the
possibility of logarithmic blow-up. If w, = w, = 0 at ¢ = 0, then w, = w, = 0 at ¢ > 0,
because of (41)s.

The FS theorem guarantees that we have at least one w that satisfies (41), but we do not
know how to determine it. In particular, we do not know if w = 0 gives a F'S decomposition

or not.

C. The SQG equation

We also consider the SQG equations

90 .

where ug = -V x A lwp,u, = -V x A lw, and V-u, = 0. Rt = —V+A~! denotes a
skewed Riesz transform defined with V+ = (9, —0;) and A = (—A)Y2. See, e.g. [9-11, 23~

25] for this equation. We introduce the FS decompositions as

=00+ Ryl0]] (43)
j=1
together with
— —R* (0] — Z RY[R;[6; (44)

We write these as 8 = 6y + 0., u = ug + u., respectlvely by re-grouping of the terms. For

the time derivative, we have
aeo : 6, : 06,
at E R[at] (—— >+§ R; J+w]—

15



for any w, w;, ws such that

w = ZRj[wj]'

Jj=1

In terms of 6., we have trivially

%_ %_ 4 89*+
a o Y o )

We can write the FS decomposition for the SQG equation as

00,
8_t0 + (uo - V)b + (. - V)b, = w(bo, uo; 0., w.),
00,

ot

(45)

+ (UO . V)H* -+ ('U,* . V)HO = *'lU(Q(), Uo; 9*, U*)
In principle, w depends on 6y, ug, 0, and u,. Again, we have
w(607 Up; 07 O) = 07

because (45); reduces to the original SQG equation if u, = 6, = 0. Because the products
of ug, 0y should be absent from w, if w, = 0, = 0 initially, % = 0 persists, as long as the
smooth solution persists.

The FS theorem guarantees that we have at least one w that satisfies (45), but we do not
know how to determine it. In particular, we do not know if w = 0 gives a F'S decomposition

or not.

VII. SUMMARY AND OUTLOOK

In this paper two things have been done. i) We have obtained a complete form of the FS
decomposition for the CLM equation and on this basis we have shown why the potentially
singular component (the second component) in the F'S decomposition does not appear before
the first component blows up. ii) For the 3D Euler and SQG equations, we have consid-
ered similar F'S decompositions and deduced the same conclusion by the requirement that
the equation for the first component of the F'S decomposition must reduce to the original
equations in the absence of the second component. A complete determination the forms of
the FS decompositions for the 3D Euler and 2D SQG equations is left for future study. In

particular, we may ask whether or not w = 0 is one choice of decomposition. The latter 2D

16



case may be tractable because two-dimensional BMO is related with Riemann surface [27]
and chances are that we can make use of complex function theory.

We recall that the class of BMO is slightly larger than L°°; actually it is the smallest class
of functions which includes L*° and which is closed with respect to the Hilbert transform
(or Riesz transform in higher dimensions). In this sense, BMO is ’thin’ on top of L.

In this connection we recall the John-Nirenberg inequality [15]. It states that for any

f € BMO, its growth is at most logarithmic:

e e Q:1f — fol > A < @] exp (—L) , (46)
| fll Baro

where
1 1
HfHBMOEsgp@/Q\f—ledxwith fQE@/Qfdx (47)

is the BMO norm. On the basis of (46), we have the so-called Garnett-Jones distance [14],
which measures the distance of a BMO valued function to L*. It may be of interest to try

the linearization of the dynamics of the second component on the basis of the 'thinness’ of

the genuine BMO in L*.
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