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Abstract

A connection between dissipation anomaly in fluid dynamics and Colombeau’s theory of products

of distributions is exemplified by considering Burgers equation with a passive scalar. Besides the

well-known viscosity-independent dissipation of energy in the steadily propagating shock wave

solution, the lesser known case of passive scalar subject to the shock wave is studied. An exact

dependence of the dissipation rate ǫθ of the passive scalar on the Prandtl number Pr is given by

a simple analysis: we show in particular ǫθ ∝ 1/
√

Pr for large Pr. The passive scalar profile is

shown to have a form of a sum of tanhn x with suitably scaled x, thereby implying the necessity to

distinguish H from Hn when Pr is large, where H is the Heaviside function. An incorrect result of

ǫθ ∝ 1/Pr would otherwise be obtained. This is a typical example where Colombeau calculus for

products of weak solutions is required for a correct interpretation. A Cole-Hopf-like transform is

also given for the case of unit Prandtl number.

PACS numbers: Valid PACS appear here

1



I. INTRODUCTION

One of the most important properties of fully-developed turbulence is that its total kinetic

energy is dissipated in a nontrivial fashion even in the limit of vanishing viscosity, see e.g.

[12]. This empirical observation is called “dissipation anomaly” and is believed to form the

basis for turbulence theory. In the case of the 3D Navier-Stokes equations this is just a

conjecture and no mathematical proof is available to support it.

Here we consider a much simpler model of fluid equation to study a similar phenomenon.

More precisely we consider the Burgers equation [5, 6] together with a passive scalar:

∂u

∂t
+ u

∂u

∂x
= ν

∂2u

∂x2
, (1)

∂θ

∂t
+ u

∂θ

∂x
= κ

∂2θ

∂x2
, (2)

where u denotes the velocity field, θ the passive scalar field, ν the kinematic viscosity and κ

the diffusivity. As boundary conditions, we consider constant values of velocity and scalar at

infinity (see below). We note that Burgers equation with a passive scalar has been considered

in [17] in connection with non-Gaussian statistics.

In Section II, we study steadily propagating waves in u and θ and study whether the

dissipation rate ǫθ of θ is independent of ν or of κ. In Section III we derive an expression ǫθ

in terms of the Prandtl number Pr = ν/κ and investigate its dependency on Pr. In Section

IV, we determine the profile for θ and note that Colombeau calculus for the product of

distributions [7–9] is required to interpret the result. We also discuss a generalization of

the so-called Cole-Hopf transform [10, 11, 13] to the case of the passive scalar in Section V.

Section VI is a Summary.

II. STEADY-STATE SOLUTIONS IN A MOVING FRAME

We consider (1) under the boundary conditions u(x = ±∞) = ∓u1. If we seek a solution

steady in a frame moving with a constant speed U we find using a change of variables

X = x− Ut, T = t [1];

u = U − u1 tanh
u1

2ν
(x− Ut+ c), (3)

where c is a constant of integration. The dissipation rate of total kinetic energy

ǫ = ν

∫ ∞

−∞

(

∂u

∂x

)2

dx,

2



is given by

ǫ =
u3

1

2

∫ ∞

−∞

dξ

cosh4 ξ
,

where ξ = u1

2ν
(x − Ut + c). Because this (convergent) integral no longer involves viscosity,

we see that ǫ is independent of ν without evaluating the definite integral (actually = 4/3).

Now we consider θ. From (2), the steady-state should satisfy

(u− U)
dθ

dX
= κ

d2θ

dX2
. (4)

Using (3), it follows from (4) that

dθ

dX
= c′

[

cosh
u1

2ν
(X + c)

]−2 ν

κ

. (5)

Hence we find that

θ = c1

∫ ξ

0

dη

cosh2Pr η
+ c2, (6)

where c1 = 2νc′/u1 and c2 are constants of integration. Under the boundary condition

θ(x = ±∞) − U = ∓θ1 we may fix the constants as c1 = − θ1

Iα(∞)
and c2 = U . Here we have

introduced for convenience

Iα(ξ) ≡
∫ ξ

0

dη

cosh2α η
.

III. DISSIPATION RATE OF A PASSIVE SCALAR

By (5), the dissipation rate of passive scalar variance ǫθ is evaluated as follows:

ǫθ = κ

∫ ∞

−∞

(

∂θ

∂x

)2

dx

= κc̃′
2
∫ ∞

−∞

[

cosh
u1

2ν
(X + c)

]−4Pr

dX

= κ
(u1θ1)

2

4ν2IPr
(∞)2

2ν

u1

∫ ∞

−∞
cosh−4Pr(ξ)dξ,

thus we find

ǫθ = u1θ
2
1

1

Pr

I2Pr
(∞)

IPr
(∞)2

. (7)

Because the integral IPr
(∞) depends on ν and κ through Pr, we must evaluate it in full.

For integer-numbered Pr, say = n we may explicitly carry out the integration in IPr
(ξ).

The first two (n = 1, 2) are

∫ ξ

0

dη

cosh2 η
= tanh ξ,

∫ ξ

0

dη

cosh4 η
= tanh ξ − 1

3
tanh3 ξ.
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More generally, noting that:

1

cosh2n ξ
=

1

cosh2 ξ
(1 − tanh2 ξ)n−1 =

1

cosh2 ξ

n−1
∑

r=0

(−1)r





n− 1

r



 tanh2r ξ (8)

we find

In(ξ) =

∫ ξ

0

dη

cosh2n η
=

n−1
∑

r=0

(−1)r





n− 1

r





tanh2r+1 ξ

2r + 1

and

In(∞) =

n−1
∑

r=0

(−1)r





n− 1

r





1

2r + 1
.

Actually we have [14]

In(∞) =
22(n−1){(n− 1)!}2

(2n− 1)!
.

For Pr = n we obtain an exact expression

ǫθ = u1θ
2
1

{(2n)!}4

(4n)!(n!)4
.

(For more general real-valued Pr = α, we have Iα(∞) =
√

π
2

Γ(α)

Γ( 1

2
+α)

and thus ǫθ =

u1θ
2
1

2√
π

Γ(2α)Γ( 1

2
+α)2

αΓ(α)2Γ( 1

2
+2α)

, where Γ(α) is the gamma function.)

By Stirling’s formula n! ≃
√

2πnnne−n for n≫ 1, we deduce that

In+1(∞) ≃ 1

2

√

π

n
.

Therefore the dissipation rate of θ in the limit of large Pr is

ǫθ ≃ u1θ
2
1

√

2

πPr
, as Pr → ∞, (9)

which decays as P
− 1

2

r with Pr. Even in this simple 1D model, the problem of dissipation

anomaly is subtle, in that ǫθ does depend on Pr in a nontrivial fashion.

On the other hand, it can be checked that

lim
Pr→0

1

Pr

I2Pr
(∞)

IPr
(∞)2

= 1

so

ǫθ → u1θ
2
1, as Pr → 0.

In the cases Pr ≪ 1 or Pr = O(1), ǫθ remain finite, that is, there is anomaly in the

dissipation of the passive scalar in the limit

4



IV. CONNECTION TO COLOMBEAU CALCULUS

In the case of ν → 0, care should be taken in the interpretation. Indeed, in the expression

θ(ξ) = − θ1
In(∞)

n−1
∑

r=0

(−1)r





n− 1

r





tanh2r+1 ξ

2r + 1
+ U, (10)

formally tanh ξ → H(ξ) as ν → 0, where H is the Heaviside function, but this does not

necessarily mean that tanhn ξ → H(ξ) for n( 6= 1).

Colombeau theory has been developed to account for multiplication of distributions to

some extent [7–9], by generalizing Schwartz theory of distributions. For details, see the

references cited therein. Later its connection to non-standard analysis has been pointed out

[2]. We note that this theory has been applied to the Burgers equation, e.g. [8, 15, 16] but

not to the problem with a passive scalar.

A notable feature of Colombeau theory is that it can tell apart H from Hn (n 6= 1). In

this sense the problem in question is a typical example to which Colombeau theory applies.

If we naively identify tanh2r+1 ξ with tanh ξ in the limit of vanishing viscosity ν → 0, we

would get In(ξ) ≈ In(∞) tanh ξ, or

θ(ξ) ≈ −θ1 tanh ξ + U.

It follows that

ǫθ ≈
1

Pr
θ1u

2
1

∫ ∞

0

dξ

cosh4 ξ
= θ1u

2
1

2

3Pr
, (11)

or ǫθ ∝ 1/Pr rather than the correct asymptotic dependence ǫθ ∝ 1/
√
Pr. Therefore the

above naive identification leads to a completely wrong dependence on Pr.

In Fig. 1 we plot the dependency of ǫθ on Pr as given by (7). (For numerical purposes

it is convenient to write Iα(∞) =
∫ 1

0
(1 − τ 2)α−1 dτ.) It shows how quickly ǫθ asymptotes to

(9) and that how poor a job the naive (11) does.

The above results on dissipation anomaly suggests that Colombeau calculus is required

for a correct description of the present problem. In order to check this view we see how jump

conditions [8] come out of Colombeau calculus. Below the symbol ∼ denotes association

which is a weaker relationship than equality (=).

Case 1.

We start from

ut + uux ∼ 0, θt + uθx ∼ 0,
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FIG. 1: Non-dimensionalized dissipation rate of the passive scalar ǫθ(Pr)
u1θ2

1

as a function of Pr (solid

line) and the large-Pr asymptotics
√

2
πPr

(dashed line). The dotted line shows the incorrect behavior

2
3Pr

obtained by discarding the subtle differences among tanhn ξ.

u(x, t) = ∆uH(x− Ut) + U + u1,

θ(x, t) = ∆θK(x− Ut) + U + θ1,

where ∆u = u(∞) − u(−∞) = −2u1 and ∆θ = θ(∞) − θ(−∞) = −2θ1. Here H and

K are Heaviside step functions. Recall that H and K may not agree with each other, as

Colombeau’s theory resolves degeneracy of the Heaviside function in classical calculus. From

the first condition we have

−U∆uH ′ + (∆u)2HH ′ + (U + u1)∆uH
′ ∼ 0.

Since HH ′ ∼ 1
2
H ′, we obtain

1

2
∆u+ u1 = 0.

We have from the second relation

−UK ′ + ∆uHK ′ + (U + u1)K
′ ∼ 0.

Now K ′ ∼ δ and HK ′ ∼ Aδ with some function A = A(∆u,∆θ, u1, U), we have

A∆u+ u1 = 0.

From these we can fix A = 1/2, consistently.
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Case 2.

On the other hand, if we start from imposing a more stringent condition on θ, that is,

ut + uux ∼ 0, θt + uθx = 0,

we have from the second equation

(∆uH + u1)K
′ = 0

or

(1 − 2H)K ′ = 0,

which is absurd because 1 − 2H(x) is not proportional to x. This implies that the set of

both equations in the non-dissipative case must be interpreted in Colombeau’s sense.

V. GENERALIZATION OF THE COLE-HOPF TRANSFORM

In this section we consider a flow with finite total kinetic energy. For the Burgers equation

(1) it is well known that the Cole-Hopf transform [10, 11, 13]:

u(x, t) = −2ν
∂

∂x
logψ = −2ν

ψx

ψ

linearizes (1) to the diffusion equation

∂ψ

∂t
= ν

∂2ψ

∂x2
.

For some historical backgrounds on the Cole-Hopf transform, see e.g. [3, 4].

The equation (2) for a passive scalar is already linear, but it is of interest to seek a similar

transform which expresses its solution in a closed form.

We assume
∂φ

∂t
= κ

∂2φ

∂x2
, (12)

and attempt to find a solution in the quotient form

θ =
φ

ψ
.

Then we find that

φt = (θψ)t = 2νψxθx + κψθxx + νθψxx.
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Because φxx = θxxψ + 2θxψx + θψxx and

θxx =
φxxψ − φψxx

ψ2
− 2

φxψ − φψx

ψ3
ψx,

we obtain

φt = κφxx + (ν − κ)

[

2
ψxφx

ψ
+

(

ψxx

ψ
− 2

ψ2
x

ψ2

)

φ

]

.

Therefore when ν = κ (i.e. Pr = 1) we may reduce the equation for the passive scalar to a

heat diffusion equation (12). Note that u and θ, (or equivalently ψ and φ), can be chosen

independently. In particular, for the special case u = θ we have φ = −2νψx and recover the

original Cole-Hopf transform.

In the general case Pr 6= 1, it is not known whether we may reduce (2) to a diffusion

equation although it is known that (2) is regular for all time. To search for such a trans-

formation left for future study. That might help in clarifying whether there is anomaly in

passive scalar dissipation for the case of finite total energy and passive scalar variance.

VI. SUMMARY

In this paper we treat a steadily propagating solution of a passive scalar subject to Burgers

equation. We have two results on this model.

First, there is anomaly in the dissipation of the passive scalar. In spite of its simplicity

(after all, what we have solved is an ODE by a quadrature), it manifests a nontrivial behavior

in its dissipation rate. Second, a lesson to be learned here is that if we do not distinguish

tanhn ξ for different n, we would obtain a wrong answer for the dissipation rate. This

suggests that Colombeau calculus plays an important role even for this simple example.

It may be in order to recall that in the case of 2D Navier-Stokes equations, the dissipation

rate η of enstrophy is estimated from above [18] as η ∝ (logRe)−1/2, where Re is the Reynolds

number. In the large-Re limit, η decays to zero, but does so very slowly (as a transcendental

function). In contrast, the decay of ǫθ with Prandtl number is much more rapid.

Dissipation anomaly is a subtle problem; a special care is required even in this linear, 1D

model problem, let alone possible dissipation anomaly in the 3D Navier-Stokes equations for

which we have only experimental or numerical evidence.
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