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Abstract

Phase-field models, consisting of a set of highly nonlineaspéed parabolic partial
differential equations, are widely used for the simulatidra range of solidification
phenomena. This paper focuses on the numerical solution@tach model, repre-
senting anisotropic solidification in three space dimemsid he main contribution of
the work is to propose a solution strategy that combineslabical mesh adaptivity
with implicit time integration and the use of a nonlinear trgrid solver at each step.
This strategy is implemented in a general software framkwloat permits parallel
computation in a natural manner. Results are presentedwwhiwide both qualitative
and quantitative justifications for these choices.

Keywords: phase-change problems, phase-field models, nonlineaalhfterential
equations, stiff systems, multiscale problems, adaptiethods, multigrid methods.

1 Introduction

This paper describes the parallel and adaptive numeritatico of systems of non-

linear partial differential equations (PDESs) which areid=a from phase-field models
of solidification problems, [5, 6, 9, 11, 12, 13]. In partiaylwe demonstrate that
it is possible to solve such systems efficiently in three sghmensions using fully-

implicit time stepping. Previous research into the nunarsolution of systems of

this type has already shown the necessity of mesh adaptfidh 21], however such

results have typically been based upon the use of explog stepping, at least for
the nonlinear components of the differential equationsr €alier publications for

systems in two space dimensions have clearly illustratedtivantages of using im-
plicit time stepping once the maximum level of spatial reimeat exceeds a certain
threshold, [23, 24]: the key to obtaining these advantageggithe efficient solution

of the nonlinear algebraic equations that arise at each sie®, through the use of
nonlinear multigrid techniques [2, 4, 7, 28].



In this work we have taken the initial steps towards the gaigation of our earlier
work in two space dimensions, [23, 24], to three dimensiolsshould be noted
that in order to make the extension to three dimensions ctatipoally tractable it
is necessary to combine adaptivity and multigrid techrsquih the use of parallel
computer architectures, primarily in order to provide sugint memory for runs of the
required resolution, but also to reduce execution timesallRhimplementations of
3-d phase-field models are already described in the litexal6, 9, 26] for example,
however the combination of parallel, adaptive, implicidanultigrid has not been
presented before to our knowledge.

The layout of this paper is as follows. In the next sectionrtfuelel equations are
introduced, along with a brief description of their spasiatl temporal discretization.
The following section then provides an overview of the anaptparallel and multi-
grid techniques that have been applied, along with an osereif the PARAMESH
software library, [19, 20], that has been used to realizengriémentation of these
techniques. In order to complete this work a number of exbeissto PARAMESH
have been developed and so, in Section 4, these are brieftyilmss Finally, in
Sections 5 and 6 respectively, a selection of numericaliseate presented and the
contributions and future potential of this work are dis@gss

2 Equations and Discretization

The phase-field method is one of the most powerful technituésve emerged in
recent years for the computational modelling of phase ahangblems. The novelty
of the method is that the mathematically sharp interfacevéen the solid and lig-
uid phases is assumed diffuse, allowing the definition ofrdginaous (differentiable)
order parameterp, which represents the phase of the material (typicallyin the
liquid and+1 in the solid regions). The evolution gfis governed by a free energy
functional which can be solved using standard techniqueB@dis without explicitly
tracking the solid-liquid interface, thus allowing the silation of arbitrarily complex
morphologies. One such morphology, which has been widelyiatl in the solidifi-
cation literature, is the dendrite [1, 3, 5, 18]: a brancheeldbe-like crystal. Dendrites
are ubiquitous in nature, occuring in many cast metals amelags minerals as well as
giving rise to the multitude of patterns found in snowflakésis morphology, which
is one of the prime examples of spontaneous pattern formaandicative of the
outward diffusion of either heat or some chemical specm@s fthe growing solid into
the host medium (generally a melt, supersaturated solotisapersaturated vapour).
Dendrites generally display either cubic or hexagonal segtmynwhich reflects the
underlying symmetry in the atomic packing in the crystalisTdives rise to a small
anisotropy in the surface energy of the crystal that profilyeffects the final growth
morphology.



2.1 Phase-field equations

A variety of different phase-field models have been propaseecent years, many of
which have been demonstrated to capture the formation ofmdidtic structures, e.g.
[11, 14, 15, 17, 21, 29] and, more recently, [6, 9, 12, 13]hmeé dimensions. In this
paper we work exclusively with the three-dimensional mat#sicribed in [13], which

is appropriate for simulating the solidification of an undepled pure melt and de-
pends only upon the temperature fieldin addition to the phase fielgd). This model

is formulated in the so-called thin-interface limit whicleans that the numerical re-
sults are independent of the width chosen for the soliddidquterface and thus have
a quantitative validity not possessed by many other fortrarla of the phase-field
problem. In order to impose the asymmetry in the model thaqdsired for the simu-
lation of dendritic growth, use is made of an anisotropy tet(#, 1), wheref andz)
are the standard spherical angles that the outward pointingal to the solid-liquid
interface, and its projection in the— y plane, make with respect to theaxis and the
x-axis, respectively. Let denote the outward pointing unit normal to the solid-liquid
interface and let,, e, ande, denote the usual Cartesian basis vectors. The connection
betweeny, n and the angleg andv are

Vo = [Voln
= ¢x§1 + ¢y§2 + ¢Z§3 (1)
and
n = sin(cos fe; + sin fe,) + cos e, , (2)
leading to
oy - Vo5 + 9
tanf = = and cosy = or tany = ~—— . 3

Without repeating aspects of the derivation here (see [3Rfdl details), the math-
ematical formulation may be stated as the following nordmsystem of coupled
parabolic PDEs:
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The first of these is the phase equation and the second isripetature equation.
The latter is linear (since the thermal coefficientjs constant) however the former is
highly nonlinear:\ is a prescribed constant, whilstand 1V take the formry A(6, ¢)?
and W, A(6, ) respectively. For the purposes of this paper, we take treotanpy
term A(6, 1) to be given by

A(0,1) = Ag(1 + € (cos* ¢ +sin* ¢ {1 — 2sin* G cos*0})) , (6)

wherer,, W, and A, are prescribed constants. As will be evident from the nuraéri
results below, this has the effect of prescribing a cubicragtny, similar to that found
in most simple metals, with preferred growth along the comt axis (see [22] for
further details). The strength of the anisotropy is coidbbye.

For practical purposes, in order to obtain the te&viy explicitly, it is necessary
to expand out the first term on the right-hand side of the pkasation prior to dis-
cretization. This is achieved as follows:
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This last expression may be evaluated with the followingvaére expressions:
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2.2 Discretization

We have successfully used both finite difference, [23], awd-drder continuous fi-
nite element, [10], discretizations in combination wittaptivity and multigrid in two
space dimensions. Detailed comparisons of our implementator both second and
fourth order schemes, see [22], show that the overhead@&idmisg the finite element
systems at each step means that the computational timasa@qo achieve equiva-
lent accuracy, are consistently greater than with the udmité difference schemes.
For this reason we base our initial computations in threeedsions upon the use of
a second order seven point finite difference stencil for\tRe and V2« terms. This
is selected for its relative simplicity, despite the conxfileof the nonlinear equations
being solved.

Similarly, for the sake of simplicity, our implicit time digetization is based upon
the backward Euler scheme, although we note that in two dsioas the use of a
second order BDF scheme is significantly more efficient,.[23]

An important feature, not described in detail here, of theagigns introduced in
the previous section is that the width of the phase interfeeethe distance indicative
of the requirement fop to vary from—1 to +1) is determinedh priori by the choice
of the constani that is used in the model (see [12, 13]). For an accurate atioual
to be performed an interface width which is thin relative te smallest feature to
be resolved by the simulation (typically the dendrite tgp)equired, and so a corre-
spondingly fine spatial mesh is needed. It is not feasibl@esessary, to have such
a fine mesh throughout the domain and so mesh adaptivity isregtjin order to re-
fine the mesh around the phase interface (and to un-refinedhbk after the interface
has passed through a region). Details of this are provid#teimext section however
such a refinement strategy clearly has an effect on the tiatien scheme. In par-
ticular, the finite difference, or finite element, discratibn must be consistent at the
boundary between regions of different levels of mesh refer@m

Fortunately, this issue may be handled efficiently withia itnplementation of the
solver, rather than explicitly within the discretizatiasheme. This is due to our use of
the MLAT (Multi-Level Adaptive Technique) scheme, [4], fire multigrid solution
of the discrete systems of algebraic equations arisingdt #me step. This scheme
is designed to allow multigrid to be applied on domains winegted local refinement
has taken place. Assuming that the coarsest grid coverstive domain, an initial
solution is obtained on this grid. This is then interpoladetb the locally refined grid
(just two grid levels are used in this explanation for simip) and pre-smoothing
takes place on the refined region only, using the interpdlatdues at the boundary
of this region as Dirichlet conditions. A coarse grid coti@a then takes place, in
which the boundary conditions on the refined region may beigutj followed by the
post-smoothing steps in the refined region only. For muttigrcycles this process is
repeated. One of the advantageous side-effects of thisagpis that the discretiza-
tion scheme used for the smoother is only ever applied oonegf uniform levels of
refinement. Consequently, no special consideration igned)to account for the local
mesh refinement at the discretization stage.



3 Solver Detalls

3.1 Nonlinear multigrid

When a fully implicit time integrator, such as the backwamdt scheme, is used,
it is necessary to solve a large nonlinear system of algele@uations at each step.
As indicated above, this is achieved using a nonlinear gnidtiversion of the MLAT
scheme: namely the FAS (full approximation scheme), asribestin [28]. For a
given time step, let the discrete equations on a fine meslg®hsay, be denoted as
the nonlinear system

F'")=N"u") - f* =0, (10)

wherev” is the set of unknown nodal values at the new time level. Teesproothing
stage of the FAS multigrid requires the current estimatepf’-* say, to be updated
using nonlinear sweeps of the form

_hk+1 _  hk Fz‘h(ﬂh’k)
E N
o (VM)
ol = o X TP (1 —w) xR (11)

Use of the under-relaxed Jacobi iteration (in our case wiillaew = 0.85) is known
to yield better smoothing properties than standard Jateraition (at least in the linear
case, [28]) — a nonlinear Gauss-Seidel form is also poskiile/e only consider this
weighted-Jacobi smoother in this work. The next step is teetio the coarser grid in
order to correct this latest solution. The transfer betwberfine and the coarser grids
requires a restriction operatdi?”, and a prolongation operata®;, , to be defined. If
the defect on the fine grid”, is written as:

d" = f" = N"["), (12)

then on the coarser grid
MQh[MQh] — f2h (13)

must be solved, Wherfh = I"[d"] + N*"[v*"]. Once a solution to this has been
found the coarse grid correction?” is recovered frome* = w?" — [2"[v"] and
transferred back to the fine grid in order to correct the mewifine grid solution as
follows:

2] (14)
" — ot + el (15)

Having completed this coarse grid correction step the smwluin the finest grid is
smoothed further and a check is made for convergence. Ihtssnot occurred the
whole process is repeated.

The procedure described above applies to two grids of sgacend2h respec-
tively. However, this procedure may be applied recursivatyto a coarsest level, in
order to solve (13). This recursive form defines the mulligeheme.



3.2 Parallel adaptivity using PARAMESH

In order to ensure that sufficient memory and processing p@agvailable for large
three-dimensional simulations it is necessary to make Ggamllel computing ar-
chitectures. In order to facilitate mesh adaptivity in flatathis work makes use
of the open source library PARAMESH [19, 20]. This is a cdilec of Fortran90
functions designed to support the development of adaptiveenical solvers in one,
two or three space dimensions (from now on, only the thregedsional case will be
discussed however). In particular, the functions permaetsbamless use of parallel
processing by taking control of all issues associated waiiia docality and message
passing.

The key structure that PARAMESH uses to permit, and conadgptive mesh
refinement is the data block. Each block contains a numbeatafaklls corresponding
to a uniform hexahedral mesh: this mesh consists of a canstember ofreal cells
in each co-ordinate direction and a constant numbeguafd cells which surround
the real cells in each direction. The real cells store tha @éatthis particular block
while the guard cells hold copies of data from neighbouritugks. The number of
real and guard cells per block is decided by the programmaweder the number of
guard cells must be sufficient for the size of stencil thatsisduby the discretization.
It is the use of this block structure which allows the seamlese of parallelism: the
programmer need not worry as to whether two neighbouringksl@are stored by the
same process or not, a guard cell update algorithm handiesecessary parallel
communication. Dynamic load-balancing, [27, 31], is alsedito ensure that the
computational load is evenly distributed across the abbalprocesses. For all of the
results presented in this paper data blocks with eight reléd and one guard cell in
each direction have been used (in practice there are twal geadls in each direction:
one at each end of the real cell region). Consequently, dack bontains 10001(?)
cells in total, of which 512§3) contain degrees of freedom whilst the remainder must
be updated with copies of data owned by neighbouring celiss Jignificant storage
overhead is the price that is paid for the flexibility of theadalock approach.

The data block is also the fundamental unit that is used byngh refinement and
coarsening functions within PARAMESH. Indeed, the locaklfined mesh, at any
point in time, is stored as a hierarchical oct-tree striec(ossibly with more than
one block at the root level), where each node of the tree idaldack and the leaf
nodes of the tree (i.e. those without children) form the kéoon which the current
solution is sought. Each block may be refined into eight caidand these blocks
may themselves be refined, until a predefined maximum levedshed, or some other
criterion is satisfied. The refinement (and coarsening) ®blbcks is based upon the
use of flags that are set by the programmer based upon a choseestimate or error
indicator. Once the flags are set thefine_dere fine subroutine is called, which
in turn calls all the required subroutines to create new O&iaks (or release data
blocks in the case of derefinement) and any required rastiiprolongation of data.
In addition, subroutines are called to carry out load batepand to attempt, where
possible, to ensure that neighbouring blocks are on the gaotess. The overall



structure of this PARAMESH adaptive solution process isstitated by the following
pseudo-code:

1. Create non-uniform mesh hierarchy up to the highest;level
2. Set up initial conditiort = 0 and fill guard cells;
3. Go to next time step

e Advance solution t@ + dt

e Fill guard cells

e Mark for refinement or coarsening

¢ Refine and/or coarsen mesh

¢ Interpolate the data to the new mesh and update guard cells;

4. Got to step 3.

Note that there is an important trade-off that must be camel in selecting the
dimension of each data block. If the local adaptivity is tddmised only in the regions
where itis needed (for example, around a phase interfaee)tte number of real cells
in each block should be small, however this leads to two Baamt problems: firstly,
the total number of guard cells will be much greater, thusaasing the overhead;
secondly, more frequent remeshing events will be triggasethe interface evolves,
providing a further computational overhead. Hence thenagitchoice of block size
requires a balance between the need for an efficiently refimesh against the costs
of additional guard cells and excessive remeshing.

4 Parallel Adaptive Multigrid for PARAMESH

PARAMESH already includes routines required to carry outtigwid prolongation
and restriction since these are also needed following loesh refinement. A number
of additional components are required however in order fplement the nonlinear
multigrid solver on the non-uniform hierarchical data stwre. In the interests of
brevity only a very short outline of these developments mvigled here: the first
concerns the implementation of the FAS algorithm, desdréddgove, and the second
relates to the use of the locally refined mesh hierarchy ®MhAT scheme.

The main issue that must be addressed in implementing thes€A&ne is to man-
age the data that exists at each level of the mesh hierarongxemple, when restric-
tion operations are undertaken on the latest solution estimnd the corresponding
defect, this data is copied into temporary (work) variabdsch are then passed to
the restriction functions. This requires some modificabbthe PARAMESH data
tree however, because the default restriction operatidesgyned to be applied after
a mesh has been coarsened and so the labelling of the leaf isaatrmally updated.



Whilst the next set of solver operations are indeed requatdtiis coarser level it is
important to ensure that the finer blocks are available ferstibsequent prolongation
of the coarse grid correction. Furthermore, another tearyarray must be used for
this prolongation so as to ensure that the saved (pre-¢edkesolution value on the
fine grid is not over-written by the prolongation functiorhél'situation is made more
complicated by the fact that for each cell in the block theeetavo unknowns: the
phase and the temperature values. Hence the restrictiopratahgation functions
must be called separately for each variable at each stagerirgy the labelling of the
leaf nodes to be reset after each such function call.

The application of the MLAT scheme also requires some caeetdihe fact that
PARAMESH only carries out guard cell updates upon blockscivlare leaf nodes
in the tree or which are the parents of leaf nodes. This ishall s required for a
non-multigrid solver with local adaptivity, however dugian FAS multigrid cycle the
blocks which hold the current solution will change (and waidit necessarily be leaf
nodes of the tree hierarchy). This means that the blocks wtoch the guard cell
update function operates must also change. We have achiesgedy temporarily
re-labelling the cells at the current level of the multigni@rarchy to ensure that the
guard cell updates apply to the correct data. The motivddoaccepting this addi-
tional bookkeeping overhead (and the associated codeageweht) was to provide
wrapper subroutines which sit around the existing PARAMEGhttions, rather than
to modify the PARAMESH routines themselves.

5 Numerical Results

5.1 Qualitative features

Figures 1 to 3 show snapshots of a typical dendritic stredtfuat has been simulated
using the solution techniques described in this paper. & hesults have been com-
puted using an anisotropy parameter 0.05, A = 3.2 and an initial undercooling,
A, of 0.65 (that isu is set initially everywhere to -0.65). For this run, up to Exels

of refinement of the initiaf x 8 x 8 block (level 0) have been permitted, which pro-
vides equivalent resolution to that of a uniform mesh of disien512 x 512 x 512,
containing~ 134.2M cells. An initial spherical seed of solid phase is definethat
centre of the domain{200, 200]*) and the evolution of the solution is computed. In
this example a fixed time step is used and the spatial adgptvased upon the gra-
dient of the phase variable. Results were computed on a duati{core) processor
workstation with 16Gb of RAM.

Figure 1 shows the = 0 isosurface at the end of this representative computation,
by which time a clear dendritic structure has formed. Fig2irghows part of this
isosurface along with cuts through the locally refined mesthia final time. It is
apparent that the maximum level of refinement (level 6 in daise) occurs in the
vicinity of the solid-liquid interface and that, by this g&of the computation, the
coarsest mesh is at level 3 (equivalent ®lax 64 x 64 grid). Figure 3, which shows



Figure 1: snapshot of a typical anisotropic solution, smawhe¢ = 0.0 isosurface at
the end of a simulation

the adapted mesh only, illustrates that mesh coarseningggam to occur at the centre
of the domain: which was originally refined to the maximunelev

5.2 Quantitative comparison with an explicit code

In this section we compare the performance of the implicitltigrid solver described
above with a much simpler explicit model employing forwardléf time-stepping.
This solver, full details of which are given elsewhere [28]also based around the
PARAMESH package. Both solvers use the block-based adaptapabilities of
PARAMESH and comparative tests have been conducted onnie salti-processor
workstation with up to 4 cores and 8Gb of RAM available. Infeaase exactly the
same equation set is solved however, when using explicihoadst [9, 21], a major
constraint in the computation is the time-step restrictioarder to assure stability of
the scheme. The unconditional stability of the implicit egte allows much greater
time steps to be taken but, even with the efficiency of muttighe cost per step is
far greater. The purpose of these tests is to ascertain thate® which this higher
computational overhead per time step is compensated byility o take larger time
steps. However, the comparison also provides a useful abfeitie solver integrity,
provided both explicit and implicit models converge to theng result.

Comparative tests have been run for an initial seed growitoga uniformly under-
cooled melt withA = 0.65 on a—200, 200]*> domain. As above, the interface width
has been fixed by setting= 3.2. Tests have been performed for both isotropic growth
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Figure 2: snapshot of the same solution as in Fig. 1, showiagdtapted grid as well
as thep = 0.0 isosurface

(€ = 0), in which case a simple spherical morphology results, avsb#ropic growth
(€ = 0.05), giving rise to dendrites such as that shown in Figure 1.

In order to show the effect of moving to progressively finesimgpacing, tests have
been conducted for 5-7 levels of refinement, correspondingihimum mesh sizes
of h = 1.56 to h = 0.39 respectively on thé-200, 200]*> domain employed here. For
the explicit model, the maximum stable time-step, as datexdhby numerical exper-
imentation, was 0.15, 0.0375 and 0.009375 for 5, 6 and 7defakfinement respec-
tively, irrespective of whether the solution was isotropicanisotropic. Conversely,
for the implicit model the selected time step was held contidtar all simulations, at
0.15, except the anisotropic case with 7 levels of refinemarthis case the nonlinear
multigrid did not always converge and so the step was redtac8d6.

On the coarsest meshes employed some differences in th@aslobtained us-
ing explicit and implicit methods are observed (of the orfslés in the position of the
dendrite tip), which is most likely due to the structured &lexdral mesh imparting ad-
ditional anisotropy into the solution. This problem is weticumented in phase-field
simulation and has been shown to be most severe when coastessre used, [16].
Convergence to the same result for the explicit and impdigiters is observed as the
mesh spacing is reduced, with the results on level 7 beitigally indistinguishable.

Results of the comparative run time are reported based oredig¢ime required
on four cores for the model to reach a (non-dimensional) kitimn time oft = 150
and are given in Table 1. Note that, on the coarsest mesH gGgtlge same time step,
dt = 0.15, has been used for both the explicit and the implicit runsngeguently,

11



Figure 3: snapshot of the locally adapted grid correspanttirthe solution shown in
Fig. 1

due to the lower computational load per time step, the ejpiodel clearly performs
much better in this case. However, as we move to progregsivedr meshes the
time step for the explicit model scales, as expectedawnhile the time-step for the
implicit model remaing: independent. Consequently, with 6 levels of refinement we
see similar computational times, while with 7 levels of refirent the implicit scheme
clearly performs much better.

Isotropic Anisotropic
h | level | Explicit | Implicit | Ratio | Explicit | Implicit | Ratio
156| 5 2052 6480 | 3.14 | 2412 | 13788 | 5.78
0.78| 6 27108 | 35064 | 1.29 | 42912 | 47484 | 1.11
0.39| 7 | 307476| 176688| 0.57 | 437832| 537912| 1.23

Table 1: Comparative execution times required for the ex@nd implicit solvers to
advance the phase-field simulationtte- 150. Times based on parallel execution on
4 cores.

Results for the anisotropic case follow a similar trend exdbat at the highest
level of refinement the implicit time step has been reduced te- 0.06, leading to
computational times that are marginally longer than forpeivalent explicit scheme.
While this result is somewhat inconclusive with regard te dhoice of explicit ver-
sus implicit scheme for this system, we have demonstrasesvblere in 2-dimensions,

12



[22, 24], that for the much stiffer system that result wheerafcal, as well as thermal,
diffusion is introduced into the crystallization problesojution via explicit methods
becomes infeasible once the ratio of thermal to chemicalgiifity (the Lewis num-

ber) becomes significant. Conversely, stiff implicit mgitd methods permit solution
in 2-dimensions even when Lewis numbers of order 10000 a&d,y25]. Conse-
guently, we believe that implicit, multigrid methods are tnly way in which such
systems can be tackled in 3-dimensions.

5.3 Parallel performance

The primary purpose of implementing the three-dimensignaler in parallel using
PARAMESH is to allow larger problems to be solved than woultdeowise be pos-
sible (on a single processor). Before considering the @etgravhich this has been
achieved however it is also informative to assess the affigief the underlying par-
allel implementation for problems of a fixed size. Table 2vefithe results of two
such tests using uniform mesh refinement up to levels 3 andpecéively. For the
smaller of these two problems it is possible to obtain a parefficiency of just over
50% on 16 cores, and for the larger problem an efficiency of justeni0% (rela-
tive to the 8 core case) is achieved using 64 cores. As thdgmosize is increased
(by increasing the number of levels of refinement) the memeguirement grows,
and so the minimum number of cores needed to run the probleongales up. The
system used for all of the parallel runs in this sub-sectmmsests of dual core AMD
processors with up to 2Gb of RAM per core.

Case One262144 Cells Case Two02097152 cells
Cores| Time | Speed-up Efficiency | Cores| Time | Speed-up Efficiency

1 5198 - -

2 2755 1.89 94%

4 1445| 3.60 90%

8 770 6.75 84% 8 6611 - -

16 616 8.44 53% 16 | 4298 1.54 77%
32 | 2796| 2.36 59%
64 | 1734, 3.81 48%

Table 2: Parallel scalability results for the phase-fieldeioon two problems of fixed
sizes

Clearly the overhead associated with managing the block statictures and the
oct-tree hierarchy means that the efficiency figures in Talalee not particularly good
for cases where the problem size remains fixed as the numpesa@dssors grows. An
alternative assessment of parallel scalability is preskmt Table 3, which considers
the impact of scaling the problem size in proportion to thenbar of processors.
In this case the problem size is measured by the number & icethe finest mesh
(uniform mesh refinement is used once more), which grows lagtif of 8 each time
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the number of cores is increased by this factor. The exettitioe of each V-cycle
of the multigrid solver grows linearly with the problem siaed so, even though the
total number of V-cycles is dependent on the mesh size (pilyrdue to smaller time
steps being required on a finer mesh), the execution time y@ycé should remain
constant in each run if the parallel efficiencyl#%. Table 3 clearly shows that this
parallel efficiency, when the work per core is kept constigntydeed very good. The
figure of 136% for the 8 core case is quite difficult to explain but may be duthe
single core runs being adversely affected by other usersesyistem.

Cores| Cell count| Time per V-cycle| Efficiency
1 262k 27.9 -
8 2097k 20.5 136%
64 16777k 30.5 91%

Table 3: Parallel scalability results for the phase-fieltveioas the problem size is
scaled with the number of cores

Of course, the primary goal of this work is not to achieve paracalability on
uniformly refined meshes but to allow a parallel capabildythe implicit solution of
phase-field problems on locally adapting meshes. Table wshow well this has
been achieved by comparing the simulation capability thabssible using a parallel
solver with uniform mesh refinement versus the capabiligg Hdaptive mesh refine-
ment allows. It is clear that, for this particular run (whidépends upon the dendrite
morphology and the domain size in the adaptive case), the spatial resolution
may be obtained on just 2 cores with adaptivity as on 64 coidwut. Similarly,
adaptivity permits refinement level 7 to be reached usingg0scores however the
memory requirement for uniform refinement to level 7 (saxlmgmesh hierarchy for
the multigrid solver) would require approximately 4096esrAlthough limits on the
cpu time available to us have prevented a full simulatiomfizeing completed (and
so the results are not shown in Table 4) we have also beenabl®w that adaptive
simulations up to refinement level 8 (equivalent to over 8dmilcells on a uniform
grid) are possible using 128 cores.

Cores| Uniform Grid Level (Cells)| Adaptive Grid Level (Equiv. Cells
1 3 (262k) 4 (2.1M)
2 5 (16.8M)
8 4 (2.1M) 6 (134.2M)
20 7 (1073.7M)
64 5 (16.8M)

Table 4. Comparison of the capability of the parallel adapsolver (right) versus a
uniform solver (left)
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6 Discussion

This paper presents what the authors believe to be the fiastjgbe of the successful
application of parallelism, adaptivity, implicit timeegiping and multigrid together,
for the solution of three-dimensional phase-field systefise work is a natural ex-
tension of our earlier results in two space dimensions,232,where the advantages
of implicit time-stepping are shown, provided that the meshufficiently fine and
a fast (i.e. multigrid) algebraic solver is implemented. eTimplementation of the
multigrid solver in three dimensions presents no additiomathematical difficulties
however the technical problems associated with moving tato three dimensions
are significant. These have been overcome through the uséydiner development,
of the PARAMESH software library [19, 20].

Results presented show that the development of complegtstas, such as den-
drites, can be successfully simulated in three dimensimmd,that the adaptive data
structure permits an efficient representation of the swhufields. Comparison with
an existing explicit solver, [22], demonstrates both theuaacy and the potential effi-
ciency of the implicit approach. Finally, the parallel ggrhance is shown to be ade-
guate to allow a significantly improved capability over ttse wf either parallelism or
adaptivity alone.

There are a number of important extensions of this work tresall to be devel-
oped. Relatively minor examples, already available in edrsdlver [23], include the
use of a second order time-stepping scheme, such as BDR&\kpment of adap-
tive time-stepping based upon a local error estimate, amdgl of symmetry bound-
ary conditions to permit simulations in just one eighth of tturrent computational
domain. More substantial developments that are plannedecprimarily around the
generalization to a much wider class of phase-field mode&lgatticular, our main
motivation for this work is to be able to solve not only thetrmpeoblems, but those
involving the diffusion of a chemical species (alloy sdiicition). This problem is
somewhat more complex as the transport equation now alsoecnon-linear due
to the complex form of the source and anti-trapping termshérfirst instance this can
be solved in the isothermal approximation (the temperdteleis assumed constant),
which is appropriate to very slow solidification: althoudtimately it is desirable to
be able to solve coupled thermal-solutal models which amnisiee non-isothermal so-
lidification of binary alloys [24]. These PDE systems hawe ddditional complexity
of requiring highly disparate length and time scales to Is®lked, leading to ex-
tremely stiff differential systems. Based upon our obsgows in two dimensions,
[24, 25], the advantages of a fully implicit solver are lkeb be highly significant
in these cases however there is additional complexity daa tmcreased number of
nonlinear PDEs.
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