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Abstract

An algorithm for the jdentification of multi-class systems which can be
described by a class of models over different operating regions is presented.
The algorithm involves partitioning the raw data set using discriminant
functions followed by parameter estimation. An orthogonal least squares
algorithm coupled with a backward elimination procedure are employed for the
parameter estimation and data partitioning processes. Provided the data
elements are linearly separable, the proposed algorithm will correctly
partition the data into the respective classes and parameter estimation
algorithms can then be applied to estimate the models associated with each

different class. Simulation studies are included to illustrate the algorithm.
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1. Introduction

In the practical world, systems which cannot be described by just one global
mathematical model or physical function are not uncommon and a set or class
of models may provide a better description of these systems. The
characteristics of piece-wise linear functions, hysteresis elements, coulomb
friction elements are examples of systems which can be described by a class
of models or functions. Fitting one global model to these elements may give
unsatisfactory results and the fitted model may fail to capture the behaviour
of the underlying system.

The usefulngfs of threshold models which can be viewed as a subset of multi-
class systenlhas been demonstrated in the literature [1]. Nonlinear phenomena
such as limit cycles, jump resonance, higher harmonics, subharmonics as well
as hysteresis effects have been observed in simulated piece-wise linear
models. For example, the characteristic of the anode current versus the grid
voltage of a triode valve, which is a saturation type function, can be
approximated by a set of piece-wise linear functions. Hysteresis effects,
which turn up in many servo-systems such as gear chains, engines and motors,
can also be described by some form of piece-wise functions [1]. Estimation
algorithms are therefore required which can identify systems of this type.

The objective of this paper is to present a new algorithm for identifying
multi-class systems. The first task is to correctly partition the data
elements into their respective classes and then to apply parameter estimation
to determine the model appropriate to each class. Provided the data captured
can be correctly classified into the respective classes, and the different
classes of models are linearly separable, models describing the data in each
class can be easily identified using some of the well developed parametric
identification algorithms [2,3]. Simulation studies are included to
illustrate the concepts.

2. Partitioning of multi-class systems

For a well defined multi-class system, a decision rule is used to partition
the space Q cR™ into n regions Q4 i-1,2,...,n where n is the number of
classes in the system. An object x € R™ is classified as belonging to class
i if it lies in the region Q;. Since the aim is to partition.the spacef}
containing the measurement vector x into n regions, each region should
ideally contain objects from only a single class. The discriminant functions
which are widely used in data analysis and partitioning can be adopted in
multi-class system identification as a data classification tool.




Consider a well defined two-class system, if the two classes Q, and Q, are

linearly separable, there exists a discriminant function d(x) such that

dix) » k=x€Q,

(1)
dix) < k=x€fl,
where d{.) is a linear or nonlinear function operating on the variable x and
k is a threshold value. For example, if d(x) is a linear function,
d(x) = By + ByXy + v * BuXn (2)

where the pBs are some constant parameters or 1if d(x) is an j‘th order
polynomial type nonlinear function,

d(x) = PBo + Byxy + .- ¥ B o
* anlz + Paaxix, + .. (3)

{

+ Bn_._ixl + ..

The two-class problem of egqn.(l) can be extended to the general n-class case
[4] as n-1 two-class decision surfaces or discriminant functions can be formed
such that the first decision function d,(x) separates {}; from Qe vne gy the
second decision function d,(x) separates ), from Q,,....,02,; and so on as

illustrated in Fig. 1. :

2.1 Multi-class linear dynamical systems

Linear difference equations which are widely used in the modelling of linear
dynamical systems can be used as a basis for constructing multi-class linear
dynamical systems. Incorporating a set of discriminant functions with a set
of linear difference equations produces a multi-class linear model. Hence
extending the two-class system an n-class linear system can be described by

n linear difference equations and n-1 discriminant functions

y(t) = £ (x;d(x)) (4)

where x - [y(t-1)...y(t-n,) u(t-1)...ult-n,)]1, y(t), u(t) are the system output

and input, n, and n, are the maximum lags in the output and Iinput

respectively, f,(.) is an n-class linear function and d(.) is a discriminant

function. Expanding eqn.(4) gives




(1481y (£-1)+...+0% o u(t-n,) ; B3+Bly(e-1)+. .. +Bhunult-n,) > k

02402y (£-1) +...+0% .o ult-n) i Bo+Piy(E-1)+.. PR en (E-1,) < Ky
and

BLeply(E-1)+. .. +P2nult-n,) > k;

y(t) =1

B:+9fy(t—1)+...+Bé}muu(t—nu); B§+ﬁ1y(t—l)+...+B;fnuu(t—nu) < ky
and
Pa+Piy(e-1)+. --+ﬂﬁ,nuU(t'ﬂu) < kK

n-1

o +ﬁ:dy(t—l)+...+thmu(t—nﬁ < ko4

L

where the superscripts on the parameter 6 and P denote the class number of
the associated model and k;, i-1,...,n-1 are some constant values. Hence a

two-class linear system with first order dynamics can be expressed as

03+0ly (£-1) +03u(t-1) ; PBo+Piv(t-1)+Pju(t-1) > k
y(t) =

82+02y (£-1) +62u(t-1); Py+Biy(t-1) +P3ult-1) < k

2.2 Multi-class nonlinear systems

Recent results in approximation and realisation theory have produced nonlinear
difference equation models that provide concise representations of nonlinear
sampled data systems and which have been used as a basis for identification
[5,6]. Extending these nonlinear difference models provides a foundation for
building multi-class nonlinear systems. Incorporating a set of nonlinear
difference equations with a set of discriminant functions produces an n-class
nonlinear model which can be expressed as




y(t) = fi(x;d(x))

B§+Biy(t-1)+...+8if”uu(t—nu); pi+piy(t-1)+. ..+Bﬁrnﬂu(t—nu)

+03,y2 (E=1) +. .. +BLy?(t-1)+... > Ky

(3)

" 182400y (E-1) +. . .+B2  ulE-n,) 5 Bo+Piy(E-1)+.. . +Boqult-ny)

+0hy2 (t-1) +. .. +Bly3(t-1)+... < Ky

Bl By (t-1) +. .. +13:;1,,uu (t-n,)

PRV (E-1) +. .. < Ky

where f£1(.) is an n-class nonlinear function of 1 degree of nonlinearity,
d(.) 1is a linear or nonlinear disceriminant function,
x - [y(t-1)...y(t-n)) u(t-1)...ult-n,)1, y(t), u(t) are the system output and

input, and n,, n, are the maximum lags in the output and input respectively.

Yy
A two-class nonlinear system with first order dynamics and a second order

nonlinearity can for example be expressed as

(02+01y (£-1) +0bu(t-1) +6L, 37 (£-1)  By+Piy(£-1) +Pju(e-1) +BL,y?(£-1)
+01,y (£-1) u(t-1) +03,u? (£-1) ; +pLy(t-1) u(t-1) +p,u?(t-1) > k
y(t) =1

02402y (£-1) +02u(E-1) +0%,y2 (£-1)  Po+Piy (£-1) +Biu(t-1) +Blay? (£-1)

| +0%y (£-1) u(t-1) +63,u? (£-1) BLy(t-1)u(t-1) +piu?(t-1) < k

3. System identification and data partitioning

Assuming that the discriminant functions d(x) in eqns. (4) and (5) have known
forms with unknown parameters, the design problem then becomes one of
estimating the coefficients of d(x) to optimise the partition rule egn. (1).
Redefine the two-class problem as

d(x) -0 = x€Q,
(6)
d(x) *+0 = x€Q,
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That is the data elements are partitioned into two classes 0, and
n,-ouUaU...UQ,, one which belongs to Q, and one which does not belong to
Q,. d(x) = 0 then becomes the model describing the data in the subspace Q,.
It is clear that the decision surface which arises from the discriminant
function d(x) - 0 is a hyperplane and its corresponding coefficients P can
only be determined when the two classes can be separated by such a surface.

Define the misclassification rate for the data set in 0, as the cost function

N
T8 = = Y 02(t:6),) (7)
N t-1
where N is the number of data records for analysis, 8, - [08,0, ...]17 is the

estimated parameter vector for the model in ,,

((t:8,) - y(£)-y(t;:8)) (8)

is the prediction error of the fitted model in subspace Q, and y(t;8,) is the
predicted output of the fitted model based on the estimated parameters 6,.
The problem of classification then becomes the minimisation of the cost
function eqn.(7). From the definition of the partition rule eqn.(6), it is
clear that only points which are misclassified and included in the estimation
contribute to the cost function Jy(8,) and they do so to an extent
proportional to the square of their distance from the hyperplane d(x) - 0, the
decision surface or in this case the correct model describing the data in Q,.

Reformulate the model describing the data elements in {1, for eqns (4) or (5)
to give the general representation

y(t) = ;j 8 ,p,(t) + {(¢t) (9)

-1
where @4, i-1,...,m represent the m real unknown parameters associated with
the variables p,(t) = { 1,y(t-1),y(t-2), ..., ¥2(t),... } and {(t) represents some

modelling erroxr. The objective of system identification and data partitioning
is to estimate the unknown parameters in eqn.(9) while minimising the cost
function eqn. (7). The orthogonal least squares estimation algorithm [7] which
has been found to be an efficient procedure for identifying unknown linear and
nonlinear systems will be used as the basis for the parameter estimation.
The algorithm involves transforming eqn.(9) into an auxiliary equation




y(e) = Y g ) + L(e) (10)

i-1

where g;, i-1,...,m are some constant coefficients and wy(t), i-1,...,m are
constructed to be orthogonal over the data records such that

Wy (EJw;(E) - 0 for j* i 11)
where overbar denotes time average. Orthogonal data records can be

constructed using the formula [7]

w,(£) = py (£)

1-1
Wi(t) = Pj(t) “g ﬂjin(t) . J <1

(12)
(EYp; (E) . .
LT gL AL < L s B o -
wy (£)
and the orthogonal parameters &y, i-1,...,m can be obtained according to the
formula
VIt w, (E)
g; - ___;_i___ (13)
Wj(t)
The original system parameters 8, i-1,...,m can then be recovered from
eqn. (13) as
em - On
n (14)
Bk—ﬁk- E akiel,k-m-l,...,l
i-k+l
The error reduction ratio [7],
2 - 21y
t
€RR; - gizw—‘—(—) x 100 , i=1,...,m
y#(t)

which is a by product of the orthogonal least squares estimation algorithm,
can provide information regarding the significance of variables
wy(t), i-1,...,m in the system model. A large value for the error reduction
ratio indicates the significance of the associated variable and €RR can
therefore can be used as a structure detection tool. Combining the orthogonal
estimator and the error reduction ratio test into a forward regression
procedure gives a powerful estimation algorithm for system identification.




‘

Full details are given elsewhere [7]. The sum of the error reduction ratios
can also act as an indicator of how close the fitted model is to the original
system model. If the sum of the error reduction ratios is close to 100, this
may be a good indication that the fitted model is very close to the true model
of the system because almost all the output power has been captured by the
fitted model.

For large N,

N N-1
LY yowt) = == ¥ y(e)w(t) = FETw e
N N-1 2
1 N 1 N-1
LY wltdpy(8) = =5 Y, welt)py(t) = Wy (EV D, (E) (15)
N & N-1 ¢
1 N 5 l N-1 3 -
-ﬁg W_t(t) "-ﬁtz—; Wi(t) "'W_[(t)

such that
Gy = Gy (16)

where the subscript on & denotes the number of data points used for the
estimation and § - [&, ... §,) 7. For large N, assuming that the small change
in the estimated parameters from &, to Gy, is so small that they are

virtually the same and the difference between the prediction error terms will
be insignificant such that

((t:6y) - C(E:6yy) + t-1,...,N-1 (17)

where

m

((t;6) - y(t) - ; §,w, (t)
-1

The misclassification rate or the cost function of eqn. (7) can therefore be
written as

(N-1) Ty, (8) + (2(N; 6)
N

Ty(6) =

or

[2(N; G - Jy(6) (18)

Tt (@) = Ty(6) - e

The objective of data classification is to minimise the misclassification rate
eqn. (18) after some selection or elimination processes. If the data sequence
is rearranged such that the measurement which contributes the maximum cost is
positioned at N

ks ke, e-1,...,8-1 (19)




then it is possible to consider the stepwise elimination process of excluding
the measurement which contributes {(N;6) from the estimation. That is the
measurement x which contributes {(N;&) is classified as not belonging to the

class Q, compared to the rest of the measurements. From eqn.(19)

N
N2 (N:6) > Y (2 (6

or

(2 (N;6) > Ju(0) (207
Since Jy(&) and Jy., (6) are always real and p;sitive and the result of
eqn. (20) indicates that the term (Z(N}é;;; Tu(6) in eqn.(18) is a positive
real number, this induces

Tyt (G) < Ty(6) (21)

Hence if this elimination process is repeated, the cost function should be
monotonically decreasing. If the system under investigation is a well defined
two-class system and the two classes are linearly separable, then in a finite
number of steps, the cost function will go to zero after all the misclassified
data have been excluded from the estimation and the estimated model will

converge to the true model describing the data in the subspace Q,.

After initial fitting, data x € @, not falling on the hyperplane described by
the model

m

y(t) = Y guw;(t) = Yy, 6.p,(t) ¥V xeq,
=

s
will undergo the same parameter estimation and data partition processes again
and this will result in a model describing the data elements in Q,. If the

system is of the multi-class, this operation can continue indefinitely until
the data can no longer be partitioned.

4, Stochastic systems

If the multi-class system under investigation is stochastic, the discriminant
function is less well defined and the linearly separable property may no
longer hold. There may then be areas of overlapping hyperplane between
different classes. For low signal to noise ratios, the separation of classes
is poor because there will be a large overlap of areas between classes.
However, if the signal to noise ratio is high, the overlapping areas will be
small and a large number of data records can still be partitioned and
classified with some modifications to the discriminant function of eqn.(6).

For stochastic processes, the misclassification rate or the cost function of




eqn. (6) will not go to zero and the selection rule dkx) - 0 can no longer be
used. However with the proposed elimination procedure, the convergence
properties of the cost function eqn. (21) should still be valid. If the system
is stochastic, the cost function will not converge to zero and the data
elimination process will continue indefinitely. Hence a new stopping rule has
to be devised. The Akaike Information Criterion (AIC) [8], which is widely
used in statistical model identification, can be readily applied as an
indicator for the termination of the data elimination process. Consider the
AIC criterion

AIC = N log (&%) + 2n, (22)

where 8* and n, are the estimated variance of the prediction error sequence
and number of parameters in the fitted model respectively. Instead of
investigating the model structure of the estimated system with AIC, the number
of data points falling within the subspace Q,, i-1,2,..., is being
investigated. Therefore, in the stepwise elimination process, if there is no
further improvement in the AIC value, the data measurements remaining in the
parameter estimation and data elimination processes are considered to belong

to the same class and the elimination process is stopped. That is

if AIC, < AICy,,., then stop. (23)

The subscript on AIC in eqn.(23) denotes the stage of the data elimination
process or the number of data records that have been eliminated. As the cost
function will not converge to zero, the discriminant function of egn.(6) has

to be modified. Consider a new discriminant function for stochastic systems

ldix)| < k = x € Q,
(24)
ldix)|> k = xeQ,

Equation (24) explains that if the absolute value of the discriminant function
for a measurement vector x is greater than a certain threshold k, then this
element is considered as not belonging to the family and excluded from the
estimation. In this case, the discriminant function will be defined as

or

d(x) = y(t) - ; 0,0, (t) - {(t:6) (25)
-1

The threshold k in eqn. (24) will therefore be the absolute value of the
largest prediction error obtained from eqn.(25) for data measurements falling
within Q,.




;

5. Alporithm for the identification of multi-class systems

The algorithm for the identification of multi-class linear and nonlinear

systems can be summarised as follows.

a.) Select n, and n,. Select 1 if the system is nonlinear and n, if the
system is stochastic where n, is the order of the noise term.

b.) Use the orthogonal estimation algorithm, eqns.(12) and (13) or the
forward regression algorithm [7] to fit an initial model to the whole
data set.

ev) With the estimated parameter vector &, calculate the prediction error

sequence

{(t;0) - y(t) —;ini(t) (26)

d.) Sort through the prediction error sequence [(t:6)., t-1,2,3,¢.-
Identify the location of the data record which contributes the maximum
cost to the misclassification rate eqns.(7) or (18) and eliminate it
from the estimation process.

e.) Reduce the number of data for estimation by 1 and repeat procedures
b.), e.) and d.) until the cost function of egn.(7) or (18) goes to
zero. Or in the case of stochastic systems, there is no further
improvement in the AIC function eqn. (22).

£.) Use eqn.(l4) to reconstruct the actual system model and the
corresponding discriminant function.

g.) Procedures a.), b.), c¢.), d.), e.) and f.) can be re-applied to process
the excluded data records (data in Q,) until no further classification
or partitioning can be obtained. Actually, data in Q, can be
preprocessed before repeating the procedures. The data can be
partition into two separate data segments Q, and R, first using the
discriminant function obtained in f.) such that

d(x) »0 = x€Q,
(27)

d(x) <0 = x€Q,

because the hyperplane described by the discriminant functiond(x) = 0
partitioned the excluded data set into two classes. If the system is
stochastic, the partition rule then becomes

dix) >k = x€,
(28)

dix) < -k =-xel,

10




6. Jllustrated examples

The operation and the effectiveness of the proposed algorithm are best
illustrated by examples. Three simulated examples are included. These
consist of the identification of a multi-class linear systenm, the
identification of a multi-class nonlinear system and the identification of a

multi-class stochastic system.

6.1 Deterministic multi-class linear system

Consider a piece-wise linear system (S;) described by the equation

u(t-1) + 0.5y(t-1) - 0.5 , y(t-1) > 1
yit) = {u(t-1) , (e-nl < (29)

u{t-1) + 0.5y(t-1) + 0.5 , y(t-1) < -1

A zero mean Gaussian white noise of variance 1, u(t) - N(0,1), was used to
excite the model and 1000 pairs of input-output data records were collected
for the identification of the system. Figure 2 shows the input-output data.
Using the orthogonal forward regression algorithm, a linear first order model
was initially fitted to the 1000 data records and the model was found to be

y(t) = 0.004124 + 0.161941y(t-1) + 1.00516u(t-1) (30)

(0.00155) (2.61167) (96.1864)

where the numbers in brackets underneath the equation denote the error
reduction ratio of the associated variables. The first 50 model predicted
outputs of eqn.(30) are shown in Fig. 3. Clearly, a rather poor output
prediction of the system was obtained. This was further supported by the sum
of the error reduction ratios which was equal to 98.7996. Because the system
is noise free this indicates that around 1.2% of the output power was mnot
captured by the fitted linear model egn.(30). The cost function of this
fitted linear model was equal to 0.0131515. When a nonlinear model of first
order dynamics and fifth order nonlinearity was fitted to the data, Fig. 4
shows that a far superior model predicted output was obtained compared to the
fitted linear model of eqn.(30). The corresponding fitted nonlinear model was
given as

y(t) = - 0.04472y(t-1) + 0.99980u(t-1) + 0.099386y>(t-1)
(0.0331) (96.1864) (3.5627) (31)
- 0.00647y%(t-1)

(0.1750)

11
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The performance of the nonlinear model compared to the linear model was

r

confirmed by the sum of the error reduction ratio of 99.9612 and the small
cost of 0.00042517. For the nonlinear model, the unmodelled output power was
less than 0.04% which was far less than that obtained for the linear model
which was around 1.2%.

Using the new multi-class algorithm, with the best linear model egn.(30) as
the initial model produced the parameter vector profiles and corresponding
cost function shown in Figs. 5 and 6 respectively. The cost function is
converging and the change of parameter vector at each iteration is small.
After 354 iterations, 354 data elements were eliminated from the partition and
estimation processes, and the cost function was reduced to zero (Fig. 6).
This clearly demonstrated that all the misclassified data records that were
initially included in the estimation had been correctly eliminated and the
remaining data records all belonged to the same class. The final estimated
model for the 646 data records was given by

y(t) = u(t-1) VxeQ

(32)
(100)
and the corresponding discriminant function was
d(x) - y(t) - u(t-1) =0 = x€f (33)

Procedure g.) was then followed. Using the fitted model of eqn.(32), a
prediction error sequence

{(t;0) - y(t) - u(e-1) (34)

was evaluated and the 354 excluded data records were partitioned into two

groups according to the partition rule of eqn. (27).

dix) - ((t;0) >0 = x€R,
(35)

dix) - {(t;8) <0 =xeQ,

After this partition process, 170 data records were classified to Q, and 184
data records were classified to Q,. Procedures a.) to f.) were then re-
applied to the data records in segments Q, and Q,. Analysis of the data
records in these segments revealed that they could not be further partitioned
because both of cost functions resulting from the initial parameter estimation

were equal to zero. The two identified models were given by

12




y(t) - ult-1) + 0.5y(t-1) - 0.5 VY=xeqQ,

(88.939) (9.364) (1.697)
(36)

y(t) = ule-1) + 0.5y(e-1) + 0.5 Vxef,

(90.818) (7.636) (1.546)

Substituting the values of y(t) obtained in eqn. (36) into the discriminant
function egn.(35) produces a new set of discriminant function

(e-1) >1 = x€Q
Yy a (37)
y(t-1) < -1 = x € QQ,

Equations (32), (33), (35), (36) and (37) describe the characteristic of the
system. Combining the discriminant functions egns.(33) and (37) with the
fitted linear models of eqn.(32) and (36) gives the identified multi-class
linear system

u(t-1) + 0.5y(t-1) - 0.5 , y(t-1) > 1

y(t£) ={ul(t-1) , y(e-1)l s 1 (38)

u(t-1) + 0.5y(t-1) + 0.5 , y(t-1) < -1

which clearly coincides with the true characteristic of the original system
and the predicted output of this fitted model should therefore coincide with
the original system. The superiority of this fitted piece-wise linear model
over the fitted linear and nonlinear model can also be confirmed by the sum
of error reduction ratios of a 100 and a cost function of zero,

6.2 Deterministic multi-class nonlinear system

Consider a two-class nonlinear system (S;) described by the equation

A

0.8y (t-1)+ult-1) ) 0.3y(t-2)+0.2y2(t-1)
+0.2y2(t-1)-0.5u?(t-1) ° -0.5u?(t-1) s 1

y(t) = (39)

0.3y(t-1)+0.2y2(t-1
2+0.5y(t-1)+u(t-1) H ¥ ) ! )
| -0.5u?(t-1) > 1

A zero mean Gaussian white noise of variance 1 was used to excite the system,

and 1000 pairs of input-output data records were collected, Figure 7 shows
the input-output records,

13
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A linear first order model was initially fitted to the 1000 data records and
the model was found to be

y(t) = -0.05403 + 0.64400y(t-1) + 0.96727u(t-1) (403

(0.0752) (41.3878) (25.5192)

The cost function for this fitted model was 1.27359. The model predicted
output for this fitted linear model is shown in Fig. 8 which indicates that
the model is very poor. The poor performance of this model is undoubtedly due
to the fact that only 66.7822% of the total syétem output power has been

captured.

When a nonlinear model of first order dynamics and second order nonlinearity

was fitted to the data, the resulting estimate was given as

y(t) = 0.08786 + 0.61125y(t-1) + 1.01352u(t-1)

0.1117 41.3878) 25.5192
( ) ( ( ) (41)

+0.09238y2(£-1) - 0.00448y(t-1)ul(t-1) - 0.47827u?(t-1)

(16.3821) (0.0017) (11.9436)

The cost function for this fitted nonlinear model was reduced to 0.179511 and
a far superior output prediction (Fig. 9) was obtained. The sum of the error
reduction ratios reached 95.3462 and the cost function was far less than for

the linear model.

Taking egn.(41) as an initial estimate for the proposed multi-class
identification algorithm, Figs. 10 and 11 show profiles of the cost function
and the parameter vector for the first 153 iterations operating on the initial
data set. After 153 data records had been eliminated from the estimation, the
cost function reduced to zero and the sum of the error reduction ratios
reached 100. This clearly indicated that the remaining data measurements
belonged to the same class and all the misclassified data had been eliminated.
The final estimate for the 847 data records was given as

y(t) - 0.8y(t-1) + u(t-1) + 0.2y2(t-1) - 0.5u?(t-1) (42)

(10.7752) (42.5885) (3.5994) (43.0369)

and the discriminant function was given as

d(x) - y(£)=0.8y(t-1)-u(t-1)-0.2y2(t-1)+0.5u?(t-1) = 0 = x € £, (43)
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A noise sequence was then formed based on eqn.(hZ)’

[(£:8) = y(t)-0.8y(t-1)-u(t-1)-0.2y?(£-1)+0.5u?(£-1) (44)

and the 153 eliminated data were partitioned into two parts according to the
rule

dix) - {(t;8) >0 - x€eQ,
(45)

dix) = {(t;8) <0 = x€Q,

According to eqn.(45), 3 data records fell back to Q,, 37 were classified toQl,
and 113 were classified to Q,. The multi-class identification algorithm was
then re-applied to the data records belonging to Q, and Q,. Analysis of the
records revealed that they could not be further partitioned because both of
the cost functions for the initial estimates became equal to zero. The two
identified models were given by

y(t) - 2 + 0.5y(t-1) + u(t-1) VxeQ,

(45.4046) (41.5567) (13.0387)
(46)
y(t) - 2 + 0.5y(t-1) + wu(t-1) VxeQ,

(21.9168) (73.5808) (4.5024)

and the sum of the error reduction ratios for both model were equal to 100.
Substituting eqn.(46) into the discriminant function of eqn. (45) produces

0.3y(t-1)+0.2y2(t-1)-0.5u?(t-1) <2 = x€ 0,
(47)

0.3y(t-1)+0.2y2(t-1)-0.5u?(t-1) > 2 = x € Q,

Since both of the models fitted to the segments Q, and Q, were exactly the
same, they could be combined together forming a single class Q, - Q,U Q, and
the discriminant function of eqn.(47) was modified to

0.3y(t-1)+0.2y?(t-1)-0.5u?(t-1) »2 = x€, (48)

Combining the discriminant functions of eqn.(43) and (48) with the fitted
models of eqn.(42) and (46) gives the two-class nonlinear model
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/

0.8y(t-1)+ult-1) _ 0.3y(t-1)+0.2y%(t-1)
+0.2y% (£-1)-0.5u?(t-1) ~ -0.5u?(t-1) - 2
y(t) = ; )
0.3y(t-1)+0.2y?(t-1)
. = ~x ;
L 2+0.5y(t-1)+u(e-1) _0.5u%(t-1) ¢ 2

which clearly coincides with the true characteristic of the original system.
The superiority of this fitted multi-class nonlinear model over the fitted
single-class linear model and the single class nonlinear model was confirmed
by the sum of the error reduction ratios which was equal to 100 and the cost

function which was equal to zero.

6.2 Stochastic multi-class _linear system

Consider the same multi-class linear system and the same data records
described in section 6.1 but with the output of the system corrupted by some
output additive noise, e(t) -~ N(0,0.0001) , which were uncorrelated with the
input u(t) . The signal to noise ratio for this noise corrupted system was
around 80dB. The corrupted output for the stochastic system (S;) was defined
as

z(£) = y(t) + e(t) (50)

Substituting y(t) - z(t) - e(t) into egn.(24) gives

[ u(t-1)+0.5z(t-1)-0.5
-0.5e(t-1)+elt)

; z(t-1)-e(t-1) > 1
z(E) = u(t-1) ; lz(e-1)-e(t-1)l <1

u(t-1)+0.5z(t-1)+0.5
L -0.5e(t-1)+e(t) ¢ 2ib=1)=el&-1] 4 =1

The best first order dynamical linear model with a first order noise model for
the 1000 records was given by

z(t) - 0.003744 + 0.161437z(t-1) + 1.00484u(t-1)
\ 2.61251 .
(0.00128) ( ) (96.179) (51)
+0.043524((t-1) + {(t)
(0.00225)
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The sum of the error reduction ratio for this fitted linear model was equal
to 98.795 and the cost function was equal to 0.0131968. Figure 12 shows the
first 50 model predicted outputs of the fitted linear model of egn.(51).

Using the proposed multi-class algorithm and following similar procedures as
described in sections 6.1 and 6.2, profiles of the cost function, AIC and the
parameter vector for the first 354 iterations are shown in Figs. 13, 14 and
15 respectively. The cost function was monotonically decreasing while the AIC
reached a minimum when 321 data records were eliminated. The AIG of Fig. 14
illustrates that there was no further improvement in the information content
of the fitted model even when more data records were eliminated. The profile
of the parameter vector (Fig. 15) also indicates that there was no significant
differences within the parameter vector even if more than 321 data records
were eliminated from the estimation. The final estimate for the 679 data
records was found to be

z(t) = -0.000443 + 0.003070z(t-1) + 0.999879u(t-1)
(0.000020) (0.000294) (99.9898)
vxeQ, (52)
-0.006762{(t-1) + {(t)
(0.000050)

The cost function for this fitted linear model was equal to 0.0001049 and the
corresponding AIC was equal to -6213. The sum of the error reduction ratios
was equal to 99.9901. For the selected 679 data records, a prediction error
sequence was formed based on eqn.(52) and the absolute value of the maximum
prediction error term was found to be 0.03241. Combining eqn.(52) with the
absolute value of the maximum prediction error term forms the discriminant

function describing the data elements in {,

d(x) - z(t)+0.000443-0.003070z(t-1)-0.999873u(t-1)+0.006762{(t-1)
(53)

-{(t) < 0.03241 = x€Q

The 321 eliminated data records were further partitioned into two separate
groups according to the partition rule of eqn.(28).

d(x) - {(£) > 0.03241 = x€RQ,
(54)

d(x) = {(t) < -0.03241 = x € Q,
Partition rule egqn.(54) classified 157 data records to 1, and 164 data
records to Q,. The parameter estimation and data elimination processes were
then re-applied. Profiles of the cost function, AIC and the parameter vector
for the first 50 iterations operating on data belonging to Q, are shown in
Figs. 16, 17 and 18 respectively. Even though the cost function Fig. 16 was
converging during the data elimination process, Fig. 17 shows that the AIC
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reached a minimum when zerq data records were eliminated. Hence all the 157

data records were classified to 0, and the fitted model was given by

z(t) - —0.498066 + 0.498635z(t-1) + 0.999249u(t-1)
1.5737) (10.4659) (87.9508)
; v xeq, (33
-0.472959( (t-1) + c(e)
(0.0018)

The corresponding cost function and AIC were 0.000092 and -1451 respectively
and the sum of the error reduction ratios was 99.9922.

Figures 19, 20 and 21 show profiles of the cost function, AIC and the
parameter vector for the first 50 iterations operating on the 164 data records
belonging to Q,. Figure 20 illustrates that the AIC reached a minimum when
one data record was eliminated from the parameter estimation even though the
cost function was decreasing monotonically. However, when the only selected
record was eliminated from the estimation, the improvement in the AIC and the
change in the estimated parameter vector were very small. Therefore, all 164
data records were classified to Q, and the fitted linear model to the 164
data records was given by

z(t) - 0.499744 + 0.500375z(t-1) + 1.0001u(t-1)
(1.3603) (8.8510) (89.7783)
V xeQ, (56)
-0.4636640(t-1) + c(e)
(0.0020)

The corresponding cost function and AIC were 0.000097 and -1507.5 respectively
and the sum of the error reduction ratios was 99.9916.

Substituting the values of z(t) obtained in eqns. (55) and (56) into the
determinant function of egn.(54) yields

0.4955652([:-1)-0.00063U(C—1)—0.466197(;({:-1) > 0.530033 = x€Q, (57
0.497305z(t-1) +0.000221u(£E-1)-0.456902{(t-1) < -0.532597 = x € Q,

Combining the discriminant functions of eqns.(53) and (57) with the fitted
linear models of eqns.(52), (55) and (56) gives the multi-class linear model
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-0.498066+0.498635z(¢t-1)
+0.999249u(t-1) -0.472959{(¢t-1) ;
+{(¢t)

0.499744+0.500375z(t-1)
+1.0001u(E-1)-0.463664((t-1) :

z (L) = +{(¢t)

-0.000443+0.003070z(£-1)
+0.999879u(t-1)-0.006762{(t-1) ;
+( ()

Comparing eqn.(58) with eqn.(29) shows the structure of the fitted model

eqn.(58) is very close to the original.

predicted outputs of the fitted multi-class linear model eqn. (58) superimposed

on the actual output of the system.

The power of the output additive noise
e(t) -~ N(0,0.01)
applied to the 1000 collected records.

Referring

and the new multi-class

system reduced to around 40dB.

=

00063u(t-1)
> 0.530033

0.495565z(t-1)-0.
-0.466197((¢t-1)

0.497305z(t-1)+0.
-0.456902{ (t-1)

000221u(t-1)

¢ -0.532597 (58)

0.495565z(£-1)-0.00063u(t-1)
-0.466197((t-1) < 0.530033
and
0.497305z(t-1)+0.000221u(t-1)
-0.456902{(t-1) 2-0.532597

Figure 22 shows the first 50 model

was increased by 40dB, such that
identification algorithm was again
The signal to noise ratio in this

this system as §,, the initial best

fitted first order dynamical linear model with a first order noise term was

given by
z(t) - 0.000380 + 0.162093z(t-1) + 1.00361u(t-1)
0.00001 2.57414 95,3694
( ) ( ) ( ) (59)
-0.064780{(t-1) + {(c)

(0.00842)

The sum of the error reduction ratios for this fitted linear model was equal
to 97.9519 and the cost function was 0.0225264. The first 50 model predicted
output for this fitted linear model eqn.(59) was shown in Fig. 23. The
application of the multi-class identification algorithm produced profiles of
the cost function, AIC and the parameter vector shown in Figs. 24, 25 and 26
respectively. The AIC reached a minimum when 90 data records had been
eliminated from the estimation and the fitted model for the selected 910 data

records was given by
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z(E) = -0.003519 + 0.107152z(t-1) + 0.998038u(t-1)
(0.00126) (0.86511) (9.9846)
vxegq, (60)
-0.041216((t-1) + {(t)
(0.00338)

The cost function for this fitted linear model was equal to 0.0121633 and the
corresponding AIC was equal to -4004.49. The sum of the error reduction ratio
was equal to 98.8543. A prediction error sequence was then formed based on
eqn.(60). For the selected 910 data records,. the absolute value of the
maximum prediction error term was found to be 0.254194. Combining eqn.(60)
with the threshold wvalue 0.254194 produced the discriminant function

describing the data elements in 1,

d(x) - z(t)+0.003519-0.107152z(t-1) -0.998038u(t-1)+0.041216¢ (£-1)

(61)
- {(t) < 0.254194 = x €,

The 90 eliminated data records were further partitioned into two segments
according to the partition rule

d(x) - {(t) > 0.254194 = x€ 1,
(62)
d(x) - {(t) ¢ -0.254194 = x € Q,

Eqn. (62) classified 50 data records to {l, and 40 data records to Q,. The
multi-class identification algorithm was then re-applied. Profiles of the
cost function, AIC and the parameter vector for the first 20 iterations
operating on data belonging to Q, and Q, are shown in Figs. 27, 28 and 29
respectively. Even though the cost functions were decreasing monotonically,
the corresponding AIC fluctuated and the change in the parameter vector at
each iteration was rather high. This was probably caused by the small number
of data records in both estimation processes which meant the assumption on the
consistency of the parameter vector was no longer valid. According to the
selection rule, 1 data records would be eliminated from the estimation for
data records belonging to R, and 9 would be eliminated from Q, (Fig. 28).
Since the number of records eliminated in both operations (according to
eqn.(62)) were small and in each case the number of records was also small,
the effects of including them in the estimation instead of eliminating
them was investigated. This produced the models
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z(¢) - 0.287318 + 0.160788z(t-1) + 1.00663u(t-1)
(2.21366) (22.0097) (75.0844) VxenQ,
+0.1617840(t-1) + e
(0.02327)
(63)
z(t) - -0.309377 + 0.172679=z(t-1) + 0.961068u(t-1)
(16.6499) (3.12086) (79.4311) Vxe,
-0.326336((t-1) + {(t)

(0.0941485)

The sum of the error reduction ratios, the cost function and the AIC for the
model fitted to Q, were 99.3311, 0.00907981 and -227.085 and 99.2959,
0.115988 and -170.224 for the model fitted to Q, respectively. Combining
eqn.(63) with (62) produces a set of new discriminant functions

0.053636z(t-1)+0.008592u(t-1)+0.203{(t-1) > -0.036643 = X € Q, (64)

0.065527z(t-1)-0.03697u(t-1)+0.367552{(t~1) < 0.055183 = x € Q,

Combining the discriminant functions of eqns. (61) and (64) with the fitted
linear model of eqns.(60) and (63) produces the multi-class linear model

0.287318+0.160788z(t-1)
+1.00663u(t-1)+0.161784f (t-1) ;
+{ (&)

0.053636z(t-1)+0.008592u(t-1)
+0.203¢(t-1) > -0.036643

-0.309377+0.1726792(t-1)

0.065527z(t-1)-0.03697u(t-1
+0.961068u(t-1)-0.326336{(t-1) ; ( ) ( )

+0.367552{(t-1) < 0.055183 (65)

z(t) = +{(t)
0.053636z(t-1)+0.008592u(t-1)
-0.003519+0.107152z(t-1) +0.203{(t-1) € -0.036643
+0.998038u(t-1)-0.041216{ (t-1) ; and
+( () 0.065527z(t-1)-0,03697u(t-1)
| +0.367552{(t-1) 2 0.055183

Comparing eqn.(65) with eqn.(29) shows the structure of the original system
has been lost. This might be attributed to the low signal to noise ratio
because the discriminant functions are not well defined in this case and a
significant number of data records could not be linearly separated. Figure
30 shows the first 50 model predicted outputs for the fitted multi-class
linear model egn.(65) superimposed on the actual output of the system. A
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rather poor performance was obtained.

From the high and low signal to noise ratio examples, a number of remarks can
be drawn. The algorithm performed well when the signal to noise ratio was
high at 80dB and the structure of the original system was recovered with the
proposed algorithm. The performance of the algorithm deteriorated rapidly as
the signal to noise ratio decreased probably because there were large areas
of overlapping hyperplane and consequently the classification of data records
using the discriminant became unclear. The linearly separable property is
then no longer valid and the structure of the original system is lost. This
interpretation is reinforced by the fact that only 90 out of the 354 data
records were isolated from the first data partitioning process when the signal
to noise ratio was poor.

7. Conclusions

An algorithm for the identification of multi-class systems has been developed
based on the use of discriminant functions for partitioning the data records.
Providing the system is well defined and linearly separable, the algorithm can
correctly classify the data into the respective classes. Model estimates
corresponding to each class can then be obtained using any of the linear or
nonlinear parametric identification algorithms. For less well defined
systems, the performance of the algorithm deteriorates rapidly as the signal
to noise ratio decreases. This is probably due to the fact that there is an
increasing area of overlapping hyperplane such that a large number of data
records are no longer linearly separable and procedures which overcome this
deficiency are currently under investigation.
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Figure 4. Model predicted output of the fitted nonlinear model, 53

25




Trace of the coefficent for

the ul(t—1) term

1.004 -
1.002 | ]
1+ i
0.098 =
0.996 - =
la} 50 100 150 200 250 300 350 400
Number of data eliminated
Trace of the coefficient for the y(t—1) term
0.2 T T T T T T T
o A ; ; R i . P
o} 50 100 150 200 250 300 350 400
Number of dato eliminated
x10—-3 Trace of the coefficlent for the censtant term
4 i
2k -
o+ -
_2 - -
—4 N
a 50 100 150 200 250 300 350 400
Number of data eliminated
Figure 5. Profile of the parameter vector for §;, M

26




T f th t t
15
10t
5
OF
-5 1 1 1 L 1 1 L
0 50 100 150 200 250 300 350

Number of data eliminated

Figure 6. Profile of the cost function for 5,

Qutput

I 'ﬂ"‘“"“*“WWMWW‘WW mwﬂf**r‘WﬂWW b

F °¢ﬂ\W\%}‘F“«’W‘h“"r’W’W“W‘MW‘wM’Wt\ﬁ }# { L\ Ww

27




Model predicted output superimposed on the actual cutput

- -

actual ou{pul
P A model predicted ocutput

1 L L 1 L

F

5 10 15 20 25 30 35 <40 45

Time interval

igure 8. Model predicted output of the fitted linear model, S,

50

Model predicted output superimposed on the actual output

actual output
model predicted output

3 I L L L L

5 10 15 20 25 30 35 40 45

Time intervol

50

Figure 9. Model predicted output of the fitted nonlinear model, S;

0.2

0.05

—-0.05

Trace of the cost function

T T T T T T T

o 20 40 60 80 100 120 140

Number of data eliminated

Figure 10. Profile of the cost function for Sz,

28

160




constant term
.08 —
0.06 |- —
0.04 —
0.02 =
o -
o 50 100 150

Number of data ellminated
ult—1) term
1.02 - T

1.015 -

1.01

1.005

0.9e5

0.89

0.985

0.88

—0.005

—a.o1

—0.015

—0.02

—0.025

—0.03

50 100 150

Number of dota eliminated

y(t—1)ult—1) term

50 100 180

Number of data ellminated

Figure 11.

y(t—1) term
1 T -
0.9 2
0.8 |- .
D.7 =
0.6 =
0_5 1 1
o 50 100 150
Number of data ellminated
y(t—1)~2 term
0.22 T T T

0.08

—0.46

—0.48

—0.52

—0.54

Profile of the parameter

29

50 100

Number of dota eliminated

uft—1)~2 term

150

50 100

Number of data ellminated

vector for S,

150




Model pred!cted ocutput supﬂnmposed on the actual output

Gotual olUtputl
model predicted cutput

o o] 10 15 20 25 30 5 40 45 S0
Time interval

Figure 12. Model predicted output of the fitted linear model, S;
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Figure 21. Profile of the parameter vector for Sz, Op
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Model predicted output superimposed on the actual output
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Figure 22. Model predicted output of the fitted multiclass linear model
for 53
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Figure 23. Model predicted output of the fitted linear model for S,

36




Trace of the cost function
0.025 : . y v v : T

0.02

0.015

0.01

0.005

0 50 100 150 200 250 300 350 400
Number of data eliminated
Figure 24. Profile of the cost function for S,,
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Figure 25. Profile of the AIC for S, 0,

37




