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ABSTRA

This paper describes higher order frequency response
functions (FRF's) and their role in the identification of
nonlinear systems. Higher order FRF's only exist for
nonlinear systems and have the property that they visually
demonsirate how energy is transferred from one frequency to
another, a unique characteristic of nonlinear structures and
systems. The determination of these FRF's can be
approached from two principal directions; using sine excitation
by directly measuring the higher order transfer functions
which approximate to higher order FRF's or using nonlinear
time series methods and probing these to extract the FRF's.
In this paper, these approaches are described in relation to
simple nonlinear problems and their role in future system
methodologies discussed. It is showm that if reliable higher
order spectra can be obuined they offer a positive and useful
means of practically diagnosing a class of nonlinear structural
dynamics problems.

1. INTRODUCTION

The use of the classical one dimensional frequency response
function in system identification is a very common occurence,
particularly in the domain of experimental modal analysis.

The use of higher order frequency response functions in
system identification is still very embryonic. The major use
of higher order spectra is in the field of fluid—structure
interaction where there are several examples of energy
transfer mechanisms, in some cases identified via the
bi-spectrum (or second order frequency response function,
which have been shown to account for low frequency, large
oscillatory motion of Tension Leg Platforms induced by a
guadratic nonlinear mechanism) which have allowed more
accurate predictions of the wave forces on offshore
structures.! Howewer, the use of higher order frequency
response functions in structural dynamics, particularly of
aerospace and aircraft structures, has been very limited. The
principal reasons for this are likely to be due to :

(a) the fact that they only exist if a structure displays
nonlinearity and the identification/interpretation  of
structural nonlinearity in a practical environment is still
a difficult area and,

(b) there are a few straightforward methods of measuring
higher order frequency response functions; they are still
a2 new science and their usefulness still has to be fully
established.

This paper describes two procedures for determining higher
order frequency response functions which could form the basis
of an approach to predicting the behaviour of nonlinear
structures.

The paper begins by showing how higher order frequency
response functions offer an insight into structural nonlinearity
and then moves on 1o two approaches for obtaining them,
one which utilises sinusoidal excitation to directly extract the
higher order transfer functions and the other which fits
nonlinear difference models to time data which is then
probed to extract the higher order frequency response
functions.

2. TRANSFER FUNCTIONS AND FREQUENCY
RESPONSE FUNCTIONS

In  the system identification of linear structures the
terminology transfer or frequency response function implies
the same thing, the relationship between the input(s) and the
output(s) in the frequency domain. These functions satisfy
the principle of superposition and are invariant with respect
to the type of input.

However, in order to apply these concepts to nonlinear
structures we need to be more specific. In fact, even with
linear structures there is a difference between what we
actually measure and what we calculate due to the fact that
we always deal in practise with a truncated model. Thus we
need to define transfer functions and frequency response
functions.

In this paper we define transfer functions for either linear or
nonlinear structures as the measured relationships between the
input(s) and the outpui(s). Frequency response functions are
inputoutput relationships which are calculated from either
simulation, analytical or other derived procedures.

For example, if we consider the equation governing the well
known Duffing oscillator (a good benchmark model for
nonlinear structures) we can write down equations goveming
the higher order transfer functions as below.

The Duffing oscillator with viscous damping is,

my(t) + cy(t) + ky(t) + k;y(t)? = x(v) (1)
If x(1) is considered 1o be a sinusoidal input waveform, the
Fourier transforms (of the input and output signals) can be

computed at the excitation frequency 'w' to give the first

 rT
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order and the higher order transfer functions (TF's) i.e.

Y( ju)
TF, (Jw) = x_l(_.a')'
(2)
4Y(j30)

TF;(_}@) - _f(_'u.u_)!

22 y(jrw)

TFL(jw) = X(jo)B

;onm=1, 3, 5

Y(jw) is the fundamental output term at the input frequency
w and Y(j3w) etc. are the displacement responses at the
third, fifth etc. higher harmonics. The coefficient 2°<1 arises
from the symmetry property. Note that all the even TF's
are zero.

The transfer functions are complex and thus the TF's convey
both gain and phase information. The higher order TF's
convey the fact that energy is transferred for a nonlinear
structure.

Obviously, if one were involved in a ground vibration test
(GVT) of an aircraft then the quantities shown in equation
(2) could be obtained if sine excitation were used.

What do these TF's look like? Figure 1(a), (b) shows the
first and third order TF's respectively using numerical
simulation for the model given in equation (1) with the
parameters m = 1, ¢ = 10, k, = 104 k, = 1010 Two
levels of excitation were used, a low level below which the
TF's were invariant (i.e. the TF's were homogeneous) and
therefore could be classed as linear, and a high level where
the 'jump’ phenomenon is observed close to the fundamental
natural frequency of wy = 100 rad/s.

There are three important results present in Figures 1(a), (b).
The first is that the third order TF exists and exhibits a
resonance at wp/y i.e. 33 rad/s together with a resonance at
the sine frequency as the first order TF. The second result
is that significant distortion (namely a bifurcation) exists in
both the first and third order TF's at the fundamental
resonance at the higher excitation level. Thirdly, it is
possible to identify a third order TF at a low excitation level
even when the first order TF “appears™ to be linear.

The absence of any second order TF's is due to the absence
of a quadratic term in the simulated equation of motion.
However, if equation (1) was modified such that the cubic
term was replaced by a quadratic term then both odd and
even harmonics exist and the higher order TF's are as shown
in Figures 2(a), (b). These exhibit, as expected, resonances
at “n/3, “n/7 and w, Thus we have a procedure which
could fit into a conventional stepped sine modal test and
form the basis of a nonlinear diagnostic procedure that should
provide information on the modes which exhibit nonlinearity.
Having established that in principle, higher order transfer
functions can be measured the next question we ask is how
do these measured transfer functions relate to frequency
response functions.

Frequency response functions for the class of nonlinearities
which ecan be represented as continuous (e.g. polynomials in
displacement and/or welocity) can be effectively represented
using the Volterra series with the harmonic input?

Ju,t

x(t) = X‘e e (3)

The output response is then,

y(t) = x,ejw‘tj h,(r,)e_jw‘r‘dr,

@
= +w
+ X%e"m‘tl ]hz(’ln’z)e Jwy7y 1r’)r.h‘c:h'2
-

-} -]

+.. .X‘,’e‘lm‘tl : I hp(r, .. .fn)e-jm"" 'w‘T“)df‘ c.drp
-0 -0

Recognising that the terms inside the integrals represent

respectively the one dimensiona! Fourier transform, the two

dimensional Fourier transform up to the nth dimensional

transform, equation (4) can be written as,

y(t) = H\(.}W}x1ejw‘t + Hz(j“’tvj"’l)x?ejhit

+ ... Ho(jw, .._]u|)x‘}e‘jm‘l (5

If we assume a harmonic input we can again define the
higher order FRF's in a similar way to the transfer functions
i.e.

22y ()

Hp(jw. ... jw) -W (6)

In order to establish the difference between the TF's and the
FRF's we need to examine the difference between 2
harmonic input x(1) = Xel“' and a sinusoidal imput x(1) =
Xcoswt,

Noting that Xeje! = X(cost # jsinat),
then

Xcoswt = ; (et 4+ o~ duy

y(t) = ,}L [H‘(ju)e.lwt + H.('jw)e'jw:]

N PRI D L S WO R Sl

+ H, (Ju, -jw)ejzwt + H,(-jw,_‘,w)e'jz“"]

3
+ [;—L][Hi(jw, J JudeNH, (-0 -3, TR

+ Hl(jw.jw.-jw)ejwt + H,(jw.-jw,-.iw)e_‘lm

+ Hy (- jo, Joyed“ts H, (- Jo, ju, - juye 1"

+ H,(—Ju.-Ju.Jun'j“" * Ha(-Jw.Jw-MeM] (n



Defining the first order transfer functions as before,

Y(ju)

Y(je) 8
X( jw) ki

TF, (jw) =

Using equation (7), and noting the symmetry properties i.e.
H,(jw,ju-jw) = Hy(jwjuw,ju) etc,

2
T, (jo) = H,(Jo) + 6H,(ju, Ju, = Jo) g

.-jw)n[%'-] ;m=1,3,5..

+ ... Ha(juw, jo ..

(9)

We see that only the odd order FRF's contribute to the
response and that it is these terms which interact with the
first order FRF H,(jw) to cause the distortion. The level of
the distortion in H,(jw) is directly related to the amplitude
of the excitation i.e. the coefficients in front of the Hp(jw)
terms. Thus any nonlinear structure governed by the above
equations (i.e. polynomial type nonlinearity) will always
display distortion in the first order FRF if excited by a sine
wave, the significance of the distortion being dependent upon
the level of the excitation.

3. HIGHER ORFER FRF'S FROM NARMAX MODELS

The NARMAX? (Nonlinear AutoRegressive Moving Average
model for eXognous inputs) model for a single inputsingle
output system is a difference equation of the form,

y(t) = de + Fi?{y(t-l),..y(t-ny),u(t-d),..u(t—nu)

e(t-1),..e(t-ng] + e(1)
(10)

where y(t), wu(t), e(t) are the sampled output, input and
prediction error sequences respectively. d is the system time
delay, @ the degree of nonlinearity and 'dc’ a constant term.
In this paper F? will be taken as a polynomial although
equation (9) is not restricted to this case, This approach
begins in the time domain where the objective is to fit an
optimum number of terms on the RHS of equation (9) whose
contributions to the output are significant. The methods used
for detecting the structure i.e. which terms are signficant,
parameter estimation and model validation can be found in
the papers by Billings et alsé. A simple example of how
the procedure works is described below.

Consider a nonlinear differential equation given by,

my + ey + Ky + kyy? =u an
Using a simple Euler approximation,

y(t+1) = 2y(t) + y(t-1)
77

¥y - M); t = sample instant

T = sample period.

We can discretise equation (11) to give,

% [y(t+1) - 2y(r) + y(z_;)] + % [y(:) = y(t-l)]

+ k,y(t) + kyy(r)? = u(t)

f.e. y(t) + [I—l—C -2 +I:%.L]y(t-1)

+ [1 o ]y (t-2)

m
+b§y(t-1)= -Iéu(t-n (12)

Le. y(1) = a,y(t=1) + a, y(1=2) + a,y(t-1)? + 3 u(t-1)

Using N sampled data points we get,

3

¥ ¥, Yo L Ys a,
¥a a3

= a,
YN YN-1 o N-z Uner YN (2.

) = ledley

(B = [[eTTe)) [eT) (13)

2 { B} = least squares estimate of (£} (14)
If we include additive noise on the output we have,

z(t) = y(t) + e(1) (15)
then,

z(t) = a,z(t-1) + a,z(t-2) + a,z(t-1)? + a,u(t-1)
+ {e(t) - a,e(t-1) - 3a,e(t-1)?
- 3332(1—1)9(1—1)2

- 3a32(l—1)?e(!-1)} (16)

Thus we see that we introduce multiplicative noise terms due
to the nonlinearity which require inclusion of a noise model:

(v} =[] {8} + {} (n

The number of terms introduced is thus dependent on the
order of the nonlinearity and to a first approximation there
would be:

(ny + ny + ng)2/p! (18)
where ay, By and n. represent the number of terms in the
output, input and the noise model and 'Q' is the degree of
the nonlinearity.

Thus for the equation shown (i.e. the Duffing oscillator) we



could have,
(3 +1+5)¥37 =121 terms (19)

This means that in equation (13) [¢]e] = 1212,

In order to optimise the solution to this problem an
orthogonal estimator algorithm was developed by Billings et al
which rapidly identifies the signifant terms®. A typical
output of this estimator is shown in Table 1 with the model
predicied response overlaid on the actual response.

To extract the higher order FRF's, one simply discards the
noise model and uses the method of Harmonic Probing’.
This method is based on the procedure described earlier
whereby the input is assumed to be of the form u(t) = eiut,
If we use an example, it is easy to see just how one obtains
the higher order FRF's. If we obtain a NARMAX model of

the form,
y(t) = ay(t=1) + cy(t=-1)2 + bu(t-1) (20)
and let wu(t-1) = ejw(t-1)

L y(t-1) = H, (w)ejw(t=1)
» Hy(w)edot = aH (w)ew(t-1) 4 pejuw(t-1)
+ c[H, (w)edw(t-1) ]2 (21)

Equating coefficients of el“! gives,

'J.U
i e (22)

1 - ae d¢

Similarly to calculate the second order FRF H,(w,, w,)
simply let

- e.j“’1t Jjuw,t

u(t) + e

u(t-1) = ej"”i([-i) + Ej""z(t‘z)
¥(1) = Hy(w)edt 4+ K (u,)ed¥st

+ 2H2(w‘.w2)ej(w’ tegt

+ Hy(w, w)ed 2t
+ H,(w?.wz)ejzw7‘
y(t-1) = H,(m,)e'}u‘(“”+ H,(u,)e‘jw?(‘-”etc. (23)
equating coefficients of e"(w‘ * w2 gives,
Jlwy+wy)
cH, (w,)H, (w,)e
H;(‘JH .w;) - (24)

1 - .l'.“‘”\ + wg)

The process can be repeated for Hz‘“'nwsz,) it ihe Hi's.

Figures 3 and 4 show respectively the leading diagonals and
the full 3D plots from harmonically probing the NARMAX
models of the equations,

y + 10y + 104y + 1010y = ejut
y + 10y + 10% + 107y2 = ejut (25)

4. INTERPRETATION OF THE HIGHER ORDER FRF'S

The interpretation of the higher order FRF's is not
straightforward. Indeed, once one goes above the third order
FRF one would need ‘four dimensional space’. In fact,
simplifications can be made whereby at the level of H. and
above, use is made of three dimensional plots unde? the
conditions that, for H, (w,, w, w,) for example, Wy T oW,
w, and w, * w, and one would obtain several plots which
have the same format as the Ha's,

If we taken an example of an H, (w,w,) function we can
demonstrate the important properties.
The equation,

§(t) + 10(t) + 104y(t) + 107y(t)? = 0.6 coswt  (26)
which was used earlier can be harmonically probed to give,

. 1
hUe) = g (27

Ho(Juw,, juw;) = -107H, (ju,)H, (ju,)H, (ju, + Jwy) (28)

where,
H, (o, + Ju,) = L
104 - (@ + 0d) + jl0(u,+ w,)

Figure § shows the modulus and phase of H, (ju,, ju,).

The most salient features of Figure 5 are the characteristic
ridges at 0, 90 and 45 to the two frequency axes, these
ridges occurring at the linear resonant frequency, namely

15.9 Hz (100 rad/s). Where two ridges cross there is a peak
indicating a resonant condition, Thus if we input a single
frequency along one of the 90 ridges we would automatically
excite the resonance since w,, w, = wr. Ho_wr.ver, if we
input two frequencies which intersect on the 45 ridges (u; +
wi = w;) then we again excite the resonance condition via an
energy transfer mechanism even though neither of these two
individual frequencies are numerically equal to the resonance
frequency. This represents a ‘sum' condition rescnance.
'Difference’ conditions i.e. (0 - wj = w) can also satisfy
this energy transfer mechanism. ll'lgure 6 shows a three
degree of freedom H,(jw, jw) frequency response function.
As can be seen, when the order of the complexity of the
structure increases, the full H, representation is complex and
the simplest way of presenting the higher order FRF's is to
use the leading diagonal representation.

The magnitude of the H,(jw, jw) plane gives an indication of
the contribution of the quadratic nonlinear characteristics to
the total output. Since H,(jw, jw) is a complex function this
contribution may, in some cases, reduce the total power
output, a form of gain compression or it can increase the
total power output via a gain magnification, this being
dependent on the phase characteristics of the FRF's. If we
were 1o extend the method 1o the third order FRF we would
be able to visualise the contribution of the cubic
characteristics of the nonlinear terms to the response. In
this case we would need to plot the w,, w, plane for
different values of w, such that w, snd w, were varied
whilst w, was held constant.



EEC box (Case 2 : Input 0-300 + 1504180)

Data length

Line search criterion

Stop optimisation criterion
Number of fterations
Maximum Number iterations

TERMS

y(t-1) =
y(t-2) =

u(t=- 1)

Constant term =
y(t=-1)*y(t- 1) =
yle-1)*y(t- D¥y(e- 1) =

e(t- 2)
e(t=- 1)
e(t- 3)
e(t- 4)
e(t- 5)
e(t- 6)
e(t-7)
e(t- B)
e(t- 9)
e(t-10)

Narmax model s :

ESTIMATES

.16022e+01
.94722e+00
.61536e-01
.13767e+00
,13810e-01
.25251e-02
.32458e400
L48221e+00
.18078e+00
.54324e-01
.58697e-01
.91727e-01
.14711e+00
.10123e+00
.26099e+00
,19766e+00

[ =1 =T =]

[eR=N=N-N N30 =1

1000 points
0.100e-03
0.100e=-03

9

20

Stdev

(0.
(0.
(0.
(0.
(0.
.15085e-03)
.26373e-01)
.29209e-01)
.29136e-01)
.29130e-01)
.29140e-01)
.29234e-01)
.29250e-01)
.291583-01)
.29248e-01)
.29230e-01)

31342e-02)
26528e-02)
16724e-02)
78094e-02)
47595e-03)

Loy(t+l) = 1.602y(t) - .947y(t-1) + 0.0615u(t)

+ 0.937 - 0.0138 y2(t) - 0.0025y3(t)

gL f,«,alf\!.
T U A

Comparison of the measured and predicted 0.p's

TABLE 1




5. ICAL RESULTS FROM A TEST STR RE

Tests have been conducted on a clamped—clamped beam rig
which was designed to include predominantly quadratic type
pon-linear behaviour. This was achieved by pre-loading the
beam at the central point. The tests concentrated on the
first two modes of the structure with the acceleration
response of the beam being measured at four points along
the beam.
produced by the pre-load.

Figure 7 shows the measured first and second TFs at a

relatively low amplitude of sinewave input. Well—defined
second order TF's were obtained whereas the third order TFs
were poor (appearing as noise), indicating that for small
amplitude deflections, the second order guadratic behaviour
was more dominant than the third order cubic behaviour. In

the tests, only TFs up to order three were recorded since it
was the objective of the experiment to assess only the linear,
quadratic and cubic nature of the beam. Information
regarding the higher order terms in the polynomial can be
determined by measuring TFs above the third, although the
significance of the higher harmonic terms on the output
waveform tends to decrease as the order of the harmonic
increases.

Visual inspection of the TFs can yield information regarding
the system directly.

1. Conventional Modal Testing techniques can be used to
analyse and interpret the first order TFs (Fig. 7(a)).
The first bending mode of the beam occurs at
approximately 85 Hz, and the second at 215 Hz.

2. The higher order TFs exhibit peaks on the magnitude
plots at the same frequencies as the first order TF. In
addition, modes which behave strongly quadratically have
peaks on the second order TFs at half the fundamental
resonant frequencies of the mode. From the
measurements [Fig. (7b)] it may be concluded that in
the first bending mode the beam deparis from linearity.

3. The third order TF could not be resolved adequately by
the measurement equipment and interpretation of the
data is not worthwhile.

It should be noted that if the beam were behaving linearly,
no higher order TRF would exist and the second and third
order TFs measured would have no recognisable form.

NCLUSION

Two approaches to the determination of higher order spectra
have been described in this paper, namely the use of stepped
sine tests to obtain the higher order transfer functions and
the Narmax method to extract the higher order frequency
response  functions. The stepped sine procedure is a
conventional frequency domain method whereas the Narmax
approach requires an indirect step 10 obtain a difference
model from discrete time data from which the FRF's can be
computed. If reliable higher order FRF's can be
measured/obtained then one gains a powerful insight into a
class of nponlinearities and they have the potential to
accurately detect frequency ranges e.g. modes where
nonlinearity is significant.  They also offer an immediate
visual inspection of nonlinearity and can be used to investgate
the possibility of energy transfer from one frequency (mode)
to another. However, higher order spectra have had little
application in the field of structural dynamics and until they
have been evaluated in practise it would be premature 1o
place an emphasis on their usefulness.

Strongly quadratic stiffness behaviour was
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