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Comparing the Efficacy of SNP Filtering Methods for
Identifying a Single Causal SNP in a Known
Association Region
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Summary

Genome-wide association studies have successfully identified associations between common diseases and a large number of

single nucleotide polymorphisms (SNPs) across the genome. We investigate the effectiveness of several statistics, including

p-values, likelihoods, genetic map distance and linkage disequilibrium between SNPs, in filtering SNPs in several disease-

associated regions. We use simulated data to compare the efficacy of filters with different sample sizes and for causal SNPs

with different minor allele frequencies (MAFs) and effect sizes, focusing on the small effect sizes and MAFs likely to

represent the majority of unidentified causal SNPs. In our analyses, of all the methods investigated, filtering on the ranked

likelihoods consistently retains the true causal SNP with the highest probability for a given false positive rate. This was

the case for all the local linkage disequilibrium patterns investigated. Our results indicate that when using this method to

retain only the top 5% of SNPs, even a causal SNP with an odds ratio of 1.1 and MAF of 0.08 can be retained with a

probability exceeding 0.9 using an overall sample size of 50,000.
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Introduction

Genome-wide association studies (GWAS) and candidate

gene studies have highlighted regions of the genome con-

taining variants affecting disease susceptibility. The next stage

is fine-mapping of these regions to identify the variants most

likely to be causal. This task is confounded by high corre-

lation between variants in a small chromosomal region. The

effects of this correlation as well as sampling variation mean

that in tests of association the variant with the largest like-

lihood or smallest p-value will not necessarily be the causal

variant. Several statistical methods for analysing fine-mapped

data have now been published but guidelines are needed to

determine which of these will give the highest true positive

rates (TPRs) and lowest false positive rates (FPRs) and in

which scenarios.

Methods for analysing fine-mapped data include those that

analyse multiple variants in a region simultaneously, for ex-

∗Corresponding author: Amy Spencer, School of Mathematics
and Statistics, University of Sheffield, Hicks Building, Hounsfield
Rd, Sheffield, S3 7RH, UK. Tel: 0044 114 222 3726; E-mail:
a.v.spencer@sheffield.ac.uk

ample, penalised and nonpenalised regression methods and

Markov chain Monte Carlo routines. Some such methods are

given in reviews by Ayers & Cordell (2010) and Abraham et al.

(2013), including the popular HyperLasso (Hoggart et al.,

2008). There are also fully Bayesian methods implemented in

the software pi-MASS (Guan & Stephens, 2011). Also, some

recent methods attempt to include external data such as func-

tional annotation, for example, p-value weighting (Saccone

et al., 2008) and a Bayesian latent variable model (BLVM,

Fridley et al., 2011). However, we have chosen to compare a

subset of statistical analyses which should work well when a

single causal variant is present in the chromosomal region of

interest. In these methods, each single nucleotide polymor-

phism (SNP) is analysed separately and they are then ranked

in some way based on the likelihood or p-value from a lo-

gistic model or based on linkage disequilibrium (LD) with or

proximity to the top hit SNP in the region. The methods we

consider do not make use of any available functional data. To

our knowledge this set of methods has not previously been

compared in a thorough simulation study such as this.

All of the statistics that this report examines could be used

as filters to remove noncausal variants from the set of all
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candidate causal variants. The variants considered in this work

are SNPs but the methods and results discussed can be applied

directly to any other variants which can be modelled via a

logistic regression model. Successful filters will reduce the

initial set of SNPs down to a much smaller group in which it

is highly probable that the true causal variant remains. Other

techniques, such as the biological analysis of pathways in cell

lines, can then be used to identify the causal variant. These

methods are expensive, so reducing the number of variants to

take forward is of paramount importance.

The first methods we examine are based on p-values and

likelihoods. It is common in GWAS to rank SNPs by p-values

either from Cochran–Armitage trend tests or from Wald tests

and both of these methods have now also been used in the

context of fine-mapping (Miki et al., 2010; Adrianto et al.,

2012). An alternative to using p-values is to use the likeli-

hood (or equivalently log-likelihood) from fitted regression

models. Several studies (including Easton et al., 2007; Udler

et al., 2009, 2010a; French et al., 2013), rank SNPs based on

likelihoods and the usual practice is to retain the set of SNPs

with likelihoods within a prespecified ratio of the highest

likelihood. This method leads to variable numbers of SNPs

being retained. We examine this relative likelihood (RL) filter

as well as the alternative of retaining a prespecified proportion

of all SNPs based on ranking by likelihood. These statistics are

attractive for filtering because they are easily obtained from

standard analyses.

The remaining methods relate to LD structure. Within a

small chromosomal region, LD can be high between SNPs.

When the top hits from GWAS are found, these are not

assumed to be the causal SNPs, but it is often postulated

that the causal SNP lies within the same gene or LD block

as the tagSNP. Alternatively, a handful of candidates may be

suggested based on high LD with the tagSNP (r 2 > 0.9, for

example). We formalise three filtering methods based on these

ideas: ranking by genetic map distance, r 2 and D′ with the top

hit (the SNP with the largest likelihood). The final method

(Zhu et al., 2012) we examine is also LD-based, but takes into

account the LD between each SNP and the top hit compared

to the LD between the SNP and tagSNPs in the region.

Although we use the analyses set out by Zhu et al. (2012),

we use it in a slightly different setting, as it is designed for

use with tagSNPs from a GWAS. As far as we are aware the

application of these LD- and distance-based methods to fine-

mapped genotype data and their comparison with standard

univariate statistical methods is novel.

We found that percentile filtering based on ranked likeli-

hoods was the most efficacious method in all the scenarios

we investigated. To explore the utility of this approach, this

study considers the impact of effect size, sample size, mi-

nor allele frequency (MAF), mode of inheritance and filter

threshold on the effectiveness of the filter proposed. We also

consider whether these results apply to filtering in regions of

the genome with strikingly different LD structures. A range

of plausible odds ratios (ORs) were used in our simulations,

as well as relatively large sample sizes consistent with numbers

being used in the era of disease-specific consortia.

Materials and Methods

Simulation Details and Preliminary Analysis

Filters were tested by applying them to simulated genotype

data with a single causal SNP. Causal SNPs were chosen based

on their MAF and results were examined for scenarios with

different causal SNPs, ORs and sample sizes. By simulating

data with a known “true” causal SNP, it was possible to de-

termine whether or not this SNP was retained in the set of all

candidate causal SNPs after filtering. All datasets mentioned

were simulated using the hapgen2 software (Spencer et al.,

2009). The software generates haplotype sequences based on

MAF and LD structure in a reference dataset, in this case

the European haplotypes of the August 2010 release of the

1000 genomes data (The 1000 Genomes Project Consortium,

2010), and a user-specified effect size for the causal SNP.

We chose three regions of the genome to test the meth-

ods on. Several studies have found evidence to suggest that

the region around the CASP8 gene on Chromosome 2 (a

gene which codes for a protein involved in apoptosis) may

include variants which affect the risk of developing breast

cancer and more recently melanoma (Cox et al., 2007; Han

et al., 2008; Palanca Suela et al., 2010; Barrett et al., 2011;

Camp et al., 2012). A one megabase region (from 201,566,128

to 202,566,128 bases in the Hg19 build of Chromosome 2)

containing CASP8 was used for simulations. This region also

contains around 20 other known genes including CASP8 ho-

mologues CFLAR, CASP10 and several ALS2CR genes. In

this 1 Mb region, there were 2871 SNPs in the August 2010

1000 genomes data (The 1000 Genomes Project Consortium,

2010). This region has mixed LD block sizes averaging ap-

proximately 22 kb in length, so for comparison, two other

regions were selected which have particularly high and par-

ticularly low levels of LD. Using results in Smith et al. (2005),

we carefully selected a region of Chromosome 11 (55–56 Mb,

part of the MHC region, average LD block size ≈130 kb),

and a region in Chromosome 16p13 (9–10 Mb, average LD

block size ≈8 kb). These 1 Mb regions contained 6247 and

6200 SNPs, respectively (1000 genomes, August 2010).

We focused on additive models, varying the per-allele OR

of the causal SNP between 1.06 and 1.24, but other modes

of inheritance were also considered. The causal SNP was also

varied, with MAFs between 0.08 and 0.31, as well as the

sample size between 10,000 and 50,000. The sample sizes

Annals of Human Genetics (2014) 78,50–61 51C© 2013 The Authors.
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quoted in this paper represent the total number of cases and

controls, which are always assumed to be equal. We refer to a

specific causal SNP, OR and sample size as a “scenario” and

for each scenario simulate a large number of datasets (usually

1000). The results from the analysis of all 1000 datasets were

then used to assess the filters.

For each SNP, a univariate logistic regression model is fitted

(one SNP per model) so that we are only considering marginal

effects. For SNP i , the probability that a subject j , with xi j

copies of the allele coded “1,” has the disease is yi j and is

given by

yi j =
e β0i +β1i xi j

1 + e β0i +β1i xi j
. (1)

β1i is the per-allele log odds ratio (logOR) of disease for the al-

lele coded “1” compared to the allele coded “0” for that SNP.

R (R Core Team, 2012) was used to fit the logistic regres-

sion models and to obtain the maximum likelihood estimates

(MLEs) of β0i and β1i , the likelihood of the parameters for

SNP i , denoted Li and the p-values from Cochran–Armitage

and Wald tests.

Filters Based on p-Values and Likelihood

All the methods that we compare filter out SNPs from the set

of all candidate causal variants to leave a smaller subset. For

each method, the chosen filtering statistic is calculated for

each variant and a threshold is applied. The first two filtering

statistics are the p-values from Cochran–Armitage tests and

those from Wald tests, and a threshold value may be chosen

based on a Bonferroni correction, for example. Although we

carried out filtering using both p-value methods, the results

were always very close, so we consider these as equivalent

methods from now on and report just one, labelling it the

p-value method.

The RL for the i th SNP compares the maximised likeli-

hood for SNP i to the largest of the maximised likelihoods

over all p SNPs in the region:

RLi =
L(β̂0i , β̂1i |data)

max
k∈{1,p}

{L(β̂0k, β̂1k|data)}
. (2)

These RLs can range from close to zero to one (for the SNP

which satisfies the denominator and which we call the “top

hit” or SNPma x). In the papers by Udler et al. (2009, 2010a),

the RL filter threshold of 1/100 was generally used, filtering

out all SNPs with an RL <1/100. We also briefly examine

the use of different thresholds for RL filtering.

A possible weakness of RL filtering is that the number

of SNPs retained is subject to variation. An alternative is

to rank the likelihood values for each SNP and filter out

a prespecified number or proportion of SNPs. This filter is

called the likelihood percentile (LP) filter and by definition

it is known how many SNPs will be retained (for example,

a threshold of 95% retains the top ranked 5% of SNPs). This

approach has the potential advantage that it will not be affected

by a single extreme likelihood value at one particular SNP due

to sampling variation.

Filters Based on Genetic Map Distance or LD

between Variants

The remaining filters that we investigated also relate individ-

ual SNPs to SNPma x . These methods of filtering are based

on the principle that while SNPma x may not itself be causal,

the true causal SNP is likely to be “close to it” in some sense,

either physically close or highly correlated with it. For three

of the methods, SNPs were ranked by either genetic map

distance in centimorgans (cMs) from SNPma x or by pairwise

D′ or r 2 values with SNPma x . Genetic map distances were

obtained from the 1000 genomes data (The 1000 Genomes

Project Consortium, 2010) and pairwise LD (D′ and r 2) val-

ues were calculated using the simulated haplotypes. Once

again, thresholds were specified so that SNPs further away in

distance or with lower LD values than those thresholds were

filtered out.

The final filtering method (Zhu et al., 2012) was also based

on r 2 between each SNP and SNPma x , but rather than rank-

ing based on this value alone, a preferential LD (PLD) score

was calculated for SNPi . This method is designed for use

with GWAS data so makes use of the panel of tagSNPs from

the genotyping array. PLDi is the proportion of tagSNPs for

which r 2 between them and SNPi is greater than between

SNPma x and SNPi . For the simulated regions, since all SNPs

have been “genotyped,” we chose to use those on the Illumina

300 array as our tagSNPs. There were 77 such SNPs in both

the CASP8 and MHC (mixed and high LD) regions and 135

in the 16q13 (low LD) region. To complete the Zhu method,

a second filtering step is required, which involves calculating

an empirical p-value testing the r 2 value between SNPi and

SNPma x . Specifically, this p-value “estimates the probability

of observing the same or better r 2 value for two random vari-

ants with the same frequencies” (Zhu et al., 2012). This is

done by permuting the genotypes 2000 times in each dataset.

This number of permutations was too computationally ex-

pensive when analysing 1000 simulated datasets, so the Zhu

method was only tested on a subset of 100 datasets for each

scenario.

Robustness of Filters When Imputation is Used

Imputation of SNPs which are not genotyped is now com-

mon, as it is still too costly to genotype every SNP and

methods of imputation based on MAF and LD have been

52 Annals of Human Genetics (2014) 78,50–61 C© 2013 The Authors.
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shown to be reliable. To test how well these filtering methods

work when some SNPs are imputed compared to when they

are all genotyped, we simulated several sets of 100 datasets,

covering various causal SNP scenarios within the CASP8 re-

gion. To test the effect of imputation, we then chose a list

of 469 informative SNPs to keep as “genotyped,” based on

prior knowledge of the region, as would happen in the plan-

ning stages of a fine-mapping project. All other SNPs were

removed, which always included the causal SNP. The missing

SNPs were then imputed using the software impute2 (Mar-

chini & Howie, 2010) and the data reanalysed. The results

of analyses of the fully genotyped and the partially imputed

datasets could then easily be compared.

Results

Receiver Operating Characteristic (ROC)

Curves

We have used ROC curves to display the results of filtering

on different datasets. For each scenario (fixed causal SNP, ef-

fect size and sample size), multiple datasets were simulated

to allow for sampling variation. The mean FPR is given on

the x-axis of each ROC curve, and this refers to the mean

proportion of noncausal SNPs retained over all of the simu-

lated datasets. The TPR plotted against this on the y-axis is

the probability of the true causal SNP being retained at the

corresponding thresholds, calculated as the proportion of the

simulated datasets in which the causal SNP was retained. The

TPR and FPR when filtering at specific thresholds of interest

are highlighted using points on the ROC curves.

We believe these are appropriate summary statistics for the

results of the simulation analyses, but it should be noted that

there is no single, standard method of combining the results

of multiple tests into a single ROC curve. This is discussed

in detail in a paper by Fawcett (2006), in which the author

describes three possible methods for creating such an ROC

curve. The way we have calculated TPRs and mean FPRs is

equivalent to the method that Fawcett (2006) calls “threshold

averaging” and it results in variation around the curve in both

dimensions. The variation around the mean FPR is given by

the range of FPR values from all simulations. TPR is a sample

proportion from a binomial distribution, so the variance can

be calculated using TPR(1 − TPR)/n, where n is the number

of simulations.

Relative Efficacy of Different Filtering Methods

Figures 1(A) and (B) show ROC curves for the different

filtering methods used on the same set of 1000 datasets for

fine-mapping the high LD MHC region. These simulations

use a sample size of 20,000 and have a causal SNP with

an OR of 1.1 and MAF of 0.08. Figure 1(A) shows the

results from the p-value and likelihood-based methods. Figure

1(B) compares the efficacy of the proximity and LD-based

methods. It should be noted that for computational reasons

the Zhu (PLD) filtering method was only carried out on

a subset of 100 of the simulated datasets. Figures 1(C)–(F)

display the equivalent outcomes of filtering in the mixed LD

(CASP8) and low LD (16q13) simulated datasets. Table 1

contains the area under the curve (AUC) values as percentages

of the total possible area for all of the ROC curves in Figure 1,

and Table 2 gives the AUCs for the parts of the ROC curves

which result in mean FPRs of 0.1 or lower, as these are the

parts of the ROC curves that are most of interest. It should

be noted that the maximum possible partial AUC as given in

Table 2 is 10%.

Although these three regions were carefully chosen so that

their LD structures were all very different it can clearly be

seen that the likelihood and p-value-based methods are gen-

erally more efficacious than the methods which filter based

on proximity to, and LD with, SNPma x for these scenarios in

all three regions. The likelihood method using LP thresholds

resulted in the ROC curves with the highest AUCs, with

the AUC for p-value filtering only slightly lower. So if p-

values were more readily available, it would be acceptable to

use them for filtering. Interestingly we found that in general,

larger sample sizes resulted in a bigger difference between the

AUCs of the LP and p-value methods.

Of the LD- and proximity-based methods, the Zhu method

had the highest AUC over the entire FPR range but r 2 was

better over the more relevant range of FPRs of 0.1 and under.

In all three regions, RL filtering was considerably worse than

LP filtering for the single sample size, causal SNP OR and

MAF we considered in Figure 1. However, we also examined

other scenarios (see the ranges specified in the Methods sec-

tion) and found that the relative performance of the different

filters seem to apply generally for these scenarios as well. Since

LP filtering appears to be the best performing filter we now

examine its performance in more detail.

The Effect of Sample Size, the Causal SNP OR

and MAF on Results of LP Filtering

Figure 2 shows how the results of LP filtering vary dependent

on the sample size, OR and MAF of the causal SNP for

the CASP8 data. Similar results were recorded in the other

regions (data not shown). With LP filtering, we fix the total

proportion of SNPs retained, and as there is only one causal

SNP, this proportion is almost identical to the FPR. Figure

2(A) shows that if there is a fixed proportion of SNPs that can

be taken forward (due to experimental costs, for example),

Annals of Human Genetics (2014) 78,50–61 53C© 2013 The Authors.
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(A) p-value and likelihood filtering in a
high LD region (1Mb MHC region).
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(B) Proximity and LD filtering in a high
LD region (1Mb MHC region).

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Mean False Positive Rate

T
ru

e
 P

o
s
it
iv

e
 R

a
te

Filtering method

p−value (Cochran−Armitage)
Likelihood (RL threshold)
Likelihood (LP threshold)
y=x

(C) p-value and likelihood filtering in a
mixed LD region (1Mb CASP8 region).
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(D) Proximity and LD filtering in a mixed
LD region (1Mb CASP8 region).
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(E)p-value and likelihood filtering in a low
LD region (1Mb 16p13 region).
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(F) Proximity and LD filtering in a low LD
region (1Mb 16p13 region).

Figure 1 Comparing the effectiveness of filters for fine-mapped data in three regions of the

genome. Using the LD structure of each region, 1000 datasets were simulated and then analysed

using each method (only 100 were analysed using the Zhu method). Panels (A), (C) and (E) show

the efficacy of filtering using thresholds based on p-values from Cochran–Armitage tests, RLs and

LP points. Panels (B), (D) and (F) show the results using genetic map distance (GMD) from and

pairwise r 2 or D′ values with the top hit and the Zhu method using preferential r 2. The causal

SNPs all have an OR of 1.1, an MAF of 0.08 and the sample size is 20,000.

54 Annals of Human Genetics (2014) 78,50–61 C© 2013 The Authors.
Annals of Human Genetics published by John Wiley & Sons Ltd/University College London (UCL).

 1
4
6
9
1
8
0
9
, 2

0
1
4
, 1

, D
o
w

n
lo

ad
ed

 fro
m

 h
ttp

s://o
n
lin

elib
rary

.w
iley

.co
m

/d
o
i/1

0
.1

1
1
1
/ah

g
.1

2
0
4
3
 b

y
 T

est, W
iley

 O
n
lin

e L
ib

rary
 o

n
 [0

7
/0

6
/2

0
2
4
]. S

ee th
e T

erm
s an

d
 C

o
n
d
itio

n
s (h

ttp
s://o

n
lin

elib
rary

.w
iley

.co
m

/term
s-an

d
-co

n
d
itio

n
s) o

n
 W

iley
 O

n
lin

e L
ib

rary
 fo

r ru
les o

f u
se; O

A
 articles are g

o
v

ern
ed

 b
y
 th

e ap
p
licab

le C
reativ

e C
o
m

m
o
n
s L

icen
se



SNP Filtering in Association Regions

Table 1 Area under curve (AUC, given as a percentage) for ROC

curves of different filters using mean false positive rates (FPRs).

Three different 1 Mb regions of the genome were used but in each

the causal SNP has an OR of 1.1, an MAF of 0.08 and the sample

size is 20,000.

Genomic region

High Mixed Low

Filtering method LD (%) LD (%) LD (%)

Likelihood (LP threshold) 93 90 96

p-Value 91 89 96

Likelihood (RL threshold) 87 79 90

Preferential LD (Zhu) 74 60 69

r 2 67 60 63

Genetic map distance (GMD) 62 58 66

D′ 42 42 48

Table 2 Area under curve (AUC, given as a percentage) for portions

of ROC curves of different filters for which FPR ≤0.1. Three

different 1 Mb regions of the genome were used but in each the

causal SNP has an OR of 1.1, an MAF of 0.08 and the sample size

is 20,000. The maximum percentage of AUC for such a portion is

10%.

Genomic region

High Mixed Low

Filtering method LD (%) LD (%) LD(%)

Likelihood (LP threshold) 4.8 4.7 7.2

p-Value 4.3 4.5 7.2

Likelihood (RL threshold) 4.1 3.6 6.2

Preferential LD (Zhu) 2.5 1.0 2.1

r 2 2.9 2.1 2.8

Genetic map distance (GMD) 0.2 1.0 2.2

D′ 0.02 0 0

then, as expected, the TPR increases as sample size increases.

This is also the case as causal SNP OR and MAF increase.

Figure 2(B) shows that if a particular FPR does not yield a high

enough TPR, then the filter threshold could be relaxed from

the 95th to the 85th percentile, say. It is perhaps more relevant

to focus on what threshold is required to achieve a particular

TPR, so the thresholds given in Figure 2(C) are those that

result in a TPR ≥0.95. We focus on these thresholds as we

examine the separate plots in more detail.

Figure 2(A) shows how sample size affects LP filter efficacy.

For a scenario with a sample size of 10,000 where the causal

SNP has an OR of 1.1 and MAF of 0.08, to achieve a TPR of

0.95 a threshold of 15% would be required, meaning that 85%

of the SNPs would be retained. At the same TPR, increasing

the sample size to 20,000 requires a threshold of 49%. For

sample sizes of 30,000, 40,000 and 50,000, the corresponding

thresholds are 75%, 86% and 93%. So for a causal SNP with

this OR and MAF, sample sizes above 50,000 are required to

be 95% sure of capturing the causal SNP while taking forward

5% or less of the original SNPs.

Figure 2(B) shows the results of applying LP filtering as the

OR of the causal SNP varies. In the simulations, the sample

size was 20,000, the causal SNP had an MAF of 0.08 and

the per-allele ORs took values between 1.06 and 1.24. The

general increase in AUC with causal SNP OR is clear. At very

small ORs such as 1.06, LP filtering requires the majority of

the SNPs to be retained in order to achieve a high TPR.

For example, for a TPR of 0.9, a filtering threshold of 27%

is required and for a TPR of 0.95, a threshold of 14% is

required (retaining approximately 2469 SNPs of the 2871 in

this dataset). However, to achieve these same TPRs when the

OR is 1.14 thresholds of 93% and 87% can be applied. Even

for a sample size as large as 20,000, rarer causal SNPs with an

OR of 1.1 or less cannot be captured at a TPR exceeding

0.95 without capturing more than half of all SNPs in the

region.

Although the results are not given here, we also investi-

gated the utility of filtering for SNPs with different modes of

inheritance and found the results to be consistent with those

we modelled additively using per-allele ORs.

Figure 2(C) shows the results of SNP filtration with a sam-

ple size of 20,000 for different MAFs. Causal SNPs were

chosen that had four different MAFs but were located close

together in a single LD block within the 1 Mb region sim-

ulated (to reduce the possible effects of LD structure). It can

be clearly seen from Figure 2(C) that increasing the MAF of

the causal SNP from 0.08 to 0.10 increases the AUC of the

ROC curve (from 88% to 95%). Further increases in MAF

also increase the AUC, although increases above 0.13 (with

an AUC of 99%) only lead to negligible improvements in

AUC. In this figure, a point is marked on each ROC curve

at the threshold which results in a TPR of 0.95. It can be

seen that they are 49%, 80%, 95% and 97% when the causal

SNP has MAF 0.08, 0.1, 0.13 and 0.31, respectively. With a

sample size of 20,000, a causal SNP with an OR of 1.1 would

require an MAF greater than 0.1 in order to reduce the set

of candidate SNPs to less than 20% of its original size while

being 95% sure of capturing it.

RL Filtering

Previous studies (Easton et al., 2007; Udler et al., 2009, 2010a;

French et al., 2013) used RL filtering for fine-mapping, but
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(A) LP filtering for the same causal SNP with sam-
ple sizes of 10,000 to 50,000 with the threshold of
the 95th percentile highlighted. The causal SNP has
a per-allele OR of 1.1 and a MAF of 0.08.
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(B) LP filtering for the same causal SNP, varying
the OR between 1.06-1.24 with percentile thresholds
of the 85th and 95th percentiles highlighted. The
causal SNP has a MAF of 0.08, the sample size is
20,000.
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(C) LP filtering for causal SNPs with MAFs of 0.08-
0.31 with a threshold which results in a TPR of ap-
proximately 0.95 highlighted for each scenario. Each
causal SNP has a per-allele OR of 1.1, the sample
size is 20,000.

Figure 2 Receiver operating characteristic (ROC) curves showing the effectiveness of likelihood percentile (LP) as a fine-mapping

filter dependent on the sample size used, the per-allele OR and MAF of the causal SNP. One thousand datasets were simulated for

each scenario using the LD structure of the CASP8 region and the results of filtering at specific thresholds are highlighted.
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SNP Filtering in Association Regions

we have shown that simpler LP filtering results in ROC curves

with larger AUCs (illustrated in Fig. 1) in the scenarios we

considered. A disadvantage to RL filtering is the large amount

of variation between simulated datasets in the FPR using a

specified RL threshold. For example, we examined filter-

ing on the 1000 CASP8 simulations with a sample size of

20,000 and a causal SNP with an OR of 1.1 and an MAF

of 0.08 at the threshold used in these studies of 1/100. This

results in a TPR of 0.682 across the 1000 datasets. The me-

dian FPR across the datasets is 0.105 but the interquartile

(IQ) range of the FPR is (0.046, 0.268) and the full range

is (0.0003,1), indicating that between 1 and all 2871 of the

2871 original SNPs were retained in the simulated datasets

using RL ≥1/100. The full range is still between 2 and 2871

SNPs even at a much more relaxed threshold of RL=1/1000

(TPR=0.962).

We observed that the range of FPRs decreases for RL

filtering as the OR increases. A per-allele OR of 1.24 is

similar to the estimated effect sizes of the causal SNPs in the

studies which have used this type of filtering before (Easton

et al., 2007; Udler et al., 2009, 2010a). The sample size of

20,000 in the simulated datasets is also commensurate with

their sample sizes. The results for RL filtering for this scenario

are not shown, but the AUC (with mean FPR) is very close

to 1 and there is very little variability in FPR, suggesting

that in general RL filtering was a suitable method to use

in these studies. In particular, the mean FPR and TPR at

a threshold of 1/100 are 0.031 and 0.987, respectively. The

variability between simulations is a clear limitation of RL

filtering and we recommend filtering based on likelihood but

using a percentile threshold, particularly for OR of 1.1 or less.

LP Filtering with Imputed Data

All the results presented so far have been for datasets in which

all SNPs of interest were genotyped. However, Figure 3 shows

that when the causal SNP is one of many imputed SNPs, for

the scenario considered, the results of filtering are similar to

those when all SNPs are genotyped, provided an informative

set of SNPs is genotyped. The ROC curves are displayed for

LP and p-value filtering for a causal SNP with an OR of

1.1, an MAF of 0.13 and a sample size of 10,000 as these

were the best performing filters with fully genotyped data.

For both these filtering methods, the ROC curves for the

partially imputed datasets are very similar to those for the fully

genotyped datasets (the AUCs agree to two decimal places).

Imputation in other scenarios was also examined and the

agreement between the imputed and nonimputed analyses

was similarly close. Therefore, these filtering methods also

seem suitable for use with appropriately imputed genotype

doses.

Discussion

We have carried out a thorough simulation study to compare

the performance of several easily computed univariate statis-

tics with the aim of filtering SNPs in order to reduce the

number to take forward for further analysis. Some of these

methods have been previously used, the application of others

as a filter is novel to the best of our knowledge. Our study fo-

cuses on small effect sizes and relatively rare SNPs. The results

show that likelihood and p-value-based methods can be used

to effectively filter candidate causal variants in fine-mapping

studies for the scenarios we consider. We recommend using

the LP method as this is generally the most efficacious. We

carried out simulations based on three carefully chosen re-

gions of the genome to reflect different local LD patterns.

Despite being so different, LP filtering for causal SNPs with

the same OR and MAF resulted in quite similar true and

mean FPRs, meaning that our results might be applicable to

many genomic regions under consideration in fine-mapping

studies. We have also shown that genotype data which are

partially imputed can also be filtered effectively using these

methods. This conclusion relies on a set of carefully chosen

informative SNPs being genotyped and expected genotype

doses for the remaining SNPs being imputed using impute2

(Marchini & Howie, 2010).

In fine-mapping studies, investigators should choose the

filter threshold based on the sample size and the estimated

MAF and OR of the causal SNP (this can be estimated by

fitting the individual logistic regression models to each of

the SNPs and using the maximum fitted OR). The MAF of

the causal SNP is not so easily estimated but crucially affects

the effectiveness of LP filtering (Fig. 2C). For MAFs of 0.05

or less, filters might fail to capture the causal SNP with a

high probability even with a sample size of 50,000 (data not

shown). We suggest performing simulations for different MAF

SNPs in the region of interest. Using a more lenient filtering

threshold increases the probability of retaining the true causal

SNP, but also captures more SNPs in total (Fig. 2B). With LP

filtering, the proportion of SNPs that will be retained in total

is fixed and, with a large number of SNPs being fine-mapped,

this is approximately the same as the FPR and so should be

chosen with this in mind.

These results also highlight the importance of using large

sample sizes for fine-mapping and could be used as a reference

before the genotyping stage of a study to aid in the decision of

a minimum sample size. The required sample size to achieve

any given power to “discriminate between highly correlated

SNPs” at genome-wide levels of significance using RL has

also been investigated in detail in Udler et al. (2010b). They

have developed an online tool to calculate these sample sizes

given other known information. So, filtering at a threshold of

RL=1/100, with a causal SNP with an MAF of 0.12 and OR

Annals of Human Genetics (2014) 78,50–61 57C© 2013 The Authors.
Annals of Human Genetics published by John Wiley & Sons Ltd/University College London (UCL).

 1
4
6
9
1
8
0
9
, 2

0
1
4
, 1

, D
o
w

n
lo

ad
ed

 fro
m

 h
ttp

s://o
n
lin

elib
rary

.w
iley

.co
m

/d
o
i/1

0
.1

1
1
1
/ah

g
.1

2
0
4
3
 b

y
 T

est, W
iley

 O
n
lin

e L
ib

rary
 o

n
 [0

7
/0

6
/2

0
2
4
]. S

ee th
e T

erm
s an

d
 C

o
n
d
itio

n
s (h

ttp
s://o

n
lin

elib
rary

.w
iley

.co
m

/term
s-an

d
-co

n
d
itio

n
s) o

n
 W

iley
 O

n
lin

e L
ib

rary
 fo

r ru
les o

f u
se; O

A
 articles are g

o
v

ern
ed

 b
y
 th

e ap
p
licab

le C
reativ

e C
o
m

m
o
n
s L

icen
se



A. V. Spencer et al.

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Mean False Positive Rate

T
ru

e
 P

o
s
it
iv

e
 R

a
te

Data

Fully genotyped
Partially imputed
y=x

(A) Filtering using likelihood percentile points (LP).
The AUC using the genotyped data is 93.1% and the
AUC using the imputed data is 93.0%, both given
to 3 significant figures.
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(B) Filtering using p-values from Wald tests. The
AUC using the genotyped data is 92.9% and the
AUC using the imputed data is 92.8%, both given
to 3 significant figures.

Figure 3 The effectiveness of LP and p-value filtering for fine-mapping data which has been partially imputed compared to its

effectiveness for data which is fully genotyped. The causal SNP has an OR of 1.14, an MAF of 0.08 and a sample size of 10,000. A

set of 100 datasets were simulated using the LD structure of the CASP8 region containing 2871 fully genotyped SNPs. These were

then reduced to contain 469 genotyped informative SNPs and the remaining 2402 SNPs were imputed.

of 1.12, a sample size of 46,000 would be required to achieve

a power of 0.9 if this causal SNP was in LD at r 2 = 0.4 with

SNPmax (the SNP with the largest likelihood). However, if

the value of r 2 between these two SNPs was 0.7, the sample

size would need to be 92,000. This larger sample size is due

to the difficultly to differentiate between the causal SNP and

SNPmax when they are in such high LD.

Although using RL filtering with a threshold of 1/100

works well with a sample size of 20,000 when the effect

size is moderate, as was the case at both the FGFR2 and

the 16q12 loci (Udler et al., 2009, 2010a), the effectiveness

of this technique was seen to drop rapidly as the per-allele

OR drops below 1.2. One of the major downfalls of using

RL filters is the large amount of variation in FPR. This

results in high uncertainty about the number of SNPs that

will be retained after filtering. This is particularly a problem

for causal SNPs with a low OR or MAF or when the sample

size is small. LP filtering ensures that there is no uncertainty

in the number of SNPs retained which is particularly useful

when the number of SNPs that can be followed up is strictly

limited.

The filters based on the structural relationships between

variants did not produce encouraging results for causal SNPs

with low ORs and MAFs. We showed that filtering in such

scenarios using the PLD score developed by Zhu et al. (2012)

is only slightly more efficacious than the more basic LD meth-

ods and did not perform as well as the LP filter. More work is

needed to assess the utility of this method in other scenarios

before firm conclusions can be drawn.

The competing outcomes of these methods are the prob-

ability of retaining the true causal SNP (TPR) and propor-

tion of SNPs retained (FPR). A Bayesian decision theory

approach has been developed by Wakefield (2007) to help

deal with these two quantities. However, the difficultly with

this method is the specification of a ratio of the cost of false

nondiscovery to the cost of false discovery which many in-

vestigators might struggle to quantify with confidence.

The methods investigated in this study may be used when

it is believed that a single variant is causing an association in

a particular region of the genome. However, this may not

be the case in many genomic regions. Several studies have

also been carried out into alternative methods that may be

more appropriate in identifying multiple causal variants in a

single region, which is a hypothesis that many investigators

are beginning to consider. For example, Vignal et al. (2011)

demonstrated that penalised logistic regression (using Hyper-

LASSO) was an effective method for analysing fine-mapping

data from the HLA region for Rheumatoid Arthritis, and in
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SNP Filtering in Association Regions

general appears to be useful for finding multiple associations

in a region of high LD.

Whether there are single or multiple causal variants in a

region, causal SNP resolution may be improved by includ-

ing information other than the genotype data. For example,

there is now much data freely available on features of indi-

vidual genetic variants in online databases such as the En-

cyclopaedia of DNA Elements (Encode Project Consortium,

2011). This includes features such as how conserved vari-

ants are across species and whether they are nonsynonymous.

Bayesian methods of statistical analysis can be used to com-

bine prior information about the likely functional role of an

SNP with evidence from the genotype data and are a promis-

ing and exciting avenue of future research. Such methods

include BLVMs (Fridley et al., 2011), stratified false discovery

rates (Sun et al., 2006; Schork et al., 2013) and Bayes Factors

(Wakefield, 2009; Knight et al., 2011).
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