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ABSTRACT

The increase in the proportion and number of older people in developed countries has
resulted in a large amount of research investigating risk factors for adverse health
outcomes, including mortality. However, research in this area has been limited to some
extent by the range of risk factors that have been included in regression models. Part of
the reason for this is that traditional statistical methods and software packages can
include a restricted number of variables and combinations of variables in the models.
This paper describes ongoing research seeking to overcome these limitations through the
development of the CORGA program, which combines Cox Regression with a Genetic
Algorithm for the variable selection process. CORGA was used to try and identify the
best combination of risk factors for four-year all-cause mortality. The combination of ten
risk factors that were identified by CoRGA included both known and new risk factors for
mortality in older people. Further research is seeking to develop the program further and

to identify further risk factors for all-cause mortality in older people.
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INTRODUCTION

The increase in the population of older people in developed countries has created
challenges for health policy makers, service managers and planners, as well as health care
professionals. (Grundy, 1997). Associated with the increase in the numbers and
proportions of older people, is an increase in the levels of disability among people of
advanced age, and a need for improvements in health and social care services used by
them. To provide a better understanding of the levels of poor health and disability among
older people, research on health outcomes has sought to describe the epidemiology of
specific causes of illness and disability, e.g., falls, stroke, cardiovascular disease. The
identification of risk factors for all-cause mortality in older people has also attracted
much interest in longitudinal studies of older people, because of the information it

provides about the health and well-being of the population of older people.

Research over the last few decades has revealed a variety of risk factors for
mortality among older people, e.g., from health, medical, social science perspectives
(Basuk, 1999; Fried, 1998; Oman, 1998). Previous research on all-cause mortality has
applied conventional statistical techniques, e.g. regression analyses, for identifying risk
factors from data gathered in longitudinal studies of older people. However, common
traditional statistical software packages, e.g., SPSS and SAS, do not provide random
selection procedures, and only those data and variables that are selected by the
researchers themselves will be considered for inclusion as independent variables in
regression models. This means that very limited combinations of risk factors can be
considered and important variables and potential risk factors may be overlooked or
ignored. Variables that are not selected for inclusion in models may be better predictors
of all-cause mortality. Therefore, the development of techniques that permit all variables
to be considered for inclusion within the Cox Proportional Hazard models, and from
these select those variables which form the best combination for predicting mortality,
may confirm current risk factors as being important predictors of mortality, but may also
identify previously unknown, or unsuspected, risk factors, and enhance our understanding
of the mediators of mortality among older people. This paper describes a study that is
developing a new approach called CoORGA (Cox Regression Genetic Algorithm) to select

the best combination of risk factors for mortality in older people.
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The paper contains several sections describing the overall research on CoORGA
and how this research has been conducted. The methods section describes the principles
of Cox regression and genetic algorithms, how these have been combined to analyze data
from the Nottingham Longitudinal Study of Activity and Ageing. Early results using
CoRGA are described, together with their validation using Statistical Package for the
Social Science (SPSS). The paper concludes with a discussion on the potential of CORGA

for analyzing risk factors for all cause mortality and future directions in this research.
METHODS

Survival analyses are used for analyzing risk factors for an event occurring over a
period of time within a population or group of interest (Altman, 1991; Bath, 2003). The
word “survival” suggests that the event of interest, could be death (or not) of the
individual, but in reality it could be any event, e.g., myocardial infarction, fall, and the
word survival refers to the length of time the person “survives” before the event, death or
otherwise, happens. This study employs one specific method of survival analysis, Cox

proportional hazards regression.

Cox proportional hazards regression

Cox proportional hazards regression, often referred to as Cox regression, is a very
specific type of regression used to model outcomes in health and medical research (Cox,
1972; Collet, 1994). Cox regression is important in that the dependent variable consists of
a binary attribute, which indicates whether the event of interest actually occurred, and a
secondary attribute that indicates the #ime to when the event of interest occurred.
Therefore, if the outcome, or event of interest is mortality, Cox regression not only takes
into account whether the individual has died or not, but it also considers the length of
time until the person died. Cox regression uses this information to assess the importance,
or statistical significance, of the independent variables, as potential risk factors for the

event of interest, in this study, death.

Cox proportional hazard regression is derived from logistic regression that was
developed for regressing dichotomous, or binary, outcomes. The basic logistic regression
function is a transformation of outcome in linear regression. The general equation for

linear regression is shown in equation 1:
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y =c+ mx; + mux; + maxzt...mx, (Equation 1).

in which the outcome variable is a continuous variable, y, associated with
independent variables x;, in which i equals to 1 to n. The degree of relationship between
each of the independent variables, x, and y is shown by variable m. Variable m is
calculated using least squares method described elsewhere (Altman, 1991). Cis a
constant for the equation, indicating the intercept on the y-axis for the line for the graph

of y against x.

When the outcome variable is binary, y is transformed using a logit calculation as

indicated in Equation 2:

log (v) = Po + Pixi + Paxz + ... Buxa (Equation 2)

Log(y) is equal to the probability of either the presence or absence of y. The logit
of y can also be expressed as in Equation 3. Variable P in equation 3 is defined as the

probability of Y to appear in 1 and 1-P probability of Y to be 0.
logit(p) =log, (IL) (Equation 3)
-P

When the proportion, p, is 0, the log odds are minus infinity, and when the
proportion, p, is 1, the log odds are plus infinity. Regression models for the log odds can
be fitted using a regression equation similar to that used for linear regression and shown

in Equation 4 (Bland, 1995, p.321).

m=-m

loge(]i) =b, +bx +b,x,+...+b,x (Equation 4)

where p is proportion to be predicted and x), x», etc. are the independent, or

predictor, variables.

In the Cox proportional hazard regression, the function incorporates the

additional time parameter. Thus, algebraically equation 2 expended to equation 5

Y = exp™hy (1) (Equation 5)
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The hazard function denoted as hy (t) gives time to death for the sample
population. To obtain relationship between Y, x and hy (t), Cox (1972) introduced the
maximum partial likelihood estimator for estimating value of coefficient . The
coefficient can be use to produce the standard error, the hazard ratio and 95% confidence
interval for each independent variable. This information is useful to shows the proportion

for death caused by the predicted factors.

In order to measure model adequacy, the minus twice log likelihood ratio test is
used. The smaller the value of the (minus twice log likelihood) ratio for a given set of
independent variables the better is the model. (Collet, 1994). Additionally, Akaike (1974)
proposed a criterion called Akaike’s Information Criterion (AIC) for selecting the best
model based on the minus twice log likelihood value. Further details on AIC is available

in Akaike (1974). The model that reduces the AIC is considered as a better model.
Variable section techniques for regression models

Traditionally, the Cox regression function has applied the same selection
procedure as in linear and logistic regression. Stepwise selection procedure is a common
technique for selecting variable to be fitted into Cox model. This method applied in most
of mortality study for mortality in older people. The complete description on stepwise
selection is available in Hosmer and Lamshow (1998). The research described in this
paper did not apply the stepwise selection procedure as a selection technique for Cox
proportional hazard model, but using the AIC and minus two log likelihood values, the
CoRGA model was developed to undertake a genetic search to develop a model

containing the best predictors of mortality.
Genetic Algorithms

Evolutionary computational tools, such as Genetic Algorithms (GAs) have been
developed as methods of searching through high dimensional space of possible solutions
to find an optimal solution for a given problem (Goldberg, 1989) and have recently been
used to tackle such problems in health and medical research (Pefia-Reyes and Sipper,
2000; Bath, 2003). They are particularly suited for use in data mining in health and
medical research, where there is a preponderance of variables and multivariate

relationships. Genetic algorithms were developed by Holland in the 1960s as a random
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selection scheme inspired by biological evolution and are described in full detail
elsewhere (Goldberg, 1989; Withley, 1994; Mitchell, 1996). GAs have been applied in
health and medical related research for diagnosis, prognosis, imaging, signal, planning
and scheduling (Pefia-Reyes and Sipper, 2000). They have been used as variable selection
tools for predicting health outcomes in combination with Artificial Neural Networks
(Narayanan, et al 1993; Jefferson et al 1998, Bath et al 2000). In addition to being used
with neural networks, several studies have been identified that have used GAs in
combination with statistical techniques, e.g., linear and logistic regression, for variable
selection (Wallet, 1991; Vinterbo et al, 1999; Stacey and Kildea, 2000). However, no

study has applied GA in combination with Cox regression for survival analysis.

In general, the genetic algorithm increases size of the search space within a data
set first by initiating a random potential solution coded in artificial genes on a series of
chromosomes. This initial population is generated at random or using heuristics (Peria-
Reyes & Sipper, 2000). The attributes of each individual, in this study the independent
variables, are encoded via genes on a chromosome. Each chromosome has a fitness
function associated with it, and this measures its suitability to the problem situation being

investigated, in this case the relationship with the dependent variable.

Once a full set of fitness values has been calculated, the genetic operator will play
arole in the reproduction process. In genetic algorithm, selection, recombination and
mutation are considered as reproduction operator to enlarge dimensionality of search

space.

The population of chromosomes undergoes a series of iterations, synonymous
with generations in evolution, in which individuals within the population undergo sexual
reproduction to create new individuals (chromosomes) with new genotypes, or
combinations of independent variables. In order to avoid premature convergence, GA
provides mutation for the existing chromosomes, which introduces random changes into

the genotypes of the chromosomes.

Thee offspring join the population and each its fitness function associated with its
genotype. Each individual has its fitness evaluated by decoding the genotype, in this case

the strength of the relationship between the independent variables and the outcome
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variable. The value of this fitness function is used to determine whether that chromosome
survives the next generation to reproduce and pass on its genetic material. Over a number
of generations the population should adapt to the environment, and an optimal solution
should emerge, in this case a Cox regression model with an optimal combination of risk

factors.

GAs can be applied in several ways, i.e., genetic algorithms with or without
elitism and steady-state GAs with or without elitist strategy. Complete description on
both methods is available in (Whitley, 1993; Colley,1999). In this research a steady state
GAs with elitist strategy was employed. The steady-state GAs, sometimes called
incremental GAs, permits only a few of the least fit chromosome to be replaced by
genetic operator. This can be done using fraction procedure called generation gap. In
order to increase number of individual for future generation, the proportion of fraction
can be expanded. It is useful to set only successor for current generation be inserted for

reproduction. This term is referred to as elitism. (Colley, 1999).

The termination process on GA depends on number of generation set by user.
Increase number of generation can add number of search space. However, if number of
chromosome is small, GAs may reach premature convergence. The best solution is

evolved at the final generation.

Cox regression and genetic algorithm (CoRGA)

The aim of the research described here was to use a GA combined with Cox
regression to develop a model that permitted all variables to be considered for insertion
into the Cox regression model. The Cox function built using Matlab is able to regress
survival data and produce statistical descriptors, i.e., coefficient value, standard error,
hazard ratio, 95% confidence interval, the minus twice log likelihood and AIC value
described earlier. In combination with the GA, the minus twice log likelihood and the

AIC have been used as the fitness measurement for each chromosome.

In this study, the genes were represented as integers. The integer genotypes allow
all variables to be included for consideration in each hazard model. Different sizes of
chromosomes permit different numbers of variables to be used in combinations.

Increasing the number of chromosomes in the initial population will increase the potential
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combination of variables to be analyzed. The chromosomes were coded in integers with /
size for chromosome length and ¢ number of chromosome in the initial population. The
assumed number of variables was p. Thus the maximum number of combinations
randomly created without duplicating variables was given by equation 6 for / > /. If / is

set to 1, maximum hazard model is equal to number of variables p.
H=p -p (Equation 6)

However, in the experiments described here, the number of chromosome at the
initial population was set to 50. Therefore, the maximum number combinations for this

experiments was 50 hazard models.

The genotype represented the variables index in the data set. The initial
chromosomes were decoded into actual variables before entering Cox regression model.
The Cox proportional hazard function computed the AIC from H number of
chromosomes, which represented A hazard model. The complete array containing the

AIC was used for evaluation of the ranking function.

The complete set of fitness included the ranking parameter to be used by the
selection operator to chose the best potential parents for the intermediate generation. The
ranking function assigned artificial weight to each chromosome for future sampling. The
fittest AIC will get the highest ranking and ready to be selected. Stochastic universal
sampling selection scheme was applied to reduce bias. The generation gap was set to 1.0,
which means that populations of equal numbers appear at each generation. The selected
chromosomes were sent for crossover operation. The new offspring produced performing
multipoint crossover. Figure 2 shows how selection of the chromosomes is achieved in

CoRGA.
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Chl =11 3049243 - 2367.00
Ch2=27581294 >-16.89
Ch3=3445522 > -34.12
Ch4=456612 > 4567.00

Ch2 Ch3
2 34
75 45
81 5

294 22

AIC value for each chromosome

Fitness Rank
Chl =1.1356
Ch2 =1.7863
Ch3 =1.9675
Ch4 =0.2341

Selected Chromosomes

Figure 1: Selection of chromosomes in CORGA. Four chromosomes (Ch) are
shown, together with the genes (independent variables) that they contain and the
AIC value. A fitness rank is then associated with each chromosome, based on the
AIC value, and the chromosomes with the highest fitness rank are selected for cross-
over.

Once the chromosomes have been selected, they undergo crossover, as shown in

Figure 2.

Ch2
275 81 294

Ch2
3475522 Ch3

Ch3

34/455 22 24581 294

Selected Parents New Offspring

Figure 2: Crossover of the selected chromosomes. Crossover is seen to be
taking place at two points on each chromosome (between genes 2&75 and 75&81 on
parent chromosome 2 and between genes 34&45 and 45&5 on parent chromosome
3).
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Figure 3 shows how mutation is undertaken in CORGA. A mutation probability of
0.01 was used in CoRGA. By the random insertion of new genetic material (i.e., new
variables), the mutation process can restructure hazard model to increase search space

that is being explored and prevent premature and sub-optimal convergence.

Old Chromosome

New Chromosome

Figure 3: Mutation in CORGA — Gene 34 Chromosome 2 has mutated to a
new gene 61.

The new offspring from the crossover and mutation processes are re-evaluated
using Cox regression to determine a fitness function, the AIC value. The best
chromosomes (combinations of variables) are retained in the current generation, and are
reinserted into the gene pool to maintain the population size. In order to reduce bias,
previously unselected chromosomes from the initial population are mixed with the fittest
model at the current generation to open new dimensionality of search space in the
succeeding generation. The reinsertion function in Matlab provides steady state GAs with
an elitist strategy. In this research, the generation gap was set to 1.0 and 90% of
population were replaced by the fittest chromosomes. Therefore only about 10% of
unselected chromosomes inserted into each succeeding generation. Figure 4 shows the

overall process of CORGA
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NLSAA data

)

Initial Population
50 Chromosome created

Multi combinations of hazard model

v

|

Objective Function
Cox Regression Model

L -

/ >

Ranking Fitness

Select Best Parents

Smallest AIC —»

v

Crossover

v

Mutation

v

New Chromosome

v

Evaluation of

Y

Worst
Chromosome

Cox Regression

v

Reinsertion

Keep Best
Predictor model
at generation ¢

Figure 4: The Overall Process of CORGA
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Use of CORGA

A series of seven CORGA experiments was conducted using data from the
Nottingham Longitudinal Study of Activity and Ageing (NLSAA) in which the number
(n) of genes (variables) in each chromosome was varied to identify the best combinations
of n variables for n =1,2,4,8,10,12,16 variables. The number of generations that was set
for each experiment was based on the size of chromosomes, i.e., the greater the number
of genes the longer the program took to reach convergence. Initial experiments were used
to establish the approximate number of generations required to ensure convergence
occurred and to avoid premature convergence. Table 1 shows the features of the

experiments conducted in this research.

Experiment | Number of Variables Number of
Number in chromosome Generations

1 1 250

2 2 250

3 4 250

4 8 250

5 10 500

6 12 500

7 16 639

Table 1: CoORGA Experimental Features showing the number of genes in the
chromosomes and the number of generations required to reach convergence.

Nottingham Longitudinal Study on Activity Ageing (NLSAA)

Data were derived from the Nottingham Longitudinal Study on Activity and
Ageing (NLSAA). This is an ongoing survey of activity, health and well-being conducted
within a representative sample of 1299 community-dwelling people originally aged 65
and over, of whom 1042 (406 men; 636 women) agreed to participate (response rate =
80%). The baseline survey was conducted between May and September 1985 and
information on mortality within the sample was provided by the UK National Health
Service Central Register, where all UK deaths are recorded and which supplied copies of

all the death certificates as they accrued. Interview data collected from respondents
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included information on cognition, physical health, psychological well-being, perceptions
of health and well-being, customary physical activity and are described in detail
elsewhere (Morgan, 1998). The actual data consist of four main types of variables, i.e.,
continuous, nominal, ordinal and logical (binary). However, CORGA only supports
continuous and logical datasets, so that nominal and ordinal variables were transformed
into binary variables. CORGA provides facilities to deal with missing values for
individuals, by removing all cases containing missing values for the variables included in
the Cox regression models, in a manner similar to SPSS. Following transformation of the
variables, 460 variables were available for analyses using CORGA. CoRGA was used to
identify the best combinations of risk factors for predicting 4 year mortality, i.e.,
mortality to 30" April 1989. Once the combination of each set of variables had been
established these variables were entered into a Cox regression model within SPSS to
determine the Hazard Ratios (HR), 95% confidence intervals and p values associated

with each variable and category.

The overall results for the 7 sets of experiments are described here with a detailed
discussion of the combination of risk factors identified in the experiment to determine the

optimal combination of 10 risk factors for mortality.
RESULTS

CoRGA developed models containing combinations of 1,2,4,8,10,12,16 risk
factors for four-year mortality. Figure 5 shows the AIC values for the final combination
of risk factors for each chromosome size, according to the size of the chromosome. The
highest AIC value (i.e., least negative) was computed for the model containing a single
chromosome and the lowest AIC value was obtained for the model containing 16

variables in the chromosomes.

Several experiments need to re-executed because of certain failures i.e. premature
convergence and not converge. However results for others experiments are not presented

here, but are described elsewhere (Ahmad).
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Description of Variables Selection in CoRGA

10
. Chromosome Size
8
I 1
£ 2
[
- = 4
4 [
HEHH 1w
24 I
E sz
0 . . . i . H . ] 16
-18517.8 -12274.8 -807377 -4688.38
-13441.2 -11506.7 -6654.07
AIC Value

Figure 5: Graph of AIC Value in converged models according to the number of
genes (variables) in the model.

The results for the model containing 10 genes are described in detail here and

further details are available elsewhere (Ahmad).
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Results for 10 genes

CoRGA s successfully identified 10 variables in the final hazard model obtained

after 500 generations. The AIC value for this final model was -12274.75 (see figure 4)
and 920 cases (individuals) were included in the model once individuals with missing
values for those variables were excluded. The variables that were selected by CORGA
were (in no particular order):

= Period of time since separation from spouse or bereavement.

= Ability to raise £200 in an emergency.

=  Number of cigarettes smoked daily.

= Whether employed or not.

= Possesses a television or radio or not.

= Reported age in years.

= Perceived activity relative to other people of the same age.

= Time since visited the dentist.

= Walks out alone or never walks out alone.

*  Whether joint pain or stiffness causes difficulty in walking.

Table 3 shows the adjusted Hazard ratios, 95% confidence intervals (CI) and p
values for each variable and category when all the variables were included in the Cox
regression model in SPSS. It can be seen from Table 3 that in this adjusted model, the
ability to raise £200 in an emergency (p=0.031), being employed or not (p=0.030), age
(p<0.001), perceived activity (p=0.002), whether a person walks out alone or not
(p=0.048) were all significant predictors of four-year mortality, independent of the other

variables in the model.

Table 4 shows the unadjusted Hazard ratios, 95% CI and p values for each
variable and category when the variables were included in separate Cox regression
models in SPSS. It can be seen from Table 4 that in the unadjusted models, the length of
time since separation from spouse or bereavement (p=0.051), the ability to raise £200 in

an emergency (p=0.008), the amount of cigarettes smoked daily (p=0.001), age
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(p<0.001), perceived activity (p<0.001) and whether joint stiffness causes difficulty

walking (p=0.002), were all significant predictors of four-year mortality.

Variables Name Category where Adjusted 95% CI P value
appropriate Hazard
Ratio

Period of time since separation from 0.986 0.972, 1.001 0.073

spouse or bereavement.

Ability to raise £200 in an emergency.  No difficulty 0.031
A Little Difficulty 1.423 0.938, 2.160 0.097
A Lot of Difficulty 1.272 0.757,2.137 0.363
Impossible to raise 1.995 1.194, 3.333 0.008

Number of cigarettes smoked daily. Never smoked 0.068
0-5 Daily 1.263 0.773,2.028 0.344
6-10 Daily 1.832 1.233,2.787 0.004
11-20 Daily 1.458 0.914,2.275 0.107
21-30 Daily 2.309 1.044,4.758 0.031
31-40 Daily 1.712 0.666,4.256 0.256
41-50 Daily 2.178 0.661,6.914 0.194
51-60 Daily 3.070 0.697,12.775 0.131

Whether employed or not Employed 0.476 0.030

Possesses a television or radio or not. Posses a television 0.800 0.450,1.425 0.449

Age 1.129 1.098,1.160 0.000

Perceived Activity relative to peers Much more active 0.002
More active 1.238 0.722,2.122 0.438
About as active 1.483 0.829,2.653 0.184
Less active 1.984 1.061,3.709 0.032
Much less active 3.551 1.745,7.224 0.000

Time since last visited the dentist 1.266 0.898,1.78 0.178

Walk out alone and never walk out Never walk with friend 0.362 0.132,0.991 0.048

alone at same age

Whether joint pain or stiffness causes Causes difficulty 1.106 0.785,1.558 0.566

difficulty in walking.

Table 3: Adjusted model for combination of 10 risk factors evolved by CoORGA

determined using SPSS.
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Variables Name Category where Unadjusted 95% CI P value
appropriate Hazard
Ratio
Period of time since separation from 1.011 1.000,1.002 0.051
spouse or bereavement.
Ability to raise £200 in an emergency.  No difficulty 0.008
A Little Difficulty 1.586 1.095,2.297 0.015
A Lot of Difficulty 1.439 0.953,2.172 0.083
Impossible to raise 1.758 1.140,2.711 0.011
Number of cigarettes smoked daily. Never smoked 0.001
0-5 Daily 0.946 0.620,1.444 0.798
6-10 Daily 1.283 0.896,1.836 0.174
11-20 Daily 1.124 0.779,1.624 0.532
21-30 Daily 0.803 0.390,1.653 0.551
31-40 Daily 1.350 0.549,3.319 0.514
41-50 Daily 1.666 0.612,4.533 0.317
51-60 Daily 5.319 1.953,14.487 0.001
60+ Daily 7.760 2.451,24.570 0.000
Whether employed or not Employed 1.156 0.6312.119 Ns
Possesses a television or radio or not. Posses a television 1.451 0.917 -2.295 Ns
Age 1.091 1.072,1.113 0. 000
Perceived Activity relative to peers Much more active 0.000
More active 1.378 0.812,2.338 0.234
About as active 1.461 0.833,2.562 0.185
Less active 1.857 1.043,3.306 0.035
Much less active 4.645 2.542.,8.489 0.000
Time since last visited the dentist 1.389 1.039, 1.857 0.027
Walk out alone and never walk out Never walk with friend  1.339 0.631-2.842 Ns
alone at same age
Whether joint pain or stiffness causes Causes difficulty 0.646 0.493,0.848 0.002

difficulty in walking.

Table 4: Unadjusted model for combination of 10 risk factors evolved by
CoRGA determined using SPSS. Variables entered into separate models. Ns = non-

significant.
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DISCUSSION

A large amount of research has been conducted to identify risk factors for all
cause mortality in older people (Bassuk et al, 2000; Dyer et al, 2000; Korten et al, 1999;
Ho et al, 1994). However, this body of research has been limited by both the number and
selection of variables included in hazard models. In this study we have attempted to
overcome these limitations by developing a selection procedure for the Cox proportional

hazards regression model that is inspired by the evolutionary theory of natural selection.

The CoRGA program was used to analyze interview and mortality data for older
people living in Nottingham. The variables selected in the final model for 10 variables
included known risk factors for mortality, e.g., age and smoking, in the general
population, not just among older people. Age has long been regarded as an important
predictor of mortality, and its importance has been confirmed here, as it was highly
significant in both adjusted and unadjusted models. In addition CoRGA identified a
number of variables, e.g., the ability to raise £200 in an emergency, employment status,
time since visited the dentist, joint pain restricting ambulatory activity, and general
walking activity, that may be acting as proxy for previously implicated variables such as

socioeconomic circumstances, poor health and general frailty.

What is particularly interesting about the results generated by CoRGA, is that risk
factors were identified that were not apparent from the research literature, i.e., perceived
level of activity, time since bereavement/ separation. Although perceived health
(sometimes called self-rated health), has been identified as an independent risk factor for
mortality (Idler and Benyamini, 1997; Benyamini and Idler, 1999), to our knowledge
how people perceive their activity relative to that of their peers has previously not been
reported as a risk factor. The time that a person has been bereaved or separated has not
previously been identified as a risk factor, and may be due to loneliness or additional
risks associated with living alone (Bath, 2000). CoRGA also identified possession of a
radio or television as a predictor of mortality, which has not previously been reported as a
risk factor, and may be acting as a proxy for depression or loneliness, or for lack of social
engagement with the world. The importance of these risk factors will be subject to further

research to gain a deeper understanding of their effect on mortality.
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CoRGA should not be regarded as a deterministic process by which the program
will necessarily generate the same results, i.e., identify the same combination of risk
factors for a particular number of genes in the chromosome. However, by having a large
initial population of chromosomes and allowing a large number of generations we are
confident that CoRGA reached convergence and similar, if not identical, results are
achievable if this were to be undertaken again. Our confidence is supported by the
combinations of risk factors identified for chromosomes of other sizes. Although these
are not reported in detail here, the risk factors identified for chromosomes containing
n=1,2,4,8,12 and 16 genes correspond very closely with the risk factors reported and
identified here (Ahmad). In this research, we are not so much trying to find the perfect
combination of risk factors for mortality, rather to develop our understanding of risk

factors through consideration of all possible variables.

When comparing CoRGA with other intelligent analysis methods, CoRGA is able
to produce a mortality (Hazard) ratio with confidence intervals, which provides useful
information for health care professionals and planners. In contrast, neural networks make
predictions on individuals in the data set and then compare the results with the observed
outcome, in order to develop a measure of the accuracy of the predictive models.
Although this may be useful in developing prognostic models (Bath, 2003), it provides no
information on the importance of the variables used to make the predictions. CoORGA, on
the other hand, produce numerical values similar to those provided by statistical models
to provide researchers with information on the relative importance of predictor variables.
In addition, most non-statistical analysis tools, e.g., neural networks and recursive
partitioning, analyze survival data using binary variables only and do not include the time
to the event occurring (Carmelli and Swan, 1995; Xiang et al, 2000). The data analyses,

and therefore the results, are less precise.

Using a GA approach to variable selection in CoRGA meant that a much larger
set of variables could be considered for inclusion in the Cox regression than has
previously been possible. Using mutation, the random genetic selection component in
CoRGA, helped to increase the dimensionality of space that could be searched within the
data sets. These two features in CoORGA enabled new combinations of potential risk

factors for all cause mortality to be considered in Cox regression models.
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A further novel aspect of the use of CORGA was representing the genes and
genotype using integer, rather then binary, values. This allowed each variable to be
included within a model. Previous studies combining logistic regression and GAs, have
represented the genotype in a binary mode, which meant that not all variables were

included in the logistic regression model (Vinterbo et al, 1999; Stacey and Kildea; 2000).

CoRGA also provides facilities for dealing with missing values. All cases
containing missing values for each combination of variables (genotype) generated by the
GA are removed from the Cox regression model. This mean that data sets containing
missing values can be analyzed using CORGA, which means that it will be possible to use
CoRGA on large datasets, and therefore a greater number of data sets. However, the
disadvantage of this approach is that the different Cox regression models contained
different numbers of cases, and that the greater the number of variables included in
models (i.e., the larger the genotype or number of genes in each chromosome) the higher
the number of cases that would be removed. The problem of dealing with missing values
is not unique to this study and there is currently no completely satisfactory method of
dealing with it. The ideal situation is to have no missing data, which may be feasible in
small-scale studies in which the data collection is very tightly controlled, e.g., clinical
settings, but in large-scale epidemiological studies such as the NLSAA, it is almost
inevitable that data are missing. Another possible solution is to replace missing values
with a suitable value, derived from the variable in the sample, e.g., the mean or mode, but
this method is not without limitations. We aim to conduct further research to investigate
alternative methods of overcoming the problem of missing data. Further research is also
using the CoRGA program to identify risk factors for mortality over different time
periods and will examine in greater detail the importance of the risk factors identified

here.

CoRGA has the potential to be used for identifying risk factors for events other
than mortality occurring e.g., admission to hospital, fall, strokes and other health
outcomes, as long as data are available on not only whether the event occur but on the
timing of the event. Such application would have use in health services research, public

health and epidemiology.
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CONCLUSIONS

The combination of Cox regression with Genetic Algorithm increased the
dimensionality of the search space and allowed all variables to be considered for
inclusion in the models for identifying risk factors for all cause mortality. This research
has introduced the use of artificial genetic searches into survival analysis and has
revealed useful information on older people for public health and health service planning.
The study confirmed known risk factors for mortality in older people and also identified

new risk factors.
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