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Data mining in health and medical information 

Peter A. Bath 

Introduction 

Data mining (DM) is part of a process by which information or knowledge can be extracted from 

data or databases and used to inform decision-making in a variety of contexts (Michalski et al., 

1997; Benoit, 2002). The process of DM includes a range of tools and methods for extracting this 

information and one of the main driving forces for the development of DM tools has been their use 

in the commercial sector for knowledge extraction and discovery in commercial/ business 

applications (Adriaans and Zantige, 1996; Benoit, 2002). However, DM has been developed and 

applied in a number of different areas and the purpose of this review is to describe and discuss one 

such application area, the use of DM for analysing health and medical information.  

Several reviews of DM have appeared in ARIST over the last few years (Trybula, 1997; Trybula, 

1999; Benoit, 2001), and this review complements these by exploring the use of DM in the specific 

domain of health and medical practice and research and examines the features of this domain and its 

particular suitability for DM in the problems specific to this area. A number of general reviews of 

the application of DM tools in the health and medicine have recently been published (e.g., Maojo 

and Sanandrés, 2000; Lavra  N, 1999a; Horn, 2001; Pe a-Reyes and Sipper, 2000; McSherry, 

1999) as well as more specific reviews of the use and effectiveness of particular tools and methods 

in this domain, mainly artificial neural networks (Baxt, 1995; Cross et al., 1995; Dybowski and 

Gant, 1995; Lisboa, 2002; Liestol et al., 1994; Tu, 1996) but also machine learning methods 

(Lavra , 1999b) and computer-based clinical decision support systems (Johnston et al., 1994). In 

addition this review considers the importance of statistics in the DM process, and numerous general 



statistics texts are available and accessible to non-statisticians with an interest in analysing health 

and medical information (Altman, 1991; Bland, 2000; Daly and Bourke, 2000). This review 

provides an overview of the range of DM tools that have been applied in health and medicine and 

examines the issues that are affecting their development and uptake as part of routine clinical 

practice in this domain. 

Scope and limitations of the review  

Recent ARIST reviews of DM have discussed mining of structured data (Trybula, 1997), textual 

data (Trybula, 1999) and DM as part of the knowledge discovery process (Benoit, 2001) and these 

have considered applications of DM in different contexts and domains. This review will only 

describe those tools that have been used for mining data in health and medicine, and will discuss the 

issues that make these data suitable for DM and the factors affecting their use. The review will not 

consider developments in DM in other application areas, nor will it compare the use of DM 

techniques within health and medicine in relation to these areas. Although what is described for 

health and medical research may be equally true of other areas in which DM has been or might be 

applied, and there may be comparisons and contrasts in the application of DM in the 

medicine/health domain and other areas, discussion of these is beyond the scope of this review. The 

use of DM techniques in areas closely related to medicine and health, e.g., analysing genomic 

databases in bioinformatics etc., are outside the scope of the review and will not be discussed here. 

Reviews discussing the role of DM in this field have recently been published (Bertone and Gerstein, 

2001; Luscombe et al., 2001; Miller 2000). The review will focus on DM tools for analysing 

numeric quantitative data in health and medicine and will not consider DM tools such as HINT and 

DEX developed to process qualitative data (Bohanec et al., 2000) or the mining of text data in this 

domain (Trybula, 1999; Swanson, 1987; Swanson and Smalheiser, 1999). Within the health and 



medical domain the review will consider the application of DM tools in medical and health care 

practice and research and will not describe application of DM tools in laboratory environments; a 

useful, if now somewhat dated, review by Dybowski and Gant (1995) discussed the use of artificial 

neural networks in pathology and medical laboratories and Jones (2001) recently reviewed the use 

of data mining for identifying adverse events in clinical trials and adverse events databases. In 

undertaking the review a considerable number of research articles reporting applications of DM in 

the computing, health and medical literature were retrieved. Search terms were developed to cover 

the range of DM methods and tools that have been adopted within health and medicine, including 

�DM�, �artificial neural networks�, �machine learning�, �decision trees�, �rule-based�, 

�evolutionary�, �genetic algorithms�, etc. The retrieved results were examined and filtered to 

achieve an appropriate balance of review and original empirical research publications that was 

representative of the techniques that have been used and the areas in which they have been applied. 

The scope and contents of this review are therefore intended to reflect the use of DM tools in the 

health and medicine. Although the methods outlined above are predominantly developed from 

artificial intelligence, the importance of descriptive and inferential statistics in the DM process will 

be discussed and the review will consider both statistical and non-statistical methods of analysing 

data and the relationship between them. The review commences with a discussion of the various 

definitions of DM and ho 

Definitions of DM 

Various definitions of DM and synonyms for it have emerged in recent years that are not wholly 

consistent with each other (Benoit, 2001), which have created some confusion and suspicion in 

health and medicine, and this review will attempt to clarify what DM is, and equally importantly, 

what it is not. Benoit (2001, p.265) in his recent ARIST review on DM defined DM as �a multi-



staged process of extracting previously unanticipated knowledge from large databases, and applying 

the results to decision-making� within the larger �Knowledge Discovery� process (Fayyad et al., 

1996). Other authors (e.g., Bellazi and Zupan, 2001) have made the distinction between DM and 

intelligent data analysis (IDA). Similar to Knowledge Discovery in Databases (KDD), IDA 

describes the complete process of data analysis, including pre-processing etc., whereas DM 

describes the actual techniques involved. The relationship between DM and Knowledge Discovery 

in Databases (KDD) has been presented in detail elsewhere (see for example, Adriaans and Zantige, 

1996; Benoit, 2001). Here it is sufficient to state that DM is the knowledge extraction stage of the 

knowledge discovery process which includes the selection of appropriate data possibly from a 

variety of sources, the cleaning of these data, the merging of the data from the different sources, the 

coding and re-coding of the data into an appropriate format, DM itself followed by the presentation 

and reporting of the results of the DM activities. Data mining is therefore a central part of the 

knowledge discovery process and encompasses a range of techniques selected on the basis of their 

suitability for the particular task in hand. The process of DM in health and medical research needs 

to incorporate not only the analyses of data but determining appropriate research questions and 

interpretation of the results (Richards et al. 2001).  

While this portrayal of DM is fairly clear, confusion arises through the use of various synonyms for 

DM as discussed by Benoit (2001) and Trybula (1999). These synonyms include �knowledge 

discovery� itself, which as indicated above, is the larger process of which DM is but a part. Other 

terms, such as �information extraction�, �pattern discovery� and �pattern identification� are all 

potentially misleading in that they describe either the end product of the process, rather than the 

process itself, or part of the range of ways in which data can be mined. The discovery or 

identification of patterns within data can either be the goal of the DM exercise or can be just a stage 



in a more complex DM process, particularly when used in health and medicine when more precise 

objectives are set.  

Perhaps the most misleading and potentially damaging synonym used for DM is �data dredging� 

(Benoit, 2001; Trybula, 1999) and in the context of health and medical research a sharp distinction 

must be made between these two processes. In this context, �data dredging� is used to describe the 

process of analysing a data set to try and uncover interesting relationships between the variables or 

patterns within the dataset. A useful analogy is implicit in the word �dredging�, which suggests 

laboriously, and perhaps exhaustively, trawling or sifting though something, for example sand or 

mud, in the hope of finding something useful, interesting and/or valuable, e.g., a gold nugget or 

gem. Implicit in this analogy is the idea that person undertaking this activity has no clear a priori 

idea on what they are searching for but if they search for long enough something will emerge. In the 

context of data dredging, the analyst has no specific aim or research question but exhaustively seeks 

relationships and patterns within the data. While it might be argued that the ends of this data 

dredging process, i.e., the identification of a nugget of information, might justify the means the 

problem with this approach is that spurious relationships and patterns can be identified, which arise 

by chance, but which may be attached undue importance (Altman, 1991). For example if a dataset 

containing 20 variables was analysed to try and identify any relationships using traditional 

statistical methods, such as Chi2 tests or Pearson correlation coefficients, then there would be 189 

tests would be carried out. If the commonly used significance level of p 0.05 was used to determine 

whether the null hypotheses should be rejected then by definition 1 in 20, or in this example eight or 

nine test results could appear to be statistically significant, purely by chance. Even if the 

significance level is lowered to p 0.01, then 1 in 100, or in this example 1-2 test results, could 

appear to be statistically significant, purely by chance. Although methods of dealing with such 

chance findings have been reported (Altman, 1991; Bland and Altman, 1995), there is controversy 



concerning the precise use of these adjustments in different situations (Perneger, 1998; Bender and 

Lange, 1999) and data dredging is considered to be inappropriate due to its lack of clear objectives 

and this potential to yield spurious results.  

The phrase DM, on the other hand, presents a different analogy in that it implies drilling down in a 

much more focussed approach with a clear idea of what it is that is being mined for and with a 

reasonable expectation, gained through prior knowledge, of retrieving something worthwhile. Data 

mining suggests that the analyst has a good understanding of the data that they are mining and a 

clear idea, e.g., through their own knowledge of the subject area and/or earlier work, of the 

potentially useful and important information that may be retrieved. It also implies a systematic 

approach to the identification of previously hidden association, patterns and relationships 

(Pendharkar et al., 1999). Using a DM approach might therefore involve identifying a specific 

research question/hypothesis, e.g., through a substantive literature review or a discussion with 

domain experts, and answering/testing this using an existing data source by identifying patterns/ 

relationships/ associations centred round a limited number of variables. Although this does not 

wholly eliminate the risk of identifying patterns/relationships/associations that arise purely by 

chance, nevertheless adopting a focussed approach reduces this risk and is scientifically justifiable. 

The distinction between data dredging and DM must be borne in mind when discussing the use of 

DM in health and medical research and while a data dredging approach can produce unreliable and 

potentially damaging information, especially when used to inform clinical practice and decision-

making. Data mining may therefore be defined by the approach that the researcher is adopting in 

analysing the data as well as by the methods that are used.  



The potential of DM in health and medicine 

In routine health and medical care, large volumes of data are routinely generated and stored either 

as part of the care process, for administrative purposes or for research (Coiera, 1997; Shortliffe and 

Blois, 2001; Pe a-Reyes and Sipper, 200l). The large amount of data and individual data items may 

be of low value in their own right, but there may be valuable information contained within it that is 

not immediately apparent, but which may be extracted and utilised using DM approaches (Kuo et 

al., 2001). This availability of health/medical data and information coupled with the need to 

increase continually our knowledge and understanding of the biological, biochemical, pathological 

and psychosocial and environmental processes by which health and disease are mediated mean that 

the medical and health sector may be particularly suitable for DM (Shortliffe and Blois, 2001; 

Shortliffe and Barnett, 2001).  

Medicine and health deal with complex organisms, i.e., humans and/or patients, and therefore with 

higher-level processes in contrast to other branches of science e.g., physics and chemistry, which 

deal with relatively low-level processes (Shortliffe and Blois, 2001). While some of these higher-

level processes may be reduced to lower levels of complexity in certain application areas, this can 

be inappropriate and unhelpful in clinical medicine and health, and high-level descriptors are 

necessary to try and encapsulate the complexity of humans (Maojo et al., 2002). Therefore while 

traditional computing applications, e.g., routine iterative number crunching using basic numerical 

programs, might be appropriate for the needs of the physical sciences, these are inadequate to deal 

with these complexities and DM techniques have therefore been adopted and developed for this 

purpose (Shortliffe and Blois, 2001). Furthermore, the large and complex search spaces that are 

generated through the data in health and medicine may be beyond the ability of clinicians to make a 

decision that has one of two possible outcomes (Pe a-Reyes and Sipper, 2000). 



While the collection, management, analysis and interpretation of information is a fundamental part 

of the processes of clinical medicine and health care, not least of all in decision-making for the 

categorisation, treatment and management of diseases (Shortliffe and Barnett, 2001), the capture 

and coding of this information for storage in databases and information systems can reduce some of 

its informational complexity and value. However, by analysing and interpreting the encoded data 

either routinely or through DM as part of the knowledge discovery can help gain insights into the 

high level processes that would not otherwise be possible. 

The methodologies that have been developed to help understand the complexity of information that 

are involved in health and medicine (Shortliffe and Blois, 1991; Maojo et al., 2002,), have 

traditionally been based on hypothetico-deductive reasoning (Lisboa, 2002), the inference of causal 

relationships (Altman, 1991; Bland, 2000) and the recognition of patterns and development of 

heuristics among others. Health and medicine research involve the development and testing of 

theories that involve the human being and its components that cannot be changed (Maojo et al., 

2002). Added to this is the current tension within the practice of modern clinical medicine practice 

and healthcare between the need for a suitable evidence base which implies that the complex 

processes outlined above can be adequately measured and quantified (positivism) and the more 

recent post-positivistic realisation that this information can only be truly informative when coupled 

with more qualitative information and analyses.  

As health and medicine have become more data and information-intensive the amount and variety 

of information collected and stored has increased (Richards et al., 2001), and this information has 

become more accessible through the increasing use of computers in the healthcare process (van 

Bemmel and Musen, 1997). Traditional methods of analysing data may not be adequate to deal with 

the large volumes of data and to maximise the potential for secondary analyses of these data. 



Traditional epidemiological approaches to investigating rates and causes of diseases at a population 

level (Friedman, 1994), have used descriptive statistics to measure disease and inferential statistics 

to test hypotheses by investigating the extent to which the variance of a given disease occurrence 

can be explained by variables of interest (potential risk factors) relative to other often unexplained, 

and labelled random, variance (Giuliani and Benigni, 2000). Although such studies work well when 

there is a �single causative agent far exceeding all the others� (Giuliani and Benigni, 2000, p.308) 

many diseases and conditions, particularly non-infectious diseases, may have multiple causative 

agents or have many risk factors, and the traditional epidemiological and statistical approaches 

struggle to discriminate between a range of putative risk factor or causative agents and the random 

variance. In other words the �signal to noise� ratio is too low to be able to elucidate causes 

effectively (Giuliani and Benigni, 2000). Although proponents have discussed the potential of DM 

to overcome these limitations, there remains much scepticism among medical statisticians 

concerning the real value offered by such methods (Schwarzer et al., 2000). In addition, the low 

signal to noise ratio that is common in health and medical data means that the potential advantages 

of flexible non-linear DM tools compared to statistical techniques will not be realised. However this 

may be overcome as advances in understanding of risk factors for disease and health outcomes 

improves the potential for diagnostic and prognostic models (Biganzoli et al., 2002). In order to 

appreciate the potential of DM approaches to analysing health and medical information, traditional 

inferential statistical methods will be briefly discussed together with their limitations. 

Traditional statistical methods for analysing such data and their limitations. 

Traditional methods of analysing health and medical data have been developed within a positivist 

paradigm, in which hypothetico-deductive methods to set up null hypotheses have been proposed 

which are then tested using inferential statistical techniques based on parametric and non-



parametric tests, such as t-tests, Chi2-tests, correlation and regression (Altman, 1991; Bland 2001). 

Although inferential statistical methods have long been accepted for use in science, health and 

medicine, they have their limitations and although they provide a measure of statistical significance, 

this does necessarily indicate their clinical importance (Last et al., 1999).   

While some of these tests, e.g., t-tests, Chi2-tests and correlation involve univariate or bivariate 

analyses and DM techniques offer little above and beyond these, other forms of analyses such as 

cluster analysis and regression can involve greater numbers of variables with complex interactions, 

which DM tools have the potential to augment. Linear regression is used widely in health and 

medical research to identify the association between one (simple linear regression) or more 

(multiple linear regression) independent, or predictor, variables and a continuous dependent, or 

outcome, variable, and to predict the value of the outcomes variable for a given value of a predictor 

variable (Altman, 1991; Bland, 2000). Linear regression is useful in that it is relatively 

straightforward and uses a single coefficient within the regression model to summarise the 

contribution of each predictor variable (Dusseldorp and Meulman, 2001). Adaptations of linear 

regression have been made to permit binary outcome variables to be used as the dependent variable 

(simple logistic regression) and nominal variables (multinomial logistic regression) through a 

transformation of the dependent variable (Altman, 1991). Rather than being used to predict the 

value of the outcome variable for a given value of a predictor variable, logistic regression uses the 

coefficient to calculate the odds, termed the odds ratio, of the category of interest occurring, for 

each category of an independent categorical variable relative to a selected reference category, or for 

each increment in the magnitude of an independent continuous variable. Logistic regression is 

particularly useful in health and medical research as many outcomes of interest occur, or can be 

represented, as binary variables, e.g., the presence or absence of disease, being alive or dead, a 

response to treatment or not, disease recurrence, etc., (Altman, 1991). Logistic regression can also 



be useful in making predictions and has therefore been widely used for assisting in clinical 

decision-making for diagnosis and prognosis.  

�Survival� analysis is a term used to describe studies in health and medicine that account for any 

event (i.e., not just mortality per se) occurring over a period of time within a population or group of 

interest (Altman, 1991). The statistical methods of analysing survival are based upon comparing the 

distribution of survival times of different groups of patients or on the development of appropriate 

regression models (e.g., logistic regression and Cox regression) to analyse the effects of variables 

on survival (Anand et al., 1999). Parametric models for survival analysis have proved inadequate to 

deal with the complex relationships between predictor variables and events of interests due to their 

assumptions on failure time distributions and the effects of the covariates on these distributions 

(Biganzoli et al., 2002). The development of semi-parametric method has overcome these 

limitations but only allows the identification of putative risk factors. Another important issue in 

developing methods for analysing survival in the context of health and medicine is in ensuring that 

models deal adequately with right-censored data, i.e., although models may able to analyse the time 

to an event happening they need to be able to differentiate between the event happening and it not 

happening within a given time period of analysis. For example, all the patients undergoing different 

treatments for cancer may not die within 21 months, or some of the patients who have had one 

myocardial infarction may never experience another. Although logistic regression is useful in 

medicine and health for analysing disease risk and predicting outcomes, it fails to consider the time 

at which an event occurs (Altman, 1991; Bland 2000), and this information is can be particularly 

important in determining the importance of putative risk factors for events of interest. The Cox 

proportional hazards regression model (Cox, 1972), often termed Cox regression, accounts not only 

for whether an event has occurred or not, but the length of time which it took that event to occur, or, 

if the event does not happen, to a point of censorship. Analysing survival for diseases and 



conditions plays an important role in clinical medicine to enable health care professionals to 

develop prognostic indices for people following diagnosis, either for mortality in potentially 

terminal illnesses, recurrence of the disease, studying outcomes for different forms of treatment or 

for assessing the risk of adverse health events occurring.  

Traditional statistical methods are not able to deal satisfactorily with some problems associated with 

data generated through clinical practice and medical/health research. The nature of relationships 

between variables is complex and multivariate (Biganzoli et al., 2002), and there are often 

interactions among the predictor variables and assessing these and their effect on the outcome 

variable can be complex (Dusseldorp and Meulman, 2001). In addition, the preponderance of non-

linear relationships among health and medical data and the non-additive effects of multivariate 

relationships between predictor variables and outcome variables (Biganzoli et al., 2002) violate 

assumptions of linearity implicit in inferential statistical models and make them potentially suitable 

for other DM tools.  

Logistic and Cox regression are important in generating population-based estimates of survival, for 

identifying putative risk factors and logistic regression can be used to test the effectiveness of 

putative diagnostic and prognostic tools using a classification table that makes predictions on the 

basis of the values for the predictor variables for each case (this is explained below in relation to 

Table 1). It is then possible to evaluate these models by comparing the result with the actual 

outcome or diagnosis (Altman, 1991; Bland 2000). However, they are not used for making 

predictions concerning individual patients in a clinical setting (Anand et al., 1999; Botacci et al., 

1997), and health care professionals tend to rely on their own knowledge, experience and 

judgement, which have their limitations and are prone to human error. 



Decision-making by health care professionals is based on knowledge gained through initial training, 

updating this through continuing professional development and personal learning, and also by 

development of own experience (Brause, 2002). Early in their careers health care professionals have 

limited experience, which is particularly important for relatively new diseases/conditions or ones 

that are rare in occurrence. Health care professionals and managers are humans, who are better at 

pattern recognition tasks then basing decisions for example on statistical probabilities (Brause, 

2002; Lisboa, 2002, Walker et al., 1999). Although some of these problems may be overcome, e.g., 

by consulting with more-experienced/ knowledgeable colleagues, decision-making, e.g., in 

diagnosis, may be flawed by lack of available experience with the particular condition or their 

ability to deal with complex data. Data mining may help overcome these problems, e.g., by 

identifying patterns that were not previously apparent, or by learning from data to make decisions, 

predictions, or prognoses and diagnoses (Downs et al., 1996). 

In order to assess the suitability of traditional statistical methods of analysing data and to compare 

these with the performance of DM methods, appropriate means of evaluating the performance of 

diagnostic, prognostic and other data analytic tools. 

Evaluation of methods 

In order to assess the value of any data-mining tool for use in routine clinical practice, it is 

important to be able to evaluate its effectiveness, and compare that with other methods of analysis. 

For example, the correct diagnosis of diseases and being able to make an accurate prognosis is vital 

for managing the overall care of a patient. When developing and evaluating new methods of 

diagnosing conditions and making prognoses, it is necessary to compare the predicted value with 

the true diagnosis, or with the eventual outcome or prognosis. The predicted diagnosis or predicted 

prognosis can be compared with the true diagnosis and eventual outcomes respectively using a 

classification table as shown in table 1 (Altman and Bland, 1994a). 



 True diagnosis  

Diagnosis by new method Negative Positive Total 

Negative a b a+b 

Positive c d c+d 

Total a+c b+d a+b+c+d 

Table 1: Table to compare the results of the true diagnosis with the results from the 

prediction. 

It can be seen from that the true diagnosis showed that n= a+c individuals or cases were diagnosed 

as not having the condition, and of these the new method correctly diagnosed n= a as not having the 

condition (called true negatives). The true diagnosis showed that n= b+d individuals or cases were 

diagnosed as having the condition, and of these the new method correctly diagnosed n= d as having 

the condition (true positives). Overall the new method was correct for n= a+d individuals. 

Conversely, the new method incorrectly diagnosed n= b individuals as not having the condition 

(false negatives) and it incorrectly diagnosed n= c individuals as having the condition (false 

positives) (Lavra , 1999b, Altman and Bland, 1994a). 

Sensitivity, sometimes called recall in information retrieval, is the measure of how many of the 

individuals with the condition that the test detects, in other words the proportion or percentage of 

true positives (Altman and Bland, 1994a). This is calculated by [sensitivity = d /(b+d)] and is 

expressed as either a decimal or a percentage (multiplied by 100). Sensitivity is important in 

assessing how good the method is at identifying the individuals that have the condition. If the test 

were used in routine practice then these people will potentially benefit from any intervention, e.g., 

medication or treatment, given to people whom the test identifies. Specificity (sometimes called 

precision in information retrieval), on the other hand, is a measure of how many of the individuals 

without the condition that the test detects as not having the condition, i.e., the rate of detecting true 



negatives, and is calculated by [specificity = a /(a+c)], (multiplied by 100) if expressed as a 

percentage. Two further measures for evaluating a method of diagnosis are the positive and 

negative predictive values (Altman and Bland, 1994b). The positive predictive value (ppv) is the 

proportion (or percentage) of individuals that the method diagnoses as having the condition that 

actually have the condition, and is calculated by [Positive predictive value = d /(c+d)],  100. 

Conversely, negative predictive value (npv) is the proportion (percentage) of individuals that the 

method diagnoses as not having the condition that actually do not have the condition, and is 

calculated by [Negative predictive value= a /(a+b)] (  100). The final estimate of accuracy is the 

Receiver Operating Characteristic curve, which plots sensitivity against (1 � specificity) after 

calculating the sensitivity and specificity of every observed datum  (Altman and Bland, 1994c). 

Although by enabling the comparison of sensitivity and specificity in a single graph, this plot gives 

one of the best estimates of the effectiveness of a procedure, additional calculations need to be 

incorporated to ensure that the prevalence of the condition in the population is taken into account 

(Bland and Altman, 1994c; Jefferson et al., 1995; MacNamee et al., 2002). Many DM methods are 

aimed at developing improved methods for making decisions, especially for diagnosis or prognosis, 

and evaluating the outcomes in terms of these values of sensitivity, specificity, positive and 

negative predictive values in this specialised area of DM will be discussed. The relative importance 

of these measures of effectiveness within a particular clinical or health context has an important 

impact on the development of tools and will be discussed in more detail later. 

Data mining tools for health and medicine. 

Data mining tools generally one of two forms of learning (supervised or unsupervised) for 

classification, making predictions and other DM activities (Pe a-Reyes and Sipper, 2000). 

Supervised learning is used when an DM tools is trained to recognise different classes of data by 



exposing the network to a series of examples for which it has target answers (the training data set), 

and then testing how well it has learned from these examples by supplying it with a previously 

unseen set of data which it then classifies (the test data set). Unsupervised learning, on the other 

hand, requires no initial information regarding the correct classification of the data with which it is 

presented to partition data.  

Recent reviews by Lavra  (1999a, 1999b) have described and discussed different methods of 

machine learning available for DM in health and medical research. Machine-learning methods 

include three main types of DM tool including the inductive symbolic rule learning, statistical or 

pattern recognition methods, and artificial neural networks (Lavra , 1999a). All of these techniques 

seek to improve medical diagnosis and prognosis by analysing data from previous patients, defined 

as a training set, and from this learning process to predict the diagnosis and/ or prognosis for new 

groups of patients, the test set. Lavra  (1999b) categorised DM methods into those methods that 

produce symbolic representations from the data they are analysing and include rule induction 

methods, decision trees and logic programs and those that produce a sub-symbolic representation, 

which include instance-based learning methods such as nearest neighbour algorithms, artificial 

neural networks and Bayesian classifiers. A key distinction between symbolic and non-symbolic 

methods is the relative transparency (or �white box�) of decision-making using symbolic methods 

compared with the �black box� approaches of non-symbolic methods (Liebowitz, 2001b). 



Inductive learning of symbolic rules 

Inductive learning of symbolic rules, e.g., rule induction algorithms, decision tree algorithms and 

logic programs, create symbolic �if-then� rules from the training set that are used to generalise and 

which are then applied to the classifying the test set of patients (Lavra , 1999a). The symbolic rules 

are of the form  

IF Condition(s) THEN Conclusion  

Or 

Condition(s)  Conclusion 

in which the Condition(s) part includes one or more tests for values of the variables (labelled 

attributes, Ai, that are being included in which attribute tests such as Ai = value for discrete 

(categorical) variables and Ai < value and/or Ai < value for continuous variables. The Conclusion 

part assigns a value to a class of predictions, Ci (Lavra , 1999b). Although rules derived through 

this process imply an association between the condition and the conclusion, Richards et al. (2001, 

p.216) point out that �there is no implication of cause and effect� between the two. 

Rule-based approaches have been used in a number of areas in health and medicine including the 

diagnosis of rheumatic diseases, prognosis following cardiac tests (cited in Lavra , 1999a), the 

prediction of early mortality in relation to first hospital visits (Richards et al., 2001) and in 

analysing meningitis data (Zhong and Dong, 2002).  

Decision trees 

Decision trees, also called tree-based methods, are a very popular type of DM technique and are 

based on a method called recursive partitioning, that has been used for solving regression and 

classification problems in health and medical research (Dusseldorp and Meulman, 2001; Kuo et al., 



2001). Regression trees are used to model continuous outcome variables to predict specific values 

for a variable of interest and classification trees are used to model categorical variables in order to 

predict to which group an individual or case belongs (Dusseldorp and Meulman, 2001; Kuo et al., 

2001). The decision tree model can be used for descriptive purposes as well as for making 

predictions (Kuo et al., 2001; Ennis et al., 1998). The model is presented in the shape of a tree with 

branches and leaves with decision rules on how the tree was constructed. Kuo et al. (2001) used a 

decision tree model to code breast cancer tumours as malignant or benign and showed that the 

overall accuracy of the decision tree model was better than that of the physician, as well as the 

sensitivity, specificity, positive and negative predictive values. Recursive partitioning has been 

shown to be of value in identifying interactions among variables (Carmelli et al., 1991). Carmelli et 

al. (1991) compared the use of recursive partitioning with Cox regression for examining the 

relationship between baseline biological and behavioural characteristics and mortality due to 

coronary heat disease and cancer over 27 years. Although both Cox regression and recursive 

partitioning were useful in determining factors associated with mortality, recursive partitioning 

enabled the identification of subgroups of individuals with particular characteristics and survival 

features (Carmelli et al., 1991).  

Artificial Neural Networks. 

Although the original research into ANNs started in the 1950s it is only relatively recently that they 

have emerged as a useful and effective set of tools for tackling a range of DM problems, including 

pattern recognition, prediction of outcomes, classification and partitioning of multivariate data 

(Haykin, 1999; Bath and Philp, 1998). They have been applied in a variety of domains (Dayhoff, 

1990; Trybula 1999; Benoit 2001), including health and medicine (Cross et al., 1995; Baxt, 1995; 

Dybowski and Gant, 1995; Brause, 2002). ANNs are so-called because they have structures and 



processes that are modelled on the architecture and learning processes in biological nervous 

systems. ANNs have the potential to extract information that is complementary, rather than an 

alternative, to that obtained using statistical methods. ANNS differ from such methods in being 

adaptive, i.e., the data are presented to the ANN iteratively, during which the network �learns� and 

then revises the predictions or classifications it has made.  During these iterations the network is 

trained and is able to �recognise� patterns in the data and as a result of the training the ANN can 

make predictions or classifications (Lipmann, 1987).  

ANNs use both supervised and unsupervised learning to mine data. ANNs employing unsupervised 

learning, e.g., Kohonen self-organising maps, are able to analyse multi-dimensional data sets in 

order to discover the natural patterns, or clusters and sub-clusters, that exist within the data 

(Lipmann, 1987; Kohonen, 1995). ANNs using this technique are able to identify their own 

classification schemes based upon the structure of the data provided. Unsupervised pattern 

recognition is similar to traditional methods of cluster analysis and is based on measures of 

similarity. ANNs using supervised learning, e.g., multi-layer perceptrons and radial basis function 

networks, learn from a training data set and then use a test data set to make predictions or 

classifications based on this learning. Supervised learning is more commonly used in modelling 

data derived from health and medicine (Lavra , 1999b). 

Artificial neural networks have been used in a wide variety of applications in clinical medicine, 

including diagnosis, risk assessment, analysing medical images and wave forms, treatment selection 

and predicting outcomes and drug activities and responses to medication in clinical pharmacology 

(cited in and in Lavra , 1999b). Artificial neural networks have been used for diagnosing a wide 

range of health and medical problems including myocardial infarction (heart attack) (Baxt, 1991; 

Baxt and Skora, 1995; Ennis et al., 1998), different forms of cancer (Pendharkar et al., 1999), 



detecting ischemia (Papaloukas et al., 2002), appendicitis, back pain, dementia, psychiatric 

emergencies, pulmonary embolism, sexually transmitted diseases, skin diseases and temporal 

ateritis (cited in Baxt, 1995). Improved methods of diagnosis for myocardial infarction are 

necessary because although the disease incidence is low, the consequences of a myocardial 

infarction not being diagnosed are very serious and potentially fatal (Baxt, 1995). Clinicians 

therefore tend to diagnose to avoid the risk of missing diagnosis of myocardial infarction and 

although they may have a high sensitivity, the specificity of their diagnoses is relatively low and 

results in unnecessary hospital admissions. Baxt (1995) identified a number of conditions, including 

recovery from surgery for which artificial neural networks had been used in prognosis, to predict 

outcomes following surgery in intensive care units and orthopaedic rehabilitation units (Grigsby et 

al., 1994), recovery from prostate, breast and ovarian cancer (Downs et al., 1996), cardiopulmonary 

resuscitation and liver transplantation (Doyle et al., 1994) and rehospitalization following stroke 

(Ottenbacher et al., 2001). Neural networks have also been used extensively for analysing survival 

data (Biganzoli et al., 1998; Biganzoli et al., 2002; Cacciafesta et al., 2001; Cross et al., 1995; 

Downs et al., 1996) and for predicting outcomes for providing policy information in the 

management of hypertension (Chae et al., 2001).  

ANNs have a number of advantages over statistical techniques that make them particularly suitable 

for mining health and medical data. ANNs are non-parametric and therefore do not make 

assumptions about the underlying distributions of the data that statistical methods make (Lippmann, 

1987). ANNs therefore may be more robust and perform better when data are not normally 

distributed or where there is a non-linear relationship between predictor variables and an outcome 

variable. Artificial neural networks are able to analyse the higher�order relationships frequently 

present in health and medical data that traditional statistical tools are less capable of dealing with 

(Cross et al., 1995). However, the black box nature of ANNs, in which data are fed in and results 



are obtained but with very little understanding of the reasons for the decision (Tu, 1996), is one of 

the fundamental limitations and why their use has been regarded with suspicion and mistrust within 

the medical and statistical communities. Downs et al. (1996, p.411) discussed the need to 

supplement using neural networks with the extraction of symbolic rules to �provide explanatory 

facilities for the network�s �reasoning�� and developed symbolic rules to try and explain the 

reasoning behind the decision-making by the neural network, and a number of techniques have been 

developed which permit this (Andrews et al., 1995). 

A further problem with ANNs is that their performance on test data set is often worse than that 

achieved through the training set (Brause, 2002) due to the network over-training and adapting to 

any biases in the training set. Although on solution to this is to use a training data set that is 

representative of the test set, e.g., by randomly allocating training and test data from an original 

data set and checking that there are no significant differences between training and test data sets. 

However the training and test data are not then independent of each other and subtle differences 

between training and test data sets may lead to a deterioration in performance, or when the network 

is used on truly independent data set, e.g., in clinical environment (Brause, 2002). Cross et al. 

(1995) commented that on the less rigorous development of artificial neural networks compared to 

that for conventional statistical tests and that large scale clinical trials may be needed to evaluate 

their use statistically before they are accepted as a diagnostic tool. Further limitations of DM tools 

will be discussed later. 

Evolutionary DM tools  

As the name implies evolutionary DM tools encompass those computational techniques that are 

based on the principles and processes of evolution in nature, particularly those of reproduction, 

mutation and selection (Goldberg, 1998; Pe a-Reyes and Sipper, 2000). Evolutionary tools are 



methods of searching through the high dimensional space of possible solutions to a given problem 

to find an optimal solution and are particularly suited to use in DM in health and medicine given the 

preponderance of variables and multivariate relationships discussed previously. 

Evolution is the theory of how living organisms developed over million of years from more 

primitive life forms. The manifestation of each individual (i.e., its phenotype) within a population is 

determined ultimately by its genetic make-up or genome (genotype), which is encoded on 

chromosomes via genes. This genetic information is unique to each individual and reproduction, the 

process by which new individuals are created, involves the development of a new genome for that 

individual. Reproduction may be asexual in which only one individual of a species is involved, or 

sexual in which two members of the species are involved. Sexual reproduction involves the 

development of an entirely new genotype by recombination of the genetic material of the parents. 

This process is supplemented by mutation in which small changes to the genetic material are 

introduced at random. The offspring from sexual reproduction then undergo the process of selection 

in which the Darwinian �survival of the fittest� occurs, so that those individuals that are best suited 

to the environment survive long enough to reproduce and pass their genetic material to the 

following generation. Over many generations success in this process will permit the adaptation of 

the species to ensure its survival within the environment.  

In evolutionary computing the environment represents the problem situation of interest, and the 

individuals within the population in this environment represent possible solutions to this problem 

(Goldberg, 1989). The algorithms for the various types of evolutionary computing tools are based 

on a common procedure in which the initial population is generated randomly or using heuristics 

(Pe a-Reyes and Sipper, 2000). The features or attributes of each individual are encoded via genes 

on a chromosome and associated with each chromosome is a fitness function, which measures its 



suitability to the environment or problem situation. The population then undergoes a series of 

generations in which individuals (chromosomes) within the population undergo sexual reproduction 

to create new individuals (chromosomes) with new genotypes containing genetic material from the 

parents cross-over to create new genotypes, which are also subject to mutation. The offspring from 

this process then join the population and each has fitness function associated with its genotype. The 

fitness of each individual is determined by decoding and evaluating the genotype according to 

predefined criteria dependent on the problem being addressed. The strength of this fitness function 

will determine whether the individual survives to reproduce and pass on its genetic material to the 

next generation: individuals (chromosomes) having the highest fitness functions will form a mating 

pool form the next generation and the individuals (chromosomes) having lower fitness functions 

will be lost from the population. This selection process ensures that the fittest individuals pass their 

genes to the next generation. The cross-over ensures that new combinations of genetic material are 

introduced and �move towards promising new areas of the search space� (Pe a-Reyes and Sipper, 

2000, p.23). Mutation prevents the process from converging in local optima that do not represent 

optimal solutions and the new individuals then enter the environment and the next generation 

commences. Thus, similar to natural evolution, over time and a number of generations, the 

population should adapt to the environment and a good approximation to an optimal solution to the 

problem should emerge. The process is terminated after a specified number of generations or when 

a predefined level of fitness is achieved.  

One of the advantages of evolutionary computational tools over more traditional search methods is 

that they are able to combine a search of all the available search space with the capacity to search 

the most promising areas (Pe a-Reyes and Sipper, 2000). The results of the searches in these spaces 

can then be combined via cross-over in reproduction and new areas of the search space can be 

investigated through mutations. This combination of targeted and stochastic search techniques 



means that evolutionary tools require less knowledge on the search space and make fewer 

assumptions about it (Pe a-Reyes and Sipper, 2000). The key considerations when using 

evolutionary DM tools include not only how to encode the features of possible solutions into genes 

but also how to measure the fitness of the individuals and chromosomes. These two issues are 

dependent on the specific problem and have to be tailored to the particular needs of that problem 

(Pe a-Reyes and Sipper, 2000), and although the processes of selection, cross-over and mutation 

are relatively problem-independent, it is likely that these issues will need to be considered in 

adapting tools to particular problems. 

Genetic algorithms 

Several different types of evolutionary DM tools exist although the there is a deal of similarity 

among these types and they are all based on the principles and process of evolution. The most 

commonly�used type of evolutionary tools are genetic algorithms, which represent the genome 

(genotype) of the individual (phenotype) using a fixed-length binary string (Pe a-Reyes and Sipper, 

2000). Although genetic algorithms can be used to generate solutions to almost any problem if the 

genotype can be represented in this way, care must be taken to ensure that no two genotypes encode 

the same phenotype (termed redundancy), in order to achieve a good solution (Pe a-Reyes and 

Sipper, 2000). Using genetic algorithms, the number of individuals (population) is kept constant 

and during each generation these are decoded and their fitness is evaluated and the fittest are 

selected for reproduction. 

Genetic algorithms have been used for analysing sleep patterns (Baumgart-Schmitt et al., 1998), 

diagnosis of female urinary incontinence and breast cancer (cited in Pe a-Reyes and Sipper, 2000), 

development of prognostic systems for colorectal cancer (Anand et al., 1999), selection of features 

for recognizing skin tumors (Handels et al., 1999), prediction of depression after mania (Jefferson et 

al., 1998b), predicting outcomes after surgery, predicting survival after lung cancer (Jefferson et al., 



1998a), improving response to warfarin (Naranyan and Lucas, 1993), survival after skin cancer and 

estimation of tumor stage and lymph node status in patients with colorectal adenocarcinoma (cited 

in Pe a-Reyes and Sipper, 2000). 

Genetic programming and other evolutionary methods 

Work by Koza (1990a and b) developed and extended the idea of evolutionary computational tools 

such as genetic algorithms by using genetic programming. While the basic evolutionary principles 

of genetic algorithms and genetic programming are similar, the features by which these tools carry 

out their tasks are fundamentally different and are discussed by Pe a-Reyes and Sipper (2000). 

Genetic programming encodes possible solutions to problems as computer programs rather than as 

binary strings and to achieve this they use parse trees and functional programming languages, 

unlike genetic algorithms, which use line code and procedural languages. Genetic programming 

allows both asexual reproduction, in which the individuals with the highest fitness survive intact to 

the succeeding generation, as well as sexual reproduction, in which randomly-selected points in the 

parse trees are selected and the subtrees beneath these points are exchanged between the parents 

(Pe a-Reyes and Sipper, 2000). Genetic programming tools have been less widely adopted as a 

data-mining tool in health and medical research than genetic algorithms but have been used to 

identify causal relationships in a database containing information on children with limb fractures 

and to identify relationships in a database containing information on spinal deformation (Ngan et 

al., 1999), to classify brain tumours into meningioma and non-meningioma classes (Gray et al., 

1998), learning rules from a fractures data base (Wong et al., 2000) and for the diagnosis of chest 

pain (Bojarczuk et al., 2000).  

Evolution strategies and evolution programming, two other methods of evolutionary computation, 

have had some relatively little use in mining health and medical data and are described by Pe a-



Reyes and Sipper (2000). Their use has been restricted to for analysing sleep patterns (Baumgart-

Schmitt et al., 1998), detecting breast cancer using histologic data (Fogel et al., 1995) and 

radiographic features (Fogel et al., 1997) and optimising electrical parameters for therapeutic 

stimulation of the carotid sinus nerves (Peters et al., 1989).  

Combined approaches 

Evolutionary computing techniques have been used in combination with other tools for mining 

health and medical data. Genetic algorithms have been combined with several statistical and non-

statistical methods as a way of optimising the variables for inclusion in models. Several groups of 

researchers have combined genetic algorithms with neural networks for detecting and diagnosing 

breast cancer (Abbass, 2002; Fogel et al., 1995), predicting response to warfarin (Naranyan and 

Lucas, 1997), predicting outcomes following surgery (Jefferson et al., 1997), predicting 

haemorrhagic blood loss (Jefferson et al., 1998a), predicting depression following mania (Jefferson 

et al., 1998b) and for predicting falls and identifying risk factors for falls in older people (Bath et 

al., 2000). Fogel et al. (1995) used evolutionary artificial neural networks for analysing histological 

data to detect and diagnose breast cancer. Fogel et al. (1997) used evolutionary programming to 

train artificial neural networks to detect breast cancer using data from radiographic features and 

patient age. One of the problems in the use of artificial neural networks is that they can get stuck in 

local optima, and although increasing number of nodes and weights associated with them can help 

overcome this problem this is computationally more intensive. Combining GAs with Artificial 

Neural Networks can help the network overcome local optima and improve the topology of the 

neural network (Fogel et al., 1997). Genetic algorithms have been used in combination with 

Bayesian networks to predict survival following malignant skin melanoma (Sierra and Larrañaga, 

1998). Ngan et al. (1999) also used genetic programming in combination with Bayesian networks to 



identify rules for limb fracture patterns and for classifying and treating scoliosis. Holmes et al. 

(2000) combined a genetic algorithm with a rule-based system for epidemiologic surveillance. 

Pe a-Reyes and Sipper (1999) combined genetic algorithms with a fuzzy system for the diagnosis 

of breast cancer. Although these studies represent attempts to combine evolutionary computing 

techniques with DM tools there has been little work combining evolutionary computing methods 

with statistical methods to optimise the variables used in predictive models (Jefferson, 2001) and 

there is potential for further work in this area. 

Application of DM tools in diagnosis and prognosis 

Data mining tools have been used for a range of tasks, but have been particularly used for diagnosis 

and prognosis of diseases and, in this section, their application in the diagnosis of breast cancer and 

for prognosis are discussed.  

Breast cancer is one disease that has attracted a deal of interest from data miners, particularly in 

relation to diagnosis. Reasons for this include its high incidence and relatively high mortality 

associated with it, the importance of early diagnosis, and, as Abbass (2002, p.265) suggests, 

because of the very high �economic and social values� associated with it. Problems with the 

traditional assessment of mammographic data have included inconsistencies in interpretation 

resulting in poor intra- and inter-observer disagreement (Abbass, 2002; Fogel et al., 1997). The 

proposed reasons for this have been poor image quality of mammographic images and human 

fatigue and error, and have led to the development of search for pattern recognition techniques to 

supplement the diagnosis by the radiologist (Fogel et al., 1997). The aim of such developments has 

been to reduce the rate of false negative diagnoses to improve the sensitivity. However, given the 

cytotoxic side effects of chemotherapy and radiotherapy and psychosocial consequences of breast 

surgery it is also important to ensure that the number of false positive diagnoses is minimised, i.e., 



and a high positive predictive value is achieved. Additional potential benefits of developing and 

using automated techniques and procedures include lower costs for handling mammograms and 

freeing up the time of the radiologist and improving overall efficiency and effectiveness (Fogel et 

al., 1997).  

Wu et al. (1993) reported artificial neural networks that were better at analysing mammographic 

data than radiologists for decision-making in relation to the diagnosis of breast cancer. However 

these data had been extracted by radiologists, and the authors recommended that the real potential 

of neural networks was to assist the radiologists in recommending further tests to be undertaken. 

Setiono (1996, 2000) developed an accurate neural network program that was used pruning to 

extract rules to provide information on the basis on which the network had made its decisions and 

overcome the �black box� element of neural networks. Many of the cited studies used the same 

Wisconsin Breast Cancer data set for developing the models. While this is useful for comparing the 

effectiveness of different tools developed at different times, it emphasises the need to test DM tools 

on new sets of data in different settings, in addition to the ones in which they were developed 

(Lisboa, 2002).  

Walker et al. (1999) described the use growing cell structure technique to differentiate between 

benign and malignant breast tumours. This technique, which was shown to have a similar 

performance to logistic regression, allows the multidimensional data (the predictor variables) to be 

viewed as two-dimensional colour images. The particular value of the this visualisation was that it 

permits health care professionals to perceive relations between the predictor and outcome variables, 

as well as interactions among the predictor variables (Walker et al., 1999).  

Prognosis has already been highlighted as an important area for patient care and the limitations of 

both parametric and non-parametric statistical methods have led to the development of techniques 



that combine traditional survival analysis methods with artificial neural networks (Anand et al., 

1999; Cacciafesta et al., 2001; Liestol et al. 1994); Faraggi and Simon, 1995; Xiang et al., 2000; 

Zupan et al., 1999). Although some studies have shown that data mining methods perform better 

than statistical models for analysing survival (Anand et al., 1999; Zupan et al., 1999), the study by 

Anand et al. (1999) showed that none of the three DM tools was able to handle the censored data as 

well as Cox regression dealt with them. 

The validity of prognostic models should be tested on a sample that is independent from the training 

sample with respect to time and place and patients in the sample (Wyatt and Altman, 1995). 

However, DM techniques are often developed, trained and tested on sets that are drawn from the 

same sample of patients and are not therefore truly independent of each other (Richards et al., 

2001). The models cannot be regarded as having been independently tested, but require further 

testing on an independent set of data. Wyatt and Altman (1995) also reported that all clinically 

relevant data should be included in any prognostic model that is developed. However defining the 

data which are clinically relevant for a particular condition is not necessarily a simple task and 

prognostic models are often developed through the secondary analyses of data that were collected 

for an entirely different purpose, and it may not therefore have been practical or feasible to include 

all clinically relevant data in the model (Richards et al., 2001).  

In many diseases a wide variety of clinical variables influence the prognosis for a disease and an 

individual, and making predictions for individual patients remains problematic, but is particularly 

important among patients diagnosed with a potentially terminal illness. Although it is known that 

approximately x% of patients survive at least y years following treatment for a particular cancer, 

such population-based estimates are of limited value in supporting and treating individual patients, 

many of whom may want to know �How long will I live?�, especially as the deviation from the 



mean varies greatly among such patients (Bottaci et al., 1997). Anand et al. (1999) highlighted the 

need for better tools for prognosis of the disease especially in those patients with potentially 

terminal diseases, in which palliation and maintaining quality of life may become the main 

objective. Information on the likelihood of survival and expected life expectancy can greatly assist 

in improving the quality of life of such patients by providing appropriate counselling and disease 

management (Anand et al., 1999).  

Challenges for DM in health and medicine.  

Having described a number of DM tools and discussed their application in the domain of health and 

medicine the challenges that such tools face will be discussed together and suggestions of how these 

may be tackled. Mistrust and suspicion of DM tools can be overcome to some extent by 

acknowledging and presenting clearly the limitations of DM tools and avoiding exaggeration of 

their potential and a number of authors have made recommendations for the development of DM 

models and decision support tools based on DM tools in order that they may gain wider acceptance 

(Kononenko et al., 1998; Lisboa, 2002).  

At one level there are a number of �technical� challenges that DM tools have to addressed in order 

to gain wider acceptance among health and medical professionals and statisticians (Lisboa, 2002) 

and at another level, there are more �human� challenges that need to be addressed. Some of these 

more technical issues, such as the appropriate design of studies that develop and test DM tools and 

the need to represent data in an appropriate format (Isken et al., 2002) and to ensure that the data are 

of a high quality (e.g., in relation to missing data, consistency of data collection and recording), are 

common to statistical and DM methods. The statistical aspects of underlying data and models may 

not being given appropriate consideration (Biganzoli et al., 2002) and it is important that descriptive 

statistics are available of data that are being mined as well as data that are being tested statistically. 



While many studies in health and medicine have made use of descriptive and inferential statistics 

without the apparent need for data mining tools, data mining tools cannot be developed in isolation 

of traditional statistical methods. 

Lisboa (2002) discussed the need to clarify the purpose of studies and to specify in advance what is 

expected to be of value in future studies. Data mining tools being used are not necessarily the most 

advanced available or it can be difficult to determine that the chosen model is the best possible (Tu, 

1996). The performance of DM tools could be enhanced by using more advanced types of genetic 

algorithms, artificial neural networks, etc. (Anand et al., 1999). 

Data may be collected for a purpose other than that for which they are being analysed and therefore 

not clinically relevant for the diagnosis or prognosis for which they are being used (Richards et al., 

2001, Wyatt and Altman, 1995). Missing data are particularly a problem in medical databases and 

often arise through incomplete data being recorded or human error in recording/ transcription 

(Richards et al., 2001; Brause, 2002). Missing data can be dealt with by removing variables and/or 

cases that have a high proportion of missing values to minimise the amount of missing data, 

although this approach may introduce bias to the remaining data because cases (individuals) with 

large amounts of missing data may not be representative of the sample have particular associations 

with the outcome of interest. Replacing missing data with statistical descriptors, e.g., the mean 

value for a variable, is generally acceptable if done with care, but may introduce bias to the data 

(Altman, 1991). 

Ensuring that other forms of bias are not allowed to influence the results when developing and 

testing DM tools is important and concealing the correct classification from domain experts until 

the studies are completed so that the DM methods can be truly acknowledged responsible for the 

associations that were discovered and reported (Richards et al., 2001). However, the main objective 



of such studies should be to develop models that are clinically useful and of potential benefit to 

patients, so that once models and tools have been validated then combining the domain knowledge 

of clinical experts with sophisticated analytic techniques may help to improve performance further. 

Richards et al. (2001) and Wyatt (1995) among others have stressed the need for training and 

testing of DM tools to be carried out on independent data sets, and the problems associated with this 

have already been discussed, as well as the need for appropriate training, validating and testing of 

data and systems before implementation in real settings. Lisboa (2002) also recommended that good 

practice be followed in designing models, particularly with respect to ensuring that over-fitting is 

controlled and that appropriate methods are available for variable selection (Tu, 1996). Bias can 

also arise from the minority class problem (MacNamee et al., 2002), in which the majority of cases 

in a data set belong to one class and the other class is significantly under-represented resulting in a 

method (statistical or non-statistical) being very good at identifying the former class but relatively 

poor at identifying the latter class.  

A problem with the development of diagnostic and prognostic tools through DM is that it increases 

the complexity of decision-making for health care professionals (Kononenko et al., 1998), so that 

such tools need to be made as simple to use as possible with user-friendly interfaces.  Lisboa (2002) 

commented that knowing how a model improves accuracy in decision-making is as important as 

whether it improves accuracy and emphasised the need for health care professionals to understand 

how any model works for them to be able to take responsibility for the results it produces. This does 

not only mean understanding basic mathematical principles underlying the models (Koh and Leong, 

2001), but how the models reached particular decisions, the opening of the �black box� that has 

been previously discussed. While the accuracy/performance of DM tools may be greater than that of 

traditional methods of analysis the lack on information about how they arrive at a decision may not 

be clear because of the black box and because of the complexity of the architecture (Setiono, 1996). 



Although there has been considerable progress in developing sub-symbolic DM tools that are able 

to extract rules to provide an explanation of how they reached their decision-making (Andrews et 

al., 1995), these have not yet been widely adopted for use in health and medicine, and this requires 

further progress.  

A number of authors have identified the need to establish an appropriate evidence base for the use 

of DM tools in medical and health practice, especially when being used for developing tools for 

diagnosis, prognosis, etc. (Cross et al., 1995; Johnston et al., 1994). Lisboa (2002) and Cross et al. 

(1995) discussed the need to compare the performance of DM tools with conventional methods 

before the utility of such techniques could be fully evaluated.  Johnston et al. (1994) identified the 

need to evaluate systematically computer-based decision support systems not only in relation to 

reliability, acceptability and accuracy, but also with respect to improving the clinical behaviour and 

performance of health care professionals, and ultimately to improve patient well-being and patient 

outcomes. While Johnston et al. (1994) acknowledge that the accepted gold standard for evaluating 

healthcare interventions, the randomised controlled trial (RCT), may not always be practical or 

feasible for evaluating computer-based decision support systems that have been developed through 

the use of DM techniques, nevertheless investment in evaluating the effectiveness and efficiency of 

such systems is necessary to maximise the potential benefits and minimise the potential for harm or 

waste that may arise. Lisboa (2002) highlighted the need to evaluate of DM tools through multi-

centre RCTs and to establish an appropriate evidence base for the use of DM tools (Brause, 2001; 

Lisboa, 2002; Anand et al., 1999). 

Downs et al., (1996) highlighted the tension between the need for symbolic rules discovered during 

the DM process to be acceptable to domain experts and the need to demonstrate that the method 

provides new knowledge or understanding in the domain area. Having a means of demonstrating 



how a system arrives at its decision is critical in this respect for both symbolic and sub-symbolic 

methods. Certainly the ability of neural networks to detect lower order relationships previously 

unknown but which can then be tested using statistical models can help gain their acceptance 

among medical and health professionals, and increase their trust when interactions among the data 

are discovered that that cannot be verified using statistical methods (Lisboa, 2002). An additional 

problem is that DM tools may identify and report patterns not accepted and not in line with current 

understanding (Richards et al., 2001, Wyatt, 1995), which may limit their acceptance among health 

care professionals.  

Data mining have been shown to be useful for generating hypotheses for further testing e.g., to 

identify associations or relationships between variables/data that are then tested using conventional 

statistical techniques (Richards et al., 2001). There is a need to focus on the one hand on the way in 

which DM methods can complement the use of statistical techniques in analysing health and 

medical data but also to emphasise the added value that DM methods can bring in the knowledge 

discovery process. Understanding and appreciating the similarities and differences between DM 

tools and statistical methods, and valuing the unique contribution that each makes in improving our 

understanding of the processes underlying health and illness, e.g., while both Cox regression and 

tree-structured survival analysis both allow the identification of risk factors for adverse health 

events, Cox regression can provide an estimate of the strength of these risk factors and tree-

structured analysis helps to identify high risk groups with particular features in common (Carmelli 

et al., 1991). Comparing the performance of different DM and statistical approaches also allows 

different information to be extracted from the data. For example, Lee et al. (2000) compared a 

variety of techniques including correlation analysis, discriminant analysis, data visualisation and 

artificial neural networks to analyses data from a heart disease database, which meant that it was 

possible to identify people at risk of heart disease, risk factors for heart disease and establishing 



multivariate relationships among the predictor variables. Therefore, the maximising the potential of 

data mining may require the use of statistical alongside non-statistical methods.  

Lisboa (2002) commented on the need to ensure that the purpose of studies is clear at the outset. It 

is particularly important to understand the objectives in trying to improve the performance of 

prognosis and diagnosis. Although obtaining 100% accuracy may be the seen as the overall aim, 

this is rarely achieved and the relative importance of sensitivity, specificity positive and negative 

predictive values within the context of clinical care on the relative importance of these evaluation 

measures, as was discussed in the diagnosis of breast cancer. For certain diseases, high sensitivity is 

critical because of the serious, and potentially fatal consequences for an individual of not 

diagnosing an actual case (false negatives) or to ensure that a correct diagnosis is obtained as early 

as possible so that treatment can commence at an early stage in the disease and improve the 

outcomes for patients (Fogel et al., 1997; Fogel et al., 1995). For other diseases, however the 

imperative may be to ensure that the specificity is very high to minimise the number of people who 

are wrongly diagnosed as having the disease and receiving unnecessary treatments (Downs et al., 

1996). On the one hand diagnosing all positive cases may be important to improve survival rates 

reduce co-morbidities. Reducing false positives may be important so that patients are not given 

drugs and medication with potential toxic effects (and high costs) unnecessarily and allowing health 

care professionals to spend maximal time with true cases (Abbass, 2002). 

Bellazi and Zupan (2001) and Liebowitz (2001a) recently discussed the overlap between knowledge 

management and DM, suggesting that DM is an important part of the knowledge management 

process within health care organisations. Data mining relies on the explicit knowledge present in the 

available health and medical literature that is used by clinical researchers, clinicians, 

methodologists and information specialists to help identify appropriate research questions. The 



implicit knowledge of clinicians, health care professionals and health service managers is also 

required for helping to develop and understanding of the data and for evaluating/assessing and 

interpreting the results. The explicit knowledge of clinicians, health care professionals may also be 

embodied into specific DM methods, e.g., Bayesian networks and fuzzy systems, for analysing the 

data (Bellazi and Zupan, 2001). This highlights another important aspect of the use of DM in the 

context of medicine and health in that it requires the multidisciplinary collaboration between health 

and medical professionals and information analysts (Kuo et al., 2001).  

Despite all research and success of DM tools no tools or automated process arising from DM has 

been adopted on a routine basis (Abbass, 2002), Abbass (2002) has proposed several possible 

explanations in that the aim of such systems might be perceived to be to replace the health care 

professional, as well as people�s mistrust and suspicions of technology. This illustrates the need to 

emphasise the complementary nature of DM tools, as an adjunct to decision-making by health and 

medical professionals rather than to replace them (Abbass, 2002). Botacci et al. (1997) emphasised 

the need to combine to use the clinical judgement and experience for careful interpretation of the 

results, and it must be made clear that any data mining tools are �just another source of possibly 

useful information� (Kononenko et al., 1998, p. 403) that the health care professional may use in 

decision-making with and providing care for patients.  

The point has already been made that data need to be represented in an appropriate format and that 

health care professionals should be able to interpret the results and understand how DM models 

reached their decisions. Lisboa (2002) commented on the increase in DM methods that allow 

visualisation of the data and their potential to assist in the decision-making process and the Growing 

Cell Structure technique demonstrates the value of visualisation (Walker et al., 2002). Human 

beings are better at analysing and interpreting data that are presented visually rather than 



numerically (Walker, 1999; Lisboa, 2002) so that DM models that are able to present a visual image 

of the way in which a decision was made may gain greater acceptability among health care 

professionals. Health care professionals have to trust DM tools, and therefore they need not only to 

understand their performance in terms of accuracy etc., but also in terms of their limitations and 

understand that they are there to aid decision-making by health care professionals not to replace it 

(Cross et al., 1995). In the same way that healthcare professionals build up trust in each other 

through sharing information, decision-making etc., they need to develop trust in the decision-

making tools (Abbass, 2002). This re-emphasises the need for health care professionals, statisticians 

and data miners to collaborate together to improve models and methods of tackling the complex 

issues of analysing health and medical data and overcome the suspicions of the former and any 

over-confidence among the latter (Biganzoli et al., 2002; Kuo et al., 2001). 

Sullivan and Mitchell (1995) discussed the need to evaluate the use of tools from a patient 

perspective and Lisboa (2002) commented the difference between assessing whether a DM model 

improves on the performance of health care professionals and assessing whether there is any overall 

improvement in patient outcomes through the use of tools developed using DM. Although studies 

have demonstrated the effectiveness of DM techniques in terms of diagnostic or prognostic 

accuracy, little research has shown an improvement in patient health and well-being.  

A final, but by no means the least, important consideration in health and medicine is that of ethics. 

Although ethical considerations are of importance in other disciplines they come under particular 

close scrutiny in health and medicine because of its involvement with people, who are often in a 

vulnerable position when being treated for a condition. It is important therefore that any 

developments in DM tools are conducted ethically, with ultimate well being of patients and the 

public in mind, not only in reaching an end, but also in developing the means to achieve this. 



Conclusions 

In this review selected DM and statistical techniques that have been used in medicine and health 

have been examined and their strengths and weaknesses have been discussed. Our understanding of 

the complex processes underlying health and illness is increasing and the available data are 

becoming more numerous and it is becoming possible to integrate and store ever larger volumes in 

data warehouses. As this happens, the demands for appropriate ways of processing these data and 

answering clinically relevant questions will increase as well. The limitations of current ways of 

analysing medical and health data will become more apparent and the search for new and 

alternative methods will intensify. Data mining has the potential to play a part in this. However, to 

achieve greater acceptance and use in clinical settings on a routine basis DM must be seen as a 

systematic process with clear, precise and realistic objectives. The greatest opportunity for DM is 

that it becomes widely recognised as complementary to traditional methods of analysing data in 

health and medicine, and that it can be used alongside, and together with, descriptive and inferential 

statistical methods in the knowledge discovery process, so that the strengths of different techniques 

can be maximised and their weaknesses can be minimised. The development of DM applications 

requires investment of time and resources (Koh and Leong, 2001), but perhaps what is most 

essential is that it is part of a process that involves the multidisciplinary and open-minded 

collaboration of medical and health care professionals, statisticians and information professionals. 
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