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When designing a combinatorial library it is usually desirable to optimise multiple
properties of the library simultaneously, and often the properties are in competition
with one another. For example, a library that is designed to be focused around a
given target molecule should ideally have minimum cost and also contain molecules
that are bioavailable. In this paper, we describe the program MoSELECT for
multiobjective library design that is based on a multiobjective genetic algorithm
(MOGA). MoSELECT searches the product-space of a virtual combinatorial library
to generate a family of equivalent solutions where each solution represents a
combinatorial subset of the virtual library optimised over multiple objectives. The
family of solutions allows the relationships between the objectives to be explored and
thus enables the library designer to make an informed choice on an appropriate
compromise solution. Experiments are reported where MoSELECT has been applied

to the design of various focused libraries.
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INTRODUCTION

Initial efforts in combinatorial library design were directed towards the design of
diverse libraries; '* however, there is a growing interest in the design of focused
libraries and in the design of libraries optimised on multiple properties
simultaneously. > Diverse libraries are designed to give broad coverage of chemistry
space and are useful for screening against a range of structural targets. Focused
libraries, on the other hand, are constrained to occupy restricted regions of chemistry
space with the boundaries being defined by what is known about the biological target
of interest. For example, when the 3D structure of the target is known, a virtual library
can be screened against the target to eliminate molecules that cannot fit into the active
site. Alternatively, if an active compound is known, the library could be constrained
to contain molecules that are similar to the known active or the library could be
designed to contain molecules that are predicted to be active according to a QSAR

model.

It is now recognised that, even in diverse libraries, it is important that the
physicochemical properties of the libraries are also optimised in order that compounds
contained within the library constitute good start points for further optimisation. It is
even more desirable to optimise multiple properties in focused library design since in
addition to matching constraints related to the target molecule, other criteria are often

required during lead optimisation, for example, bioavailability and cost of goods.

We recently reported the development of MoSELECT®’ for multiobjective library
design in product-space and described its application to the design of libraries on
multiple competing objectives. Examples were given of libraries that are

simultaneously diverse while having drug-like physicochemical property profiles.



Here we describe the application of MOSELECT to focused libraries that are

optimised on multiple objectives simultaneously.

METHODS

MOoSELECT is a recent development of the earlier SELECT program for product-
based combinatorial library design.8 SELECT is based on a genetic algorithm (GA)
and incorporates multiple objectives via a weight-sum fitness function. SELECT was
developed following a study of the effectiveness of reactant versus product-based
methods for library design which showed that greater structural diversity can be
achieved by analysing product space.” The results have been subsequently confirmed

1011 The objectives to be optimised by SELECT are normalised and

in other studies.
relative weights are specified by the user at run time. Experiments have been reported
where SELECT has been applied to the design of libraries that are simultaneously
diverse and have drug-like physicochemical properties. ¥ Several other GA based
programs developed in computational chemistry also use a weighted-sum fitness

1 and ligand docking prograrns.15

function, e.g., for combinatorial library design
Despite the wide spread use of the weighted-sum approach, there are several
limitations associated with it as an approach to multiobjective optimisation. For
example, setting appropriate weights can be a difficult task often requiring several
trial and error experiments'® and the weights chosen then determine the regions of the

search space that will be explored. These limitations are described in more detail in

Gillet et al.®

Multiobjective problems are often characterised by a family of solutions that each

represent a compromise in terms of the individual objectives. The family of solutions



maps out a hypersurface in the search space. The weighted-sum fitness function used
in a GA finds one solution within the family, with the position of the solution on the
surface being determined by the relative weights assigned to the objectives. In
MoSELECT,®’ the GA of SELECT is replaced by a MOGA (MultiObjective Genetic
Algorithm).”’18 The MOGA technique allows multiple objectives to be explored
simultaneously without the need for summation and maps out the entire surface of
solutions in a single run thus overcoming many of the limitations of using a weighted-

sum fitness function.

MOGA exploits the population nature of a GA in order to optimise a family of
solutions simultaneously. The fitness of an individual is determined using the concept
of dominance where an individual is non-dominated if an improvement in one of its
objectives leads to a deterioration in one or more of the other objectives when
compared to all other individuals in the population. The concept of dominance is
illustrated in Figure 1 which shows a population of potential solutions to a two
objective problem where the aim is to find solutions that represents minimum values
of both objective functions f; and f5. The non-dominated solutions are shown as solid
circles and the dominated solutions are shown as unfilled circles. Solution C is
dominated by solution B since B is better than C in both objectives f; and f>. Solution
A, however, is non-dominated since there is no solution in the population that is better
than it in both objectives (solution B is better than 4 in terms of /7, however, it is

worse in terms of /5). Similarly, solution B is non-dominated.

The GA in SELECT ranks the individuals in a population according to the weighted
sum fitness function. In MoSELECT, however, ranking is based on dominance. A

non-dominated individual is assigned rank of 0, an individual that is dominated by



one other individual is given rank 1, and so on as shown in Figure 1. Individuals are
then selected for reproduction with a probability that is inversely proportional to their
rank. This process is known as Pareto ranking and the non-dominated solutions map
out what is known as the Pareto surface. Thus, all non-dominated solutions are treated
as equivalent and have a higher probability of being selected for reproduction than do
dominated solutions. The end result of a MOGA run is a family of non-dominated

solutions spread out on what is known as the Pareto surface.

The technique of niching can be used to ensure that the entire Pareto surface is
mapped and that an evenly spread family of solutions is found. Niching is
implemented in an iterative procedure where the non-dominated solutions are
examined one at a time. The first solution encountered is positioned at the centre of a
hypervolume, or niche. Then, if the (absolute) difference in the objectives of the next
solution and the objectives of any solution that already forms the centre of a niche is
within a given threshold, for all objectives, the rank (or dominance) of the current
solution is penalised, otherwise it forms the centre of a new niche. The threshold is

also known as the niche radius.

MOoSELECT allows competing objectives to be identified readily and by producing an
entire family of solutions it is then the left to the library designer to choose the most
appropriate solution based on additional criteria, such as chemical intuition. There are
no significant overheads in terms of computing time for adopting Pareto ranking and a
run of MoSELECT takes approximately the same time as a run of SELECT but has
the advantage of finding a whole family of solutions. The following section describes

the application of MoSELECT to the design of focused combinatorial libraries.



RESULTS

2-Aminothiazole library

A virtual library of 12850 product molecules was enumerated from 74 o-
bromoketones and 174 thioureas, see Figure 2. Each set of reactants was extracted
from the Available Chemicals Directory'® and filtered using the ADEPT software™":
reactants having molecular weight greater than 300 or more than 8 rotatable bonds
were removed and a series of substructure searches were performed to remove
reactants containing undesirable substructural fragments. The virtual library was
enumerated and various properties were calculated for each of the product molecules
including: 1024 Daylight fingerprints; molecular weight; number of rotatable bonds;
number of hydrogen bond donors; number of hydrogen bond acceptors; and cost,
which is based on summing the costs of each reactant from which the product is

comprised.

A target compound was selected from the virtual library at random, shown in Figure
3a, and SELECT was run to find a 15x30 combinatorial subset focused around the
target by maximising the normalised sum of similarities of the compounds in the
subset with the target. Similarity was measured using Daylight fingerprints and the
Tanimoto coefficient. Over 5 runs, solution libraries were found to have an average
normalised sum of similarities of 0.832 (standard deviation 0.002). The cost of these
libraries (as calculated from the price/g quoted in the ACD database) was found to
range from $37436 to $64696 with an average cost of $48289.4 (standard deviation
10892.3). SELECT was then run to optimise libraries on cost alone and the minimum

cost library averaged over 5 runs was found to be $1675.2 (standard deviation 184.7),



with these libraries having a normalised sum of similarities of 0.696 (standard
deviation 0.01). Thus it can be seen that there is a high level of conflict between the
two objectives with high similarity corresponding to relatively high cost and
conversely low similarity corresponding to low cost. It is likely that a compromise
library would be preferable to either of the two extremes. One way to reach a
compromise would be to run SELECT using the weighted-sum fitness function with
weights chosen to reflect the importance of each objective. However, in practise it is
not easy to choose appropriate weights, especially for non-commensurate objectives

like similarity and cost.

Next, MoSELECT was run to find a family of solution libraries focused around the
same target while simultaneously minimising cost. Figure 3b shows cost plotted
against normalised sum of similarities on initialisation of MoSELECT for a
population size of 50, i.e., for 50 randomly selected combinatorial subsets. Non-
dominated individuals, i.e., every individual for which there are no other individuals
equal to or better than it in all objectives, are shown as solid circles, the dominated
solutions are shown as crosses. The direction of the y axis has been reversed so that
the direction of improvement in both objectives is towards the bottom left hand corner

of the graph.

Figure 3c shows the non-dominated solutions after 5000 iterations of MOoSELECT on
the same scale as Figure 3b. Here it can be seen that the entire surface of non-
dominated solutions has moved towards the bottom left hand corner of the plot. The
non-dominated solutions are shown on an expanded scale in Figure 3d. where it can

be seen that the solutions are spread out over a surface representing a range of



different values for each of the objectives. The percentage of the population that is

non-dominated has increased from 12% at initialisation to 88%.

The dashed horizontal and vertical lines in Figure 3d show the optimum values
achieved when each of the objectives are optimised independently. In this example
solutions at the extremes are not found by MoSELECT. However, Figure 3e shows
the non-dominated solutions found when MoSELECT is run with niching. The niche
radius was set dynamically throughout the run at 10% of the range of values that exist
for each objective on the current Pareto frontier. A much wider spread of solutions is
found, as shown by the unfilled diamonds. The solutions of Figure 3d are
superimposed and can be seen to occupy the central portion of the Pareto surface.

Thus niching can be used to control the range of solutions found.

The conflict between cost and normalised sum of similarities is clearly evident, with
libraries that are more tightly focused on the target corresponding to those of highest
cost and conversely lower cost libraries tending to have lower normalised sums of
similarities. The entire family of solutions is found in a single run (whereas a run of
SELECT produces a single solution only) without the need to assign relative weights
to the two objectives. In the absence of any further information, the family of non-
dominated solutions are all equivalent and the library designer is then able to make an
informed decision on what would be an appropriate compromise between the two

objectives.

MOoSELECT can be used to optimise any number of objectives and the next
experiment was designed to optimise six objectives simultaneously: similarity to the

known target; cost; and profiles of the following physicochemical properties:



hydrogen bond donors; hydrogen bond acceptors; rotatable bonds; and molecular
weight. The physicochemical property profiles are optimised by minimising the
difference between the distribution in the library and the distribution in the World

Drug Index.”!

When there are more than two objectives the results can be displayed by a parallel
graph as shown in Figure 4 where the non-dominated solutions are shown after 5000
iterations of MoSELECT. The objectives have been scaled to allow them to be plotted
on the same graph. Scaling was achieved by finding maximum and minimum values
for each objective independently using SELECT and adjusting the values for each
potential solution accordingly. Thus zero on the y axis, labelled Penalty, represents
the best value that can be achieved when an objective is optimised independently with
larger values indicating the degree to which an objective is compromised. Note that
similarity is plotted as 1-SIM so that zero indicates maximum sum of similarities.
Each line in the parallel graph represents one solution found by MoSELECT and
crossing lines indicate objectives that are in competition with one another. It can be
seen that there is significant competition between all of the pairs of adjacent
objectives in the graph. Thus, if the overall aim is to design and synthesise libraries
that are focused on a target compound, that have minimum cost and that have drug-
like physicochemical properties profiles then a compromise solution should be
selected. MOoSELECT allows the full range of potential solutions to be visualised, thus

allowing an informed choice to be made on where that compromise should lie.



Amide library

The second library to be studied was an amide library. The library has been used in a
recent comparison of the PLUMS program with a GA based program called VOLGA
and a dynamic monomer frequency analysis program (DMFA)."® The library consists
of 100 diverse carboxylic acids and 100 diverse amines extracted from the MedChem

database, representing a virtual library of 10K products.

The virtual library was enumerated and the following properties were calculated for
the products: 1024 Daylight fingerprints; number of rotatable bonds; and number of
hydrogen bond donors. In addition, the bioavailability of each compound was
predicted using the QSAR model recently published by Yoshida and Topliss.**
Bioavailability is represented in the model as the percentage of an administered dose
of the compound that reaches systemic circulation after oral administration.
Compounds were given a bioavailability rating as follows: those with a bioavailability
prediction < 20% were rated 1; compounds in the range 20-49% were rated 2;
compounds in the range 50-79% were rated 3; and compounds with predicted
bioavailability > 80% were rated 4. There were 649 compounds in the virtual library
for which predictions could not be calculated due to missing parameters and these
were assigned the rating 0. This demonstrates a further advantage of MoSELECT
over weighted-sum methods, in that there is the flexibility to handle different types of

objective simultaneously such as classifiers, ranges, profiles and so on.

The first experiment was based on designing libraries focused around a target
compound while simultaneously optimising bioavailability over the library as a

whole. A compound was selected at random from the virtual library as the target
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compound and libraries were focused on the target by maximising the normalised sum
of similarities to the target. Bioavailability was optimised by maximising the sum of

bioavailability ratings over all compounds in the library.

As in the 2-aminothiazole example, SELECT was run to find optimum values for
10x10 combinatorial subsets when each of similarity and bioavailability are optimised
independently. The average maximum normalised sum of similarities over 5 runs was
0.502 (standard deviation 0.001), with these values being found for libraries having an
average bioavailability score of 215 (standard deviation 7.8). Conversely, the
maximum bioavailability score was an average of 400 (standard deviation 0.0) over 5
runs with corresponding normalised sum of similarities of 0.285 (standard deviation
0.013). An optimum library would be one that had maximum similarity to the target
while also having a maximum bioactivity score. Thus, the two objectives are in
conflict and once again a compromise between the two objectives may provide the

most appropriate solution.

MoSELECT was then run to optimise 10x10 combinatorial subsets on similarity to
the target simultaneously with predicted bioavailability and hence to find a family of
equivalent solutions. The results are shown in Figure 5. The solid circles show the
MoSELECT solutions and the dashed lines represent optimum values when each
objective is optimised independently. The competition between the two objectives is
clear with relatively good values of similarity corresponding to relatively poor values

of bioavailability.

Next, MoSELECT was run to include additional objectives, namely, profiles of

hydrogen bond donors and rotatable bonds. The non-dominated solutions are shown
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in Figure 6 after 5000 iterations. Again in the parallel graph the objectives have been
scaled to allow them to be compared on the same graph. The competing nature of
similarity to the target and bioavailability is evident from the crossing lines. There are
some solutions with parallel lines passing through BIO and HBD indicating that these
two objectives are correlated (as would be expected); however there are also some
solutions where lines between these two objectives cross, indicating that the
relationship becomes more complex as additional objectives are optimised
simultaneously. One possible compromise solution is indicated by the bold line. This
solution has near optimum sum of similarities and bioavailability score at the expense
of hydrogen bond donor and rotatable bond profiles. Other compromise solutions may

be equally appropriate.

The next series of experiments with the amide library were based on the PLUMS
study. Filtering techniques based on various physicochemical properties (molecular
weight, CMR, number of rotatable bonds, maximal binding energy, and complexity)
were used to identify 409 molecules within the virtual library as having favourable
properties. Analysis of the 409 molecules revealed that they were constructed from 67
acids and 71 amines and hence the combinatorial library that contains all 409
molecules consists of 4757 molecules. The aim was to design 10x10 combinatorial

subsets that contain as many of the 409 favourable molecules as possible.

The maximum number of favourable compounds achievable in a 10x10 subset was

found to be 69 using PLUMS, VOLGA and DMFA.'®

Initially, SELECT was run to optimise the number of favourable compounds in a

10x10 subset and was also able to find libraries containing 69 of the preferred
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compounds. When MoSELECT was run to optimise this single objective, four non-
dominated solutions were found with each library containing a different set of 69 of
the preferred compounds (between 61 and 63 of the preferred compounds were

identical when the libraries were compared with one another).

The filters used to select the preferred compounds define boundaries in
physicochemical property space within which it is desirable that the bulk of the
library resides. Within these boundaries, however, it is usually desirable that the
compounds are widely spread, and the less sophisticated DMFA and PLUMS
algorithms are not able to meet this requirement. Thus an attempt was made to
optimise the number of preferred compounds simultaneously with diversity (where
diversity was measured as the sum of pairwise dissimilarities using Daylight
fingerprints and the cosine coefficient). The non-dominated solutions found after
5000 iterations of MOSELECT are shown in Figure 7. It can be seen that the
maximum number of preferred compounds corresponds to minimum diversity within
the subset and, conversely, maximum diversity in the subset corresponds to minimum
number of preferred compounds. The maximum number of preferred compounds

found in a non-dominated solution is 64 for a library with diversity 0.510.

Extending the optimisation problem to include a third objectives, namely, drug-like
molecular weight profile, highlights the need for further compromise as shown in the
parallel graph of Figure 8. The number of preferred compounds and diversity are
plotted as 1-PREF and 1-DIV, respectively, so that optimum solutions are those
nearest zero for all objectives. The solution with a near drug-like molecular weight

profile, has diversity of 0.544 but it contains only 6 of the preferred compounds,
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whereas the solution with the highest number of preferred compounds (48), shown in

bold, has similar diversity but an unfavourable molecular weight profile.

CONCLUSION

MOoSELECT is a program for the design of combinatorial libraries optimised on
multiple objectives simultaneously. Here, it has been applied to the design of focused
libraries. In focused library design it is often desirable to optimise several objectives,
for example, similarity to a target compound simultaneously with bioavailability.
MOoSELECT generates a family of equivalent solutions in a single run so that the
library designer can make an informed decision about which library to progress to
synthesis. A further advantage of MoSELECT is that it allows the relationships

between objectives to be readily identified.
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FIGURE CAPTIONS

Figure 1. A population of individuals in a two-objective (f; and f>) minimisation
problem is shown. The solid circles (including those labelled 4 and B) represent non-
dominated solutions, where a solution is non-dominated if there is no other individual
in the population better than it in both objectives. The unfilled circles represent
dominated solutions, for example, solution C is dominated by solution B which is
better than it in both f; and f5. Each individual is assigned a rank that reflects the

number of individuals by which it is dominated.

Figure 2. 2-Aminothiazole library.

Figure 3a. The target compound used for library focusing.

Figure 3b. MoSELECT was configured to find 15%30 2-aminothiazole subsets
optimised on similarity to a target compound simultaneously with cost. The
population is shown on initialisation. The dominated solutions are shown by crosses

and the non-dominated solutions as filled circles.

Figure 3c. The population is shown after 5000 iterations of MoSELECT. The whole
population has moved towards the left-hand corner of the graph indicating
improvement in both objectives and the number of non-dominated solutions in the

population has increased.

Figure 3d. The non-dominated solutions in Figure 2b are shown on an expanded scale

where it can be seen that the two objectives (similarity and cost) are in conflict.
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Figure 3e. The same library design problem was run with niching to force

MOoSELECT to find solutions corresponding to extreme values in each objective.

Figure 4. 2-Aminothiazole library simultaneously optimised on six objectives:
similarity to the target (SIM); cost in $/g (COST); and profiles of molecular weight
(AMW); hydrogen bond donors (HBD); hydrogen bond acceptors (HBA) and
rotatable bond (RB) profiles. The y axis, labelled Penalty, represents the relative value
achieved for an objective with a Penalty of zero representing the best that can be
achieved when an objective is optimised independently. Similarity to the target is
plotted as 1-SIM so that the direction of improvement in all the objectives is towards

zero on the y-axis.

Figure 5. 10x10 amide subsets optimised on similarity to a target compond and

bioavailability (B/0).

Figure 6. Selecting amide subsets optimised on similarity to the target (SIM),
bioavailability (BIO) and profiles of hydrogen bond donors (HBD) and rotatable
bonds (RB). Simlarity to the target and bioavailability are plotted as 1-SIM and 1-
BIO, respectively, so that the direction of improvement in all the objectives is towards

zero on the y-axis. Penalty is as described in Figure 4.

Figure 7. The non-dominated solutions are shown for selecting 10x10 amide subsets
optimised on the number of preferred compounds and diversity, simultaneously. The
maximum number of preferred compounds found is 64 for a library with relatively

low diversity.

Figure 8. The non-dominated solutions are shown for selecting 10x10 amide subsets

optimised on the number of preferred compounds (PREF), diversity (DIV) and

18



molecular weight profile (AMW), simultaneously. PREF and DIV are plotted as 1-
PREF and 1-DIV, respectively, so that the direction of improvement in all the
objectives is towards zero on the y-axis. Penalty is as described in Figure 4. The

maximum number of preferred compounds found for this run of MoSELECT is 46.

19



2
© O 4
C
@1
B 0
’ 0
(]

Figure 1.

20



Figure 2.

Br 0
R/ Rs

21



Figure 3a.

0.54

0.59 - P

0.64 -

0.69 -

Similarity

0.74 -

0.79

0.84 \
0 50000

Figure 3b.

100000 150000
Cost

200000

0.54

0.59

0.64

0.69 -

Similarity

0.74

0.79 4 X

0.84 ‘
0 50000

Figure 3c.

100000 150000
Cost

200000

22



0.805

0.81

0.815 -

0.82

Similarity

Figure 3d.

00 1800 2200 2600 3000 3400
Cost

0.75

0.76 |
0.77 ©
0.78 1o
0.79

0.8 -
0.81 ‘
0.82 1
0.83 | o

Similarity

1400 6400 11400 16400

Figure 3e.

Cost

23



Ajjeuad

COST AMW HBD HBA RB

1-SIM

Figure 4.

200

250

300

350

400

Bioavailability score

Figure 5.

24



Ajjeuad

RB

HBD

BIO

1-SIM

Figure 6.

25



L 4

L 4

o
~

T T T T ! ,

9 9 9 9 9 9O o
© O ¥ ® N -
spunodwo) pauseid ON

0.55

©
o

Diversity

Figure 7.

26



1-PREF

Figure 8.

1-DIV

AMW

27



	Front Page Cover
	gillet_jmgm2002.pdf

