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Summary

This paper describes the extension of our earlier multiobjective method for generating 

plausible pharmacophore hypotheses to incorporate partial matches. Diverse sets of 

molecules rarely adopt exactly the same binding mode, and so allowing the identification 

of partial matches allows our program to be applied to larger and more diverse datasets. 

The method explores the conformational space of a series of ligands simultaneously with 

their alignments using a multiobjective genetic algorithm. The principles of Pareto 

ranking are used to evolve a diverse set of pharmacophore hypotheses that are optimised 

on conformational energy of the ligands, the goodness of the overlay and the volume of 

the overlay. A partial match is defined as a pharmacophoric feature that is present in at 

least two, but not all, of the ligands in the set. The number of ligands that map to a given 

pharmacophore point is taken into account when evaluating an overlay. The method is 

applied to a number of test cases extracted from the Protein Data Bank where the true 

overlay is known. 
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Introduction 

A pharmacophore describes the spatial arrangement of chemical features required for a 

small molecule to bind to a receptor. Pharmacophore identification methods are usually 

applied to a series of molecules known to bind to a receptor, when the three-dimensional 

structure of the receptor is unknown. The first generation of pharmacophore identification 

programs have been around for more than a decade [1-4]. However, recently some of the 

limitations of these early methods have been highlighted [5, 6] and several new 

approaches are now beginning to appear that address some of these limitations [7-10]. 

Pharmacophore identification involves identifying common pharamcophoric features 

within the molecules, that is, atoms or functional groups that can interact with a receptor 

in a similar way, and then aligning the bioactive conformations of the molecules such that 

their corresponding features are overlaid. The bioactive conformations of the molecules 

are not usually known and so some form of conformational analysis is usually carried 

out. For many datasets, there are numerous plausible ways of overlaying the molecules, 

due to the presence of multiple features within the molecules and due to the multiple 

accessible conformers that may exist for each molecule. In such cases, it is important that 

the chemist is presented with a range of alternative hypotheses that can be validated 

further, for example, by database searching or by the synthesis of new compounds. 

The quality of a pharmacophore hypothesis is usually judged on a number of criteria. For 

example, the GASP program [2] evaluates a pharmacophore on the number of 

pharmacophoric points it consists of, the quality of the mapping of each molecule onto 

the pharmacophore (which includes consideration of site points together with their 

associated heavy atoms), the common volume of the overlaid molecules and their 

conformational energy. GASP is based on a traditional optimisation technique in which 

the multiple criteria are combined into a single weighted-sum fitness function. 

Specifically, the fitness function in GASP combines three components that take account 

of the feature alignment, the volume overlap and the conformational energy. This 

approach reduces the problem to a single-objective optimisation problem that can be 
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handled by a single-objective optimisation method, such as the genetic algorithm (GA) in 

GASP.

There are, however, a number of limitations with traditional optimisation methods. 

Typically the objectives are in competition with one another so that a better alignment (as 

measured by the volume score, for example) can be achieved by conformers that are 

strained away from their minimum energy conformations. Thus, a trade-off usually exists 

in the criteria to be optimised. In the traditional approach, this is handled through the use 

of relative weights which determine the relative importance given to the individual 

objectives and the particular compromise solution that is sought. However, it can be 

difficult to assign appropriate weights, especially when the criteria are non-

commensurate, as is the case here. Default weights in GASP were defined empirically by 

analysing a relatively small number of test cases. However, there is no reason to assume 

that a set of weights that is relevant for one particular test case will also be relevant for 

another. Furthermore, the result of a single-objective optimisation is a single solution that 

maximises (or minimises) the function, yet in the absence of the receptor itself, it is 

unlikely to be possible to predict unambiguously how to overlay a series of ligands 

known to bind to the receptor. 

In a previous study, we have explored the use of a multiobjective optimisation method 

which aims to find a diverse set of pharmacophore hypotheses that are all plausible for a 

given set of ligands [9]. The algorithm explores the conformational space of the ligands 

simultaneously with their alignment. The same objectives as in GASP are calculated, but 

they are treated independently without the need to define relative weights. The method is 

based on the Pareto principles of multiobjective optimisation [11, 12].  According to 

these principles, a solution is defined as Pareto-optimal if none of the individual 

objectives can be improved without worsening another objective. A representative set of 

such solutions can then be extracted, chosen so that they include a diverse range of 

individual objective values and molecular alignments. Our method was shown to be 

successful in identifying hypotheses that are very similar to previously published 

hypotheses, for test cases where the best solution identified by the weighted-sum method 
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in GASP was incorrect. To our knowledge, Pareto ranking was first applied in the field of 

Chemoinformatics by Handschuh et al. for the flexible superposition of 3D structures 

[13]. The differences between this first approach and our work are described in our 

previous paper. More recently multiobjective optimisation methods have also been 

applied to combinatorial library design [14], derivation of quantitative structure activity 

relationships [15] and to the de novo design of molecules [16]. Multiobjective 

optimisation techniques have also been applied to pharmacophore identification in the 

GALAHAD program; the full details of this method are not yet published; however, the 

underlying approach appears to be quite different to that described here [10].

In our previous work [9] we were able to demonstrate the benefits of the multiobjective 

optimisation approach over a traditional GA, however, we also highlighted a limitation in 

the method which also applies to GASP. This is the restriction that each pharmacophore 

point generated must be mapped to a feature in every ligand. This effectively limits both 

programs to handling very small numbers of carefully chosen compounds [5]. In this 

paper, we build on the previous work by increasing the functionality of the multiobjective 

optimisation approach to allow partial matches to be identified for a series of ligands. 

Other programs exist that can find overlays involving partial feature matches (e.g. 

Catalyst HipHop [17]), but we believe our algorithm to be a novel method of 

incorporating partial matching into a multiobjective pharmacophore search program. The 

result is to widen the search so that solutions containing partial matches are automatically 

considered alongside more restricted solutions, with no necessity for any user input. 

Implementation of partial matches has required significant changes to be made to the 

chromosome representation, the alignment method and to the feature score so that full 

matches are distinguished from partial matches. Allowing partial matches to be identified 

increases the search space to be explored significantly and so we have introduced the use 

of distance constraints which can be used to improve the effectiveness of the algorithm. 

We have also extended the definition of hydrophobes to include aliphatic rings and to 

allow user-defined hydrophobic features. Taken together, these enhancements allow 

increased numbers of more diverse molecules to be handled. The method has been 
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applied to sets of ligands extracted from the Protein Data Bank (PDB) [18] where the true 

pharmacophores are known. Examples have been chosen where partial matches are 

known to exist and the new methodology is validated on the ability of the MOGA to 

identify ligand overlays that are close to those obtained by least-squares superposition of 

the corresponding experimental protein-ligand structures. However, it should  be noted 

that in all cases a range of different hypotheses are found. 

Method

We have extended the multiobjective genetic algorithm (MOGA) described previously 

[9] to allow the pharmacophore hypotheses identified to include partial matches. A partial 

match is defined as a pharmacophoric feature that is present in at least two, but not all, of 

the ligands in the set. The algorithm is described in detail below, with particular emphasis 

given to the new methodology. 

The ligands are input to the program as energy minimised conformations. The first step is 

to identify the pharmacophoric features within each ligand. Donor and acceptor features 

are defined as in GASP, however, the definition of a hydrophobe has been extended to 

include aliphatic rings and user-defined groups, in addition to the aromatic rings defined 

previously. Each hydrophobic ring is represented by a virtual point created at the centre 

of the ring and a normal to the ring. A user-defined hydrophobe, such as a t-butyl group, 

is specified as a list of atoms and a virtual point is created at the centroid of the atoms. 

Donors and acceptors are represented by virtual points that correspond to the hypothetical 

positions of acceptors or donors in the receptor binding site. Thus, a virtual point is 

created at 2.9Å from the heavy atom attached to each hydrogen-bond donor proton and at 

2.9Å from the heavy atom associated with each acceptor lone pair. 

Encoding conformation 

The chromosome consists of a conformational part and a mapping part which is described 

below. The conformational part consists of a set of N strings to represent the 

conformation of each of the N ligands. Each rotatable bond in each ligand is encoded as 
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an 8-bit number, which gives a resolution of about 1.4°. This encoding of conformation is 

unchanged from our previous work [9]. 

Encoding Partial Mappings 

The mapping part of the chromosome has been modified substantially from that described 

previously [9] to encode both full and partial mappings in a mapping table. The mapping 

table consists of one row per molecule with each column representing a potential 

pharmacophore point of a particular type. The cells in a column represent the features in 

each molecule that are mapped to the corresponding pharmacophore point. The number 

of columns of each feature type is user-defined and need not be larger than the maximum 

number of features of that type in any molecule in the set. If set to a smaller value, the 

search space is reduced – making it more tractable – but there is a risk that the reduced 

search space might not contain the true solution. Partial mappings are encoded through 

the use of dummy features which are added to the real features in each molecule.  Like 

real features, they are of a specific type, i.e. donor, acceptor or hydrophobe. Each cell of 

the mapping table may contain either a real or a dummy feature of the relevant molecule. 

Thus, the number of molecules which have a real feature contained within a given 

column may vary between zero and the number of molecules in the dataset. A mapping 

column that contains real features in fewer than two molecules has no physical 

significance. Thus, the number of real mappings may vary depending on how many 

columns contain real features in at least two molecules. 

A mapping table is illustrated in Figure 1 for a hypothetical set of molecules that bind at 

the same (hypothetical) site but form different and overlapping sets of interactions.  The 

most plausible way of overlaying the molecules is shown and a hypothetical chromosome 

that would lead to this alignment is shown in Table 1.  Note that only the mapping part of 

the chromosome is shown; it is assumed that the conformational part contains appropriate 

torsion angles. The chromosome refers to the features of each molecule using the labels 

assigned to them in Figure 1. 
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Figure 1. An overlay of hypothetical molecules 1-4 that corresponds to the mapping 

shown in Table 1. 1 is white, 2 is blue, 3 is brown and 4 is green. The donors are shown 

in purple and acceptors in orange. The hydrophobic groups are not highlighted to ease 

distinction of the molecules 

There are three mapping columns for each feature type.  The first donor column 

represents a donor formed by H1 in molecule 1 and H1 in molecule 2.  Molecules 3 and 4

do not have features that map to this pharmacophore point, as represented by the dummy 

features. The second donor column represents a donor that is mapped to a feature in every 

molecule (specifically H2 in 1, H2 in 2, H1 in 3 and H1 in 4).  The third donor column is 

not mapped to a real feature in any of the molecules and hence does not represent a 

pharmacophore point. 
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Donors (H) Acceptors (LP) Hydrophobes

Molecule 1 1 2 Du 1 2 Du 1 Du Du

Molecule 2 1 2 Du 1 Du Du 1 Du 2

Molecule 3 Du 1 Du 1 2 Du 1 2 Du

Molecule 4 Du 1 Du 1 2 Du 1 2 Du

Table 1. A mapping table that leads to the overlay in Figure 1.  The number of columns 

of each type is user-defined. The integers in the columns refer to the subscript labels used 

to identify donors and acceptors and to the ring labels used to identify the hydrophobes. 

“Du” indicates a dummy feature. Dark shading indicates mappings involving all 

molecules. Light shaded columns indicate partial mappings and the unshaded columns 

involve fewer than two molecules and do not represent real mappings. 

The population of chromosomes is initialised by making random assignments of 

molecule features (real and dummy) in the mapping table and by assigning torsion angles 

at random. The genetic operators of crossover and mutation are applied to the 

chromosomes in order to generate child chromosomes. Dummy features are treated in the 

same way as real features by the genetic operators; however, they are not used in the 

alignment procedure which is described below. 

Generating an Alignment 

The information encoded in the chromosome is used to generate an alignment of the 

molecules prior to evaluation of the fitness of the chromosome. First, a conformation is 

generated for each molecule by applying the appropriate bond rotations encoded in the 

conformation part of the chromosome. The alignment is then built incrementally using 

the mapping table and a “framework” method that is similar to that described by Sutcliffe 

et al. for the alignment of protein sequences [19] but has been adapted to allow for partial 

mappings. Consider a mapping table consisting of n rows (molecules) and m columns 

(potential pharmacophore features). Molecule k, represented in the mapping table by a 
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row consisting of m features, Pk1 to Pkm, (each of which may represent a real feature or a 

dummy), is fitted to a framework which has been derived from the mappings of 

molecules 1, …, k–1. In the description below, framework kF refers to the framework that 

has been derived from molecules 1, …, k.  The framework data structure consists of m

points, each related to one of the mapping columns in the chromosome.  Each point 

represents a potential pharmacophore point, derived from real features in the related 

mapping column, or it may be null, if the column consists entirely of dummy features for 

molecules 1, …, k.  The point in kF related to mapping column a shall be denoted kFa.

The framework is initialised with the first molecule.  For each mapping column a that 

maps to a real feature in molecule 1, 1Fa is set to the co-ordinates of feature P1a.  For each 

column that maps to a dummy feature, 1Fa is a null point.  Then, for each subsequent 

molecule i, where , framework ni1 iF is calculated by least-squares fitting of 

molecule i to framework i–1F as follows.

For each mapping a:

(i) If i–1Fa is null and Pia is a dummy feature, iFa is null. 

(ii) If i–1Fa is non-null and Pia is a dummy feature, iFa is set equal to i–1Fa.

(iii) If i–1Fa is null and Pia is a real feature, iFa is set equal to the co-ordinates of Pia.

(iv) If i–1Fa is non-null and Pia is a real feature, iFa becomes the weighted centroid 

of i–1Fa and the co-ordinates of Pia.  The calculation is weighted towards i–1Fa

in the ratio r(i–1Fa):1 where r(i–1Fa) is the number of real features which 

mapping a maps in molecules 1, …, i–1, i.e. the number of points from which 
i–1Fa was derived. 

Only in case (iv) does mapping a represent an actual mapping between molecule i and the 

preceding molecules. Therefore the least-squares fitting between framework i–1F and 

molecule i is restricted to the mappings falling into case (iv) and it can only be performed 

if the mapping involves at least three points. Any chromosome which does not contain at 

least three real mappings in every molecule is rejected. The least-squares fitting is based 

on the Kabsch algorithm [20]. 
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The sequential alignment of the molecules to a common framework results in the 

framework being adjusted at each step to reflect all the molecules incorporated thus far. 

However, the alignment that is generated is dependent on the order in which the 

molecules are specified in the configuration file. Specifically, while the mapping of 

molecule k does influence the alignment of any molecule l, where l>k, it cannot influence 

the alignment of molecules i and j relative to each other, where i, j < k. In Sutcliffe’s 

approach, a particular molecule is chosen at random for the initial alignment; however, 

the bias caused by this is minimised by iteratively refining the alignment until the 

variation in the framework from one iteration to the next is less than a specified 

threshold. This has not been implemented here and development of an order-independent 

method is currently being investigated. 

Fitness Calculation 

Once an alignment has been generated, it is then possible to calculate the objective scores 

for the solution. Our method uses three objectives: a feature objective, a volume 

objective, and an energy objective. 

The feature score is based on that implemented previously but has been adapted here to 

reflect partial mappings in the pharmacophore. Thus, it takes into account the number of 

pharamcophoric points, the number of molecules that are mapped to each pharmacophore 

point and the quality of the overlay. Firstly, a pharmacophore point only contributes to 

the score if the mapped features are overlaid sufficiently closely. Thus, even though a set 

of features may be mapped in the chromosome, if it is not possible to overlay them 

closely they do not contribute to the feature score. For each valid pharmacophore point, a 

score that is a function of the RMSD between the features involved in the mapping and 

their centroid is calculated. This score takes into account the overlay of both the heavy 

atoms and the virtual points for hydrogen-bonding features, and both the overlay of the 

ring centroids and the alignment of the ring normals for the hydrophobic features, as 

described in Jones et al. [2] Hence, pharmacophore points that are formed from closely 

aligned features make a larger contribution to the features score than ones resulting from 
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features that are poorly aligned. A weighting factor of 2m–n is then applied, where there 

are m molecules in the mapping and n is the number of molecules in the dataset. Thus, a 

mapping that excludes one molecule from a set of four would have a weight of ½, a 

mapping that excludes two molecules would have a weight of ¼, and so on. Thus, more 

weight is given to features that are common to the entire dataset and which are therefore 

less likely to have arisen by chance, than to features which are found in only a subset of 

the dataset.  Furthermore, the weighting scheme ensures that a mapping involving all of 

the molecules scores more highly than two mappings which each consist of a subset of 

the molecules, assuming that the qualities of the alignments are similar. 

The volume and energy scores are calculated as described previously and are described 

here in brief. The volume objective score is defined as the mean overlap between the first 

molecule and each of the other molecules. Each atom is considered as a hard sphere 

whose radius is the van der Waals radius for the atom type as defined in the Tripos 5.2 

force field.  The volume overlap between two molecules is a sum of the hard-sphere 

overlap for each pair of atoms between the two molecules, and is calculated using a 

simple geometric formula. As for the alignment procedure, the volume score is biased by 

the order in which the molecules are specified. The energy score is the mean of the 

internal van der Waals energy calculated for each molecule.  It is the only one of the three 

objectives which is independent of the alignment of the molecules.  The energy of each 

molecule is a sum of the energy calculated for each pair of atoms within the molecule, 

using a Lennard-Jones 6-12 potential based on the Tripos 5.2 force field. 

Once the three objective scores have been calculated for each solution, Pareto ranking is 

applied to the population. One solution is said to dominate another solution if it is better 

in all three objectives. (For the feature and volume objectives, the aim is to maximise the 

scores, while for the energy objective the aim is to minimise the score). The Pareto rank 

of each solution is the number of other solutions in the population by which it is 

dominated.  Thus, the best solutions are those which are not dominated by any other 

solutions and hence have a rank of zero. 
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Evolution of the Population 

The population evolves by application of the crossover and mutation genetic operators. 

The parent chromosomes for these operators are chosen by roulette-wheel selection [11],  

with selection biased towards individuals of lower rank. However, since a potentially 

infinite number of solutions can exist on the Pareto surface it is necessary to include a 

niching strategy to ensure that a diverse set of solutions is found. Maintaining diversity in 

a MOGA is often achieved through the use of objective space niching, whereby 

individuals that are in crowded regions of the search space are penalised relative to those 

in sparsely populated regions. However, this strategy did not prove effective in this 

application, as described previously [9], due to the weak correspondence between 

diversity in objective space and diversity in the pharmacophores represented by the 

individual solutions. Therefore, an alternative mapping-based niching scheme was 

employed which has been modified here to account for partial mappings. 

The first step is to cluster the individuals based on the mappings they represent. The 

clustering step considers mappings that involve all of the molecules and does not take 

into account differences in partial mappings. This is because differences in the partial 

mappings usually only reflect small variations to the alignment of local regions of the 

molecules with the overall alignments being similar. Furthermore, the clustering 

compares all permutations of one mapping with another since there is no order imposed 

on the columns included in the mapping table. The probabilities of selecting the 

chromosomes for reproduction are adjusted as shown schematically in Figure 2. 
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Figure 2. “Roulette-wheel” segments for two hypothetical MOGA populations, each 

containing three distinct feature mappings or clusters (shown in different shades). (a) 

Each individual is non-dominated, and so, initially, has an equal probability of being 

chosen (left).  After adjusting for the number of individuals in each cluster, there is an 

equal probability of choosing a chromosome from each cluster (centre). (b) Some 

individuals are dominated with the rank of each chromosome as shown (left).  If two 

clusters have the same density, the one containing individuals of lower mean rank is more 

likely to be chosen. The relative probabilities of selecting the different individuals within 

each cluster remain the same (centre.) In both cases, the probabilities are then further 

adjusted through objective-space niching, but keeping the overall probability of selecting 

an individual from each cluster the same (right). 

Distance Constraints.

Allowing partial mappings to exist within a pharmacophore greatly increases the size of 

the search space, compared to the more restrictive case when all features must be present 

in all molecules. Although the aim of the partial matching methodology is to increase the 

size and diversity of the datasets that can be handled, in practice, the greatly enlarged 

search space limits the number of molecules that can be handled, especially when the 
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molecules are feature rich. However, a significant reduction in the search space can be 

achieved through the use of distance constraints which can be used to eliminate solutions 

containing geometrically infeasible mappings from the population.  
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Figure 3. 

For example, consider the two CDK2 inhibitors in Figure 3. The donor arising from the 

sulphonamide group and acceptor highlighted in 5 are constrained to lie much further 

apart than the highlighted donor and acceptor in 6 (for which there is no flexibility at all), 

and it is therefore not possible to overlay both sets of mapped features simultaneously. 

Upper and lower bounds on the distance between each pair of features within each 

molecule can be calculated, for example, using distance geometry techniques [21].  A 

chromosome is rejected if it contains a mapping between feature X1 and X2 in molecule 

X and feature Y1 and Y2, respectively, in molecule Y and: 

TOLERANCEminmaxor  
TOLERANCEmaxmin

2Y,1Y2X,1X

2Y,1Y2X,1X

dd
dd

where dX1,X2 is the intramolecular distance between X1 and X2, etc. and the 

TOLERANCE is set to 2.0 Å.

Results

The partial match methodology has been applied to two sets of ligands extracted from the 

PDB [18]. The ligands were extracted from their respective complexes and energy 

minimised using the Tripos 5.2 force field with Gasteiger-Marsili charges assigned. The 

MOGA was then used to identify plausible pharmacophores. In the following 

experiments, all five- and six-membered rings were identified as possible hydrophobic 
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features. Unless otherwise stated, the runs were performed on a 2.8 GHz Linux PC using 

the parameters shown in Table 2. The number of operations and the number of mapping 

columns in the chromosome varied between experiments and are specified in the details 

of each experiment.  

Parameter Value

Selection pressure 1.05

Crossover rate 50%

Mutation rate 50%

Features niche radius 2

Volume overlap niche radius 100 Å3

Energy niche radius 42 kJ mol-1

Table 2. MOGA parameters. 

Carbonic Anhydrase Dataset 

The carbonic anhydrases are a family of enzymes which catalyse the conversion of water 

and carbon dioxide to bicarbonate and a proton.  Inhibitors of carbonic anhydrase, 

particularly carbonic anhydrase II (CAII), have been successfully used to treat elevated 

intraocular pressure, the main cause of glaucoma [22]. The MOGA has been applied to a 

set of four inhibitors of human CAII, shown in Table 3.  The true alignment of the 

ligands in the binding pocket was obtained by overlaying the protein structures using 

Relibase+ [23]. The interactions between the ligands and the protein were deduced by 

visual examination of the complexes and by referring to the literature references given for 

each entry in the PDB and are shown in Table 4.  The features of the ligands have been 

labelled according to the interactions that they make with the protein. 
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Molecule PDB

code

D1 A1 A2 A3 A4 H1 H2

1g4o

1okm 

1kwr

2h4n

O

Table 3.  CAII dataset. The interactions each ligand makes with the protein are shown. 

Type Label Interacting protein residue(s) 

Donor D1 THR199

A1 ZN262

A2 ZN262

A3 THR199
Acceptor

A4 GLN92

H1 LEU198
Hydrophobe

H2 PHE131, VAL135, PRO202, LEU204 

Table 4. The key interactions involved in binding to CAII. 

The carbonic anhydrase binding site contains a zinc ion which is important to the mode 

of action of the enzyme [24].  Many carbonic anhydrase inhibitors, including all four in 

this dataset, coordinate to this zinc ion through a sulphonamide group [25].  Our program 

has not been specifically designed to characterise interactions with metal ions.  However, 
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the same types of functional group that are able to act as hydrogen bond acceptors tend to 

also coordinate to metal atoms.  Therefore, the MOGA is able to generate pharmacophore 

points relating to the metal interactions, but gives these points acceptor type. 

In view of its size, the butyl fragment in 1okm was treated as a hydrophobe. In fact, it 

forms hydrophobic interactions with the same protein residues as the terminal aromatic 

ring in 1g4o, and is very closely superimposed on that ring in the overlay of the crystal 

structures, as shown in Figure 4(a). 

The interactions of the sulphonamide group and the adjacent hydrophobic ring are 

common to all four molecules, whereas the other interactions are present in only a subset 

of the dataset.  When GASP is applied to this dataset, it consistently aligns the 

sulphonamide and H1 features correctly, and generates associated pharmacophore points.  

However, since there are no features in the other parts of the molecules that are common 

to the whole dataset, there is no incentive in terms of an improved fitness score for these 

parts of the molecules (such as the flexible tails of 1g4o and 1okm) to be aligned, and 

their relative conformations are arbitrary. 

Figures 4(b) and 4(c) show typical solutions generated from a MOGA run with the CAII 

dataset.  This run used a population size of 500 and was run for 200,000 operations, 

taking about one hour.  Three donor, six acceptor and two hydrophobe mapping columns 

were used in the chromosome.  The other parameters were set as in Table 2.  In both 

cases, it can be seen that the MOGA has correctly aligned the sulphonamide groups and 

H1 hydrophobic rings, and generated associated pharmacophore points. In overlay 4(b), a 

hydrophobic pharmacophore point has also been generated that corresponds to the partial 

match involving the aromatic H2 ring in 1g4o and the butyl hydrophobe in 1okm.  In 

solution 4(c), an acceptor point has been generated that corresponds to the partial match 

involving 1kwr and 2h4n. Solution 4(c), however, illustrates a limitation of our current 

method, since the H2 hydrophobic features have been overlaid but the mapping is not 

present within the mapping table so that no pharmacophore point has been generated.  

The diversity of the solutions produced for this dataset is limited due to the relatively 
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small size and inflexibility of the ligands, however, slight differences are seen in the 

alignment and conformations of the two larger molecules. 

(a)

F = 2.10; V = 667 Å3; E = –5.3 kJmol-1

(b)

F = 2.31; V = 671 Å3; E = –4.6 kJmol-1

(c)

Figure 4.  The carbonic anhydrase dataset. 1g4o is white, 1okm is blue, 1kwr is brown 

and 2h4n is green. (a) PDB overlay of the CAII inhibitors; (b) and (c) show typical 

MOGA solutions together with their objective scores. Donors are highlighted in purple,  

acceptors in orange and hydrophobes in cyan. 
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Cyclin Dependent Kinase 2 Datatset. 

The cyclin-dependent kinases are a class of proteins which play a vital role in the cell 

cycle, the mechanism by which eukaryotic cell division occurs [26].  Under normal 

circumstances, cell cycle progression is highly regulated.  Dysfunction of the normal 

regulatory processes is a critical feature of human cancers; therefore, the development of 

therapies which inhibit uncontrolled cell reproduction is currently an important area of 

pharmaceutical interest. Numerous crystal structures of complexes of ligands bound in 

the ATP binding pocket of Cyclin Dependent Kinase 2 (CDK2) are available in the PDB.

The ligands are shown in Table 5 and include some from the comparative study of 

pharmacophore generation programs carried out by Patel et al. [5]. As for the CAII 

dataset, the true alignment of the ligands in the binding pocket was obtained by 

overlaying the protein structures using Relibase+ [23] and the interactions between the 

ligands and the protein were deduced by visual inspection and by referring to the 

literature references given for each entry in the PDB.  The features of the ligands have 

been labelled according to the interactions they make with the protein (Table 6), using the 

labelling scheme of Patel et al., which has been extended to include additional 

interactions not relevant to their dataset.  

The CDK2 dataset is of interest in evaluating the identification of partial matches since 

several of the ligands, including the natural substrate, ATP, contain a purine ring system 

or another ring system of identical shape, but the ring systems adopt different alignments 

in different complexes.  In the 2D diagrams in Table 5, the molecules are drawn so that 

their relative orientations correspond as closely as possible to the actual binding modes. 

Only three of the eight interactions are common to all seven molecule and even if the 

dataset is divided into subsets, there is only one pair of molecules (1ke5 and 1fvv) which 

form exactly the same set of interactions. Thus, it would not be easy to analyse this 

dataset using a pharmacophore program that is restricted to finding interactions that are 

present in all molecules.  
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The dataset was initially divided into two subsets as shown below, both of which involve 

the identification of partial matches. Finally the MOGA was run on the full dataset. 
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code
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Table 5. CDK2 dataset. The interactions that each ligand makes with the protein are 

shown.
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Type Label Interacting protein residue(s) 

D1 GLU81

D2 LEU83Donor

D3 ASP86

A1 LEU83
Acceptor

A2 ASP86

H1 VAL18, ALA31, LEU134 

H2 VAL18, GLY11 Hydrophobe

H3 ILE10, PHE82 

Table 6. The key interactions involved in binding to CDK2. 

Subset 1: 1h1q, 1e1v, 1ckp 

Molecules 1h1q, 1e1v and 1ckp were chosen for the initial experiment as they are 

relatively simple, but the purine rings bind in different orientations and all three 

molecules form interactions not common to the whole dataset.  The overlay generated 

from the PDB structures is shown in Figure 5(a); the actual interactions formed with the 

protein are D2, A1 and H1 (by all molecules), D1 and H2 (by 1h1q and 1e1v only), and 

H3 (by 1h1q and 1ckp only). 

The MOGA was run with a population size of 1000 for 100,000 operations and took 

around 1.5 hours.  Two donor, one acceptor and three hydrophobe mapping columns 

were used in the chromosome.  A representative set of solutions generated in a typical 

run, together with their objective scores, is shown in Figures 5(b) to 5(e). The MOGA 

consistently generated solutions very similar to the true overlay, such as that shown in 

Figure 5(b). This solution contains six pharmacophore points (as many as are possible 

given the number of mapping columns used), three of which are common to all three 

molecules.  The MOGA correctly identified the partial interactions D1 (present in 1h1q 

and 1e1v only), D2 (present in all three molecules) and H3 (present in 1h1q and 1ckp 

only).  Two pharmacophore points were generated for interaction H1. This illustrates a 

further limitation of the current feature detection methodology, whereby each ring is 
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treated as an individual hydrophobe so that fused ring systems cannot be recognised as a 

single hydrophobe. Although the cyclohexyl rings in 1h1q and 1e1v were overlaid, there 

were insufficient mapping columns to generate a point from these features as well as the 

two points generated for H1. 

No pharmacophore point was generated in relation to interaction A1.  Instead, the single 

acceptor mapping column was used to generate a point from a different set of nitrogen 

atoms on a different part of the ring systems. This illustrates a fundamental limitation of 

pharmacophore elucidation, which is not specific to our method, that if features of the 

same type are present at a common position in every molecule, then a pharmacophore 

point will generally be generated from these features, even if they do not actually make 

an interaction with the protein.  In fact, the acceptors that have been mapped are slightly 

better aligned than the features that are overlaid in the true alignment, which partially 

explains why the MOGA generated a point from these features instead. 

Other plausible solutions, such as those shown in Figures 5(c) to (e) were also generated.  

Because 1h1q has an almost symmetrical arrangement of two acceptors and one donor, it 

was very common for 1e1v to be flipped relative to the true overlay, so that the opposite 

combination of donors is mapped between 1h1q and 1e1v.  This is illustrated in overlay 

5(c), which is otherwise fairly similar to the true overlay.  Overlays 5(d) and 5(e) show 

two alternative overlays, in which the molecules are aligned such that a much larger 

volume is common to all three molecules.  In both of these cases, four of the five 

pharmacophore points generated result from a mapping between all three molecules. 

Molecule 1ckp is flipped in solution 5(d) so that a hydrophobic feature is identified that is 

common to all three of the ligands and in solution 5(e) molecule 1e1v is flipped.   
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(a)

F = 4.44; V = 973Å3; E =-1.6kJmol-1

(b)
F = 3.76; V = 836Å3; E =-2.8kJmol-1

(c)

F = 3.59; V = 880Å3; E =-2.4kJmol-1

(d)
F = 3.87; V = 795Å3; E =-2.7kJmol-1

(e)
Figure 5. CDK2 subset 1. 1h1q is white; 1e1v is blue; and 1ckp is brown. (a) The PDB 

overlay; (b)-(e) A typical set of solutions together with their objective scores generated 
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for CDK2 subset 1. Donors are highlighted in purple, acceptors in orange and 

hydrophobes in cyan. 

Subset 2: 1h1s, 1jsv, 1ke5, 1fvt 

1h1s is identical to 1h1q except for the addition of a sulphonamide group on the benzene 

ring, and it makes the same interactions as 1h1q, together with additional interactions via 

the sulphonamide group.  In fact, the presence of the sulphonamide group leads to a 150-

fold greater affinity of 1h1s relative to 1h1q, due to the formation of hydrogen bonds by 

one of the sulphonamide hydrogens and one of the oxygens to the ASP86 residue of the 

protein [27].  All of the other molecules in this subset also possess sulphonamide groups 

which overlay very closely on the sulphonamide group of 1h1s, as shown in the PDB 

overlay in Figure 6(a).  The common interactions formed by this subset are D2, D3, A1, 

A2, H1 and H3 (all molecules) and D1 (1h1s, 1ke5 and 1fvt only). 

The MOGA was run with a population size of 1000 for 100,000 operations and took 

around 1.4 hours.  Four donors, five acceptors and two hydrophobe mapping columns 

were used in the chromosome, to allow for the possibility of mapping multiple features 

within the sulphonamide groups. Almost all of the solutions generated by the MOGA 

comprised approximately the same alignment as the true overlay.  However, two 

solutions showing some variation in the exact alignment are shown in Figures 6(b) and 

6(c).  The correct interactions have mostly been identified.  However, there is no 

pharmacophore point relating to interaction H1. As discussed for the CAII dataset, a 

limitation of the current method is that features can be overlaid even though they are not 

included in the mapping encoded in the chromosome, and hence they do not result in the 

generation of a pharmacophore point. Similarly, where several features are overlaid, it is 

possible that only a subset of these features is mapped.  In this case, a pharmacophore 

point would be generated, but its feature score would be based only on the features that 

are mapped.  Hence, the score would be smaller than if all the features were mapped.  

This explains the relatively low feature score of these solutions. 
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Pharmacophore points have been identified within the sulphonamide groups; however, 

the MOGA cannot be expected to correctly identify the rotation of the sulphonamide 

groups relative to the adjacent aromatic rings, since any rotation consistently applied to 

each molecule would lead to an overlay of the features.  Although only one of the 

sulphonamide hydrogens and one lone pair actually makes an interaction with the protein, 

the other hydrogens and lone pairs are still overlaid.  Therefore, the MOGA has generated 

additional points related to the sulphonamide features. 

PDB Overlay 
(a)

F = 2.85; V = 796 Å3; E =5 kJmol-1

(b)
F = 2.79; V = 872 Å3; E =159 kJmol-1

(c)

Figure 6. CDK2 subset 2. (a) the PDB overlay. (b) and (c) show example solutions 

together with their objective scores. Donors are highlighted in purple, acceptors in orange 

and hydrophobes in cyan. 
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Full dataset 

The MOGA was applied to the full set of molecules, excluding 1fvt which was not 

included since it is identical to 1ke5 apart from the addition of a bromine atom. Distance 

constraints were derived following a systematic search and were used to reduce the 

search space explored by the MOGA. 

The MOGA was run with a population size of 2000 for 200,000 operations, five donor, 

six acceptor and three hydrophobe columns were specified and the run took around 15 

hours. The population size and number of operations were increased due to the increase 

in search space for this larger set of feature rich molecules. The true overlay is shown in 

Figure 7(a) and a MOGA solution that is close to the PDB-derived solution is shown in 

Figure 7(b). All of the molecules except 1ke5 are aligned approximately correctly.  

However, 1ke5 is flipped relative to the true overlay so that its sulphonamide group is 

facing in the opposite direction to those of 1h1s and 1jsv.  In fact, the true overlay does 

not show a particularly close alignment of 1ke5 to the other molecules.  Although the 

alignment shown does not enable the sulphonamide group of 1ke5 to map to the other 

sulphonamides, the contribution of any potential sulphonamide mappings to the total 

feature score must be small because they can involve at most three out of the six 

molecules. Any potential improvement in the feature score that would result from 

mapping the three sulphonamide groups is probably outweighed by the closer alignment 

of the molecular backbones compared to the true overlay. 
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(a) (b)

F = 1.66; V = 942 Å3; E =101 kJmol-1

Figure 7. The full CDK2 dataset. 1h1q is shown in white, 1e1v in blue, 1ckp in brown, 

1h1s in yellow, 1jsv in green and 1ke5 in grey. (a) The PDB overlay and (b) an overlay 

generated by the MOGA. Donors are highlighted in purple, acceptors in orange and 

hydrophobes in cyan. 
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Conclusions

The paper has described the extension of our earlier work [9] to incorporate partial 

matches within a multiobjective optimisation approach to pharmacophore identification. 

Pharmacophore methods are particularly useful if they can be applied to datasets of 

structurally diverse molecules, where they may be able to suggest overlays that are not 

obvious to the chemist.  However, diverse sets of molecules rarely adopt exactly the same 

binding mode.  Hence, programs that make the assumption of a common binding mode 

are not able to handle diverse datasets effectively. Allowing the identification of partial 

matches removes the restriction that every molecule must match every pharamcophore 

point, which allows the program to be applied to larger and more diverse datasets. 

The datasets investigated here were extracted from the PDB so that the true solution is 

known and hence the program can be validated. However, pharmacophore identification 

is typically used when structural information on the binding site is unavailable and in the 

absence of such data, it is unlikely that a single solution could be predicted 

unambiguously. Incorporating the improved functionality within a multiobjective 

framework results in the identification of a family of plausible solutions where each 

solution represents a different overlay involving different mappings between the 

molecules, and where the solutions taken together explore a range of different 

compromises in the objectives. The solutions are not ranked but are presented as equally 

valid compromises between three objectives, according to the principles of Pareto 

dominance.  Importantly, the MOGA also takes into account the chemical diversity of the 

solutions, thus ensuring that the solutions represent a diverse range of structure-activity 

hypotheses which could be presented to a medicinal chemist for further consideration. In 

cases where a large number of plausible hypotheses exist it would be beneficial to 

provide the user with a browsing tool to facilitate navigation through the different 

possibilities. Such a tool might incorporate clustering techniques similar to the mapping-

based clustering which is applied during the search process itself or clustering based on 

geometric criteria. 
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The presence of partial matches also has implications on how such a pharmacophore 

hypothesis would be used in database searching since it represents the union of the set of 

features common to each pair of molecules. While a molecule which matches every 

feature in the set is likely to be active, the hypothesis represents an over-restrictive 

specification of the requirements for activity, since many or all of the known active 

molecules possess only a subset of the features. Hence, when performing 

pharmacophore-based virtual screening using a query generated with the partial matching 

methodology, it would be useful to allow the identification of molecules which match 

only a subset of the points in the query. The hits would then be likely to contain 

molecules representing a range of binding modes, and the plausibility of each of these 

could then be evaluated visually or experimentally by the user. 

A number of areas for further improvement have been identified and are currently under 

investigation. For example, as discussed, the implementation of the partial match 

methodology required the development of a new alignment method whereby the 

molecules are aligned sequentially to a common framework. When a molecule is 

incorporated into the framework, the framework is adjusted to take account of all 

molecules already aligned. However, the alignment method currently implemented is 

dependent on the order in which the molecules are specified in the configuration file. 

Future work will investigate the implementation of an order-independent method for the 

multiple-molecule alignment with several methods having been described in the literature 

[19, 28-30], Similarly, the volume objective function is order dependent which is also 

unsatisfactory, since volumes that are common to most of the molecules but not the first 

molecule currently make no contribution to the volume score. Thus, we are focussing on 

taking into account any volume that is occupied by two or more molecules, but with the 

contribution from each point in space weighted so that points occupied by more 

molecules make a larger contribution to the overall score. 
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