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Abstract

Recursive identification of non-linear systems is investigated using radial basis
function networks. A novel approach is adopted which employes a hybrid clustering and
least squares algorithm. The recursive clustering algorithm adjusts the centres of the radial
basis function network while the recursive least squares algorithm estimates the connection
weights of the network. This hybrid algorithm significantly enhances the real-time or
adaptive capability of radial basis function models. The application to simulated and real

data are included to demonstrated the effectiveness of this hybrid approach.

1. Introduction

i Modelhng non-linear systems using radial basis function (RBF) networks has certain
 attractive ; agvantages ‘The general approximation capabilities of the RBF network provides
the theoréf;czzl Nfbﬁ'ndatxon for representing complex processes. Furthermore, the response
of the RBF network is linear with respect to the connection weights of the network.
Provided. that the other parameters, the RBF centres, can be chosen appropriately, the

linear least squares method can therefore be employed to estimate these weights,

For off-line syste'rn ‘identification, blocks of data are usually available, and an
orthogonal least squares algorithm [1,2] can be used to fit RBF models. This algorithm not
only provides the least squares estimate for the RBF weights but also selects appropriate
centres automatically from the data set. Moreover, the information regarding how many
centres are required to fit the data adequately is revealed during the identification

procedure.

For on-l.ipc or adaptive applications of RBF models, however, some kind of recursive
identificat‘ion:: élgbri_thm is required. A simple solution is to fix the RBF centres first and to
update only the RBF weights in real-time using the recursive least squares or least mean
squares algorithm. This can only work well if changes in the underlying system are small. Tt
is advantageous to update RBF centres and weights simultaneously because this will
significantly improve both the modelling capability and the tracking property. Moody and
Darken [3] suggested using an n-means clustering technique to adjust centres in real-time
and derived a hybrid clustering and least mean squares algorithm. In the present study we
adapt this idea to non-linear system identification using RBF models. In order to improve
the convergence properties further, we propose a hybrid clustering and Givens least squares

algorithm. The Givens least squares algorithm [4] has superior numerical properties and has
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a further advantage that it can be implemented using systolic arrays [5].

The paper is organized as follows. Section 2 introduces a brief summary of RBF
networks applied to model single-input single-output non-linear systems. The derivation of
the hybrid clustering and Givens least squares algorithm is given in Section 3, and
application to a simulated time series process, a liquid level system and a heat exchanger
are included in Section 4. The extension to multi-input multi-output systems is
straightforward and this is discussed in Section 5. Finally some concluding remarks are

given in Section 6.

2. Modelling non-linear systems using RBF networks

Many single-input single-output non-linear systems can be described in terms of some

non-linear functional expansion of lagged inputs and outputs as follows:

y([)=fs (y([ —1),.-.,)’(1 _"y)vu (I _1)7-“)" (I —n, ))"'E(!) (1)
where y(1), u(z) and e(r) are the system output, input and white noise respectively; n,
and n, are the lags of the output and input respectively; and f,(.) is some non-linear

function. Most of the discussion in the current study is based on this system representation.

The assumption for the system representation (1) is that the noise source is white and
enters the system additively. In general, however, the noise source may be correlated and
can enter the system in a more complicated manner. These possibilities can be accomodated

in the following more general system representation:

y()=f, 0@ =1),....y (1 —n,)u(t =1),...,u(r -n,)e(t—1),...,e(t—n))+e(t) (2)
where n, is the lag of the noise, and e(r) is white. The system (2) is known as the
NARMAX model [6,7]. The identification procedure developed in the present study can be

extended to this general system.

The RBF network depicted in Fig.1 is a two-layer processing structure. The first layer
consists of an array of computing units. Each unit contains a parameter vector called a
centre, and this calculates the Euclidean distance between the centre and the network input
vector. The unit then passes the result through a non-linear function. The second layer is
essentially a linear combiner. The overall response of such a network is a mapping

f,:R™=R, that is

AOREEAD ©)

where v €R™ is the network input vector; ¢(.) is a function from R* to R; ||.|| denotes
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the Euclidean norm; c¢;€R™, 1=i=n, are the RBF centres; 6,, 1=i=n, are the
connection weights; and n is the number of computing units in the first layer.

The aim in the present study is to use the RBF network response f, (.) to capture or

to approximate the underlying dynamics f,(.) in (1). Define m =n, +n, and let

v()=[y (e =1)y (e =n)u( =1)-u(—n)]" 4

The idea then becomes one that uses

y()=£.(v(1)) &)
as the one-step-ahead predictor for y(r). In the present study, ¢(.) is chosen as the so
called thin-plate-spline function:

¢(v)=vlog(v). (6)
This choice of ¢(.) provides good modelling capability and is discussed, for example, by

Powell [8]. Other choices of ¢(.) can also be employed.

Whether a non-linear model is adequate can be tested using the following two model

validity approaches. Define the one-step-ahead prediction error or residual

e(t)=y ()5 (). (7
The first model validation method computes the following correlation functions [9]:
)
V. (k) k#0

¥, (k) forall k
Y e)(k) k=0

¥ o (k) forall &
‘I’uz-‘z(k) for all &

/

where eu(t)=e(t+1)u(r+1), u?(r)=u?(t)—u*(t) and u?*(r) is the time average or mean

"

(8)

value of u2(r). In general, if the correlation functions (8) are within the 95% confidence
bands, +1.96/N'2, the model is regarded as adequate, where N is the number of data
samples. The alterr.ative approach is the chi-squared statistical test [16,11]. Define an 7-

dimensional vector valued function

Q1) =[w(r)o(r =1) ot —m+1)]" 9
where w(t) is some function of the past inputs, outputs and prediction errors. The chi-

squared statistic is defined as

=N (I"T)7n W

with



w=N-130(1)e(t /o, 1)
=1
and
ITr=N-13 Q)0 (1) (12)
=1

where o2 is the variance of €(z). If the values of { for several different choices of w(r) are

within 95% acceptance region, the model is regarded as adequate.

3. Hybrid clustering and Givens least squares algorithm

For on-line identification applications using the RBF network, some recursive rules
are essential to update the centres and weights. The centres should suitably sample the
network input domain and should be able to track the changing patterns of data. Moody
and Darken [3] suggested the n-means clustering procedure as a good updating rule for the
RBE centres. The n-means clustering technique is well documented in many pattern
classification text books (e.g. [12]). Because the response of the network is linear with
respect to its weights, it is natural to consider the recursive least squares method for
adjusting the weights. These observations suggest that the recursive identification algorithm

for RBF models should have a hybrid structure consisting of:

O Recursive n-means clustering sub-algorithm for adjusting the RBF centres.
O Recursive least squares sub-algorithm for updating the RBF weights.
Details of these two sub-algorithms are now given.

Given initial centres ¢,(0), 1<i=n, and an initial learning rate for the centres o, (0),
at each sample ¢ the recursive n-means clustering algorithm consists of the following

computational steps:

O  Compute distances and find a minimum distance
a(t)=|lv(@)—<,¢-D||, 1=i=n,
k=arg[min{a;(1), 1=i=n}].

o  Update centres and re-compute kth distance

c,(t)=c;(t-1), 1<i=n and i#k,
e (t)=c, (t =) +o (1)(v(1)—c, (s -1)),
a()=1v(®)—c, ()]
The initial centres are often chosen randomly. The learning rate should be «,(1)<1, and

should slowly decrease to zero. In the present application a, (¢) is computed according to



o, (1)=o, (1 =1)/(1+int[t/n])"? (13)
where int[.] denotes the integer part of the argument. Other computing rules can also be

applied to a, ().

The convergence properties of the n-means clustering procedure were studied by
MacQueen [13]. The n-means clustering is based on a linear learning rule, thus
guaranteeing rapid convergence. It is also an unsupervised procedure using only the
network input data. No desired response is required and the procedure will not be affected
by the learning rule used for the weights. Notice the similarities between the n-means

clustering and Kohonen self-organising algorithm [14].

The recursive least squares algorithm is based on a recursive solution of the normal

equation. Define the hidden layer output vector at 7 as

®(1)=[31(t) ¢ ()] =[p(as(1)) - $(a, (NI (14)
and the connection weight vector at ¢ as
0(1)=[61(r) 8, (1)]". (15)
The weighted normal equation can then be written as
(XTW X ,)0()=X/W,y, (16)
where
o7 (1)
X, = : ; (17)
P7(r)
y,=b@-y@®J, (18)
and W, is a t X1 diagonal matrix defined recursively by
M)W, 0
W = 0 1l W 1= 1. (19)

(1) is the usual forgetting factor at 1. The recursive least squares algorithm solves (16) to
give

O()=XTW X,)'XW,y,. (20)

It is well-known that if the number of parameters n is large, the least squares problem

may become ill-conditioned and the use of Givens transformations [4] to solve the recursive

least squares problem has numerical advantages over the algorithms based directly on the
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normal equation. W *2X, can be decomposed into

W 12X, =Q(1)S (1) (21)
where
-1 sit) sp(t) - - - su(r) 1
0 1 sp(t) - - - salr)
0 0 . . .
S(,)= F . i o . (22)
1 sn—ln(‘)
0 . - - 00 1

L J
and Q(r) is a r X n matrix with orthogonal columns that satisfy

Q7 (1)Q(1)=D (1)=diag{d;(1),",d, (1)}. (23)

©(1) can be obtained by solving the triangular system

S(1)0(1)=2(1) (24)
where z (1) is an n -dimensional vector given by

2(1)=D(1)QT(1)W Py,. (25)
Givens least squares algorithm can be employed to derive (24) and thus to solve for ©(¢).

The algorithm is initialized by setting

z(0)=0
o (0)=0
S (0)=1I (26)
D (0)=1/p
where I is the n Xn identity matrix and p is a large positive scalar. The forgetting factor

A(r) is usually computed according to the rule [15]

A(I)=?\g?\(l "'l)+1_)\n (27)
A\ and A(0) are chosen to be less than but close to 1. At each sample 7, the computational
procedure is as follows:
0  Perform Givens transformations

D2(r-1) [ S(r-1) z(r-1) ] DY) [ S(r) z(r) ]
[ 00 o(-1) ]| - [ 00 o,(r) ] (28)

s [ @T() (@) ] [0-0 0 ]

where § is initialized to 1/A(r).
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O Solve the triangular system (24) for ©(r).

Explicit formulations for the Givens transformations will now be given. First let

I=1+n and introduce an [ X! diagonal matrix D () as

< D(:) O . -
D)= 0 o) =diag{d,(1),,d,(t)}. (29)
Next define an [ X[ upper triangular matrix S(1) as
[ . _ ) |
1 §5p(r) $p3(r) - - - §ulr)
0 1 Su() - - - §alr)
0 0 .
i S(t) z(r)
S(1)= lo...o 1 |7 (30)
- 1§ (1)
L S - - 00 1
and denote
BYRDT (1) y (1)]= () [x{” (1)~ x[O(1)]. (31)
The Givens transformations (28) can then be rewritten more concisely as
D72t-1) [ S(t-1) ] D) [ S(t) ]
Oy [ 20 )x0) 1) [ 00 ]| B2
Assume that after i —1 Givens transformations have been performed,
@O 2(xf (1), x{(r)) (33)
is transferred to
0,+,0,(86 D)2 =D(r) -, (8¢ V) 2x (1), (34)

Then the i th Givens transformation transfers

0:""0a &im(t _1)! d-r‘m(t _1)'§ii‘+l(t _1)$ Tty J‘-m(l"—l)f“(f—l)l
0,0, (BU-DY2LED(r), (BEDW2xLN (1), -, (30-D)12x fi-)(7) (35)

into

05"'10’ &'_1.’2(‘), d.‘-m(l)fl-'-+1(l), i Jlm(t)iﬁ(t)

0,0, 0, (O (1), ~, G)2xf(1) (36)

where



d-: ( )=d—i (1 —1)+ 8¢ (x ¢ (r))?
c=d,(t-1)d,(1)

3 =l _1)xi(1 -1)(r )/J; () (37)
§@=cl-1)
and
£ )= 28 (1) =x (1 )5, (1 =1)
=i+1,..,0 (38)

§i (1)=c5y (1 =1)+bx,0I(1r)

For time-varying or non-stationary systems, in order to provide a continual tracking
capability, the time-decreasing learning rate . (r) in (13) can be replaced by a constant
learning rate e, and a constant forgetting factor 0<A<1 can be employed instead of A(r)
given in (27). For certain applications, it is vital to reduce computational load as much as
possible, and the least squares sub-algorithm within the hybrid structure may be replaced by
the least mean squares sub-algorithm at the cost of convergence speed. An application of
the hybrid clustering and least mean squares algorithm to adaptive channel equalisation

based on RBF equalisers is given in [16].

4. Application examples

The hybrid clustering and Givens least squares algorithm derived in the previous

section was used to identify three systems.

Example 1. This is a simulated time-series process. 1500 samples of data were generated by
y (1)=(0.8—0.5exp (—y*(t —1)))y (t —1)—(0.3+0.9exp (=y*(z —1)))y (1 -2)
+0.15in (3.1415926y (1 —=1))+e (1)
where the noise e (z) was a Gaussian white sequence with mean zero and variance 0.04.
The structure of the RBF model was defined by m =n,=2 and n=30. The parameters in

the hybrid algorithm were chosen to be:

p=1000, Ag=0.99, A(0)=0.95 and e, (0)=0.9.

Initial centres were randomly selected from the region [-2, 2]X[-2, 2].

The evolution of the mean square error (variance of the residuals) obtained using the
hybrid algorithm is plotted in Fig.2. During the recursive identification procedure, the
mean square error was reduced from an initial 12dB to the noise floor, approaching -14dB.

The distribution of the observations and the final RBF centres are depicted in Fig.3.
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Several chi-squared tests for the final RBF network were calculated and they were all
within the 95% confidence band. Two typical chi-squared tests and the autocorrelations of
€(1) are shown in Figs. 4 and 5 respectively. The model validity tests confirm that this RBF

network is an adequate model for the time series.

It can easily be verified that without the noise e () this simulated system generates a
stable limit cycle as illustrated in Fig.6. The identified RBF network was used to produce

iteratively the network output

Fa()=1,(va(1)),
where v, (t)=[5;(t —1)j,(t —2)I". The iterative network outputs produce a similar limit
cycle as can be seen from Fig.7. These two limit cycles have approximately a period of 5 in
the sense that every five samples complete approximately a circle (2w phase angle) in the
state space. However, the amplitudes of response appear to change randomly. 100 samples
of the autonomous system outputs and the iterative network outputs are shown in Fig.8.
Even though the RBF network was identified using the noisy system observations, the
iterative network outputs closely matches the response of the autonomous system. This
demonstrates that the identified RBF model does capture the underlying dynamics of the

system.

Example 2. The process considered is a liquid level system. The system consists of a DC
water pump feeding a conical flask which in turn feeds a square tank. The system input is
the voltage to the pump motor and the system output is the water level in the conical flask.
1000 samples of data generated in an experiment are shown in Fig.9. The RBF model had
a structure of m =n,+n,=3+5 and n =40. The parameters for the identification algorithm

were chosen to be:

p=1000, Ag=0.99, A(0)=0.95 and «,(0)=0.6.

Random initial centres were used.

The evolution of the mean square error is depicted in Fig.10. The mean square error
was reduced from the initial value of 2dB to the final value of -26dB. The correlation tests
for the identified model are shown in Fig.11. It is observed that at three points the values
of @, (k) are slightly outside the 95% confidence bands. Several chi-squared tests were also
computed. Again only at a few isolated points are statistics slightly outside the confidence
band, and this was judged a good result, considering that the data was from a real system

and the identification algorithm was a recursive one.
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Example 3. The data was generated from a heat exchanger and contains 996 samples
shown in Fig.12. A description of this process and the experiment design was given by
Billings and Fadzil [17]. The dimension of the RBF centres was chosen to be
m=n,+n,=6+6 and the number of centres was n =90. The parameters for the recursive

algorithm were:

p=1000, A,=0.99, A(0)=0.95 and «.(0)=0.5.
Initial centres were set randomly.
During the identification procedure, the mean square error was reduced from the
initial 16dB to the final -13.5dB, and the evolution of the mean square error is plotted in
Fig.13. The correlation tests and several chi-squared tests were computed, and they were

all within the 95% confidence bands. Six chi-squared tests are shown in Fig.14.

5. Extensions of the recursive hybrid algorithm

The hybrid algorithm of Section 3 can easily be extended to the multi-input multi-

output system. Consider

¥ (I )=f :(y (" —1),---,3’ (t “ny)su (I "'1),...,[1 (I —-n, ))"l"E(l) (39)
and assume that the dimension of y (1) is p. A p-output RBF network is required to model

the above system, and the netwok input vector is given by

v(t)=[yT(t=1)y (¢ —n)uT (t =1)-u" (=)} (40)
The hidden layer of the RBF network remains unchanged, and the output layer of the

network contains p linear combiners. Each of these linear combiners is defined as

)7&(’)=fn'(" ()= Eaij¢( l |V(’)"‘cj | 1) d=i=p. (41)

j=1
p independent least squares estimators can be employed to identify the connection weights
of these linear combiners. The above discussion can obviously be applied to the multi-input

multi-output NARMAX mdoel
y(t)=f,(y(-1),....,y (¢ =n,)u(z =1),....,u(t —n, ) e (t =1),....e (r —n, )te(r). (42)

6. Conclusions

A hybrid clustering and Givens least squares algorithm has been developed for the
recursive identification of non-linear systems using a radial basis function network. This
hybrid algorithm combines the supervised least squares method with an unsupervised

clustering technique. The centres of the radial basis function network are adjusted using the
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n -means clustering technique and the connection weights of the network are updated using

the least squares principle. These two learning rules are implemented recursively and are

thus appropriate for real-time or adaptive applications. Furthermore, they are linear

learning rules, thus guaranteeing rapid convergence. Using three examples, a simulated

non-linear time-series and two real processes, it has been shown that this hybrid approach

offers a powerful on-line identification algorithm for radial basis function models.
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Fig.1. Radial Basis Function Network.
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Fig.2. Evolution of Mean Square Error (Example 1).
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Fig.3. Distribution of Observations and RBF Centres. 1500 observation
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Fig4. Chi-Squared Tests (Example 1). (2) o(t)=€*(t-1y(-1), ()
w(t)=€(t —1)y?(t —1), —3— 95% confidence band.
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Fig.5. Autocorrelations of Residuals (Example 1). —— 95% confidence
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Fig.6. Limit Cycle Generated by Autonomous System Response. 1500
samples, initial condition: y (0)=0.1 and y (—1)=0.01.
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Fi(g.)9. System Outputs and Inputs (Example 2). (a) outputs y(t), (b) inputs
u(t).
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Fig.10. Evolution of Mean Square Error (Example 2).
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Fig.11. Correlation Tests (Example 2). (a) We(k), (0) Ween)(k), (0)
v, (k), (d) ¥ 2 (k), () ¥,2a(k), — — 95% confidence band.
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Fig.13. Evolution of Mean Square Error (Example 3).
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Fig.14. Chi-Squared Tests (Example 3). (a) w(1)=€(t—1), (b) o(t)=u(r-1),
(©) w(t)=y (1), () w(t)=€(-1), () o(t)=u*( 1), (f) (t)=y*(t-1),
—3— 95% confidence band.
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