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Abstract

A prediction error estimation algorithm is derived for the estimation of

complex number systems. The algorithm is applied to reconstruct both linear

and nonlinear differential equation models from frequency response data. A
simulation study is included to illustrate the algorithm.
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1. Introduction

It is well known that the estimation of continuous time models from sampled
data records can be problematic. The main difficulty associated with this
procedure are the numerical errors which can be induced when the derivatives
of the input and output signals are computed. An alternative approach is to
estimate a discrete time model from the sampled data signals and to use this
to evaluate the system frequency response functions. A continuous time
description can then be estimated by curve fitting in the frequency domain.
The main advantages of this approach are that no integration or
differentiation of data is involved and it can be applied to both linear and
nonlinear systems.

A modified orthogonal least squares algorithm coupled with an error reduction
ratio test .was derived in an earlier publication [1l] as one possible solution
to the reconstruction problem. In the present paper, a new prediction-error
estimation algorithm [2] is derived for complex number systems and[@gkgaplied
to reconstruct linear and nonlinear continuous time models. A simulation
study is included to illustrate the algorithm.

2. linear and nonlinear freguency response functions

2.1 Linear systems

Consider a frequency response function H(jw) obtained either by spectral or
parametric estimation methods. In order to reconstruct a continuous time
model from the frequency response data, a model of the form

ernz (-70) . +Bn+m+1 (Jﬁ)) +9n+m+2 (1)
0, (jw)2+...+0 (Fw)+0,,,

H(jw) =
is fitted to H(jw) where # are the unknown parameters, n and m are the order
of the denominator and numerator respectively. In the present study, a
prediction error estimation algorithm is derived as an alternative to the
orthogonal algorithm introduced in an earlier study [1].

Define the error function

e(jw) = H(jo) - B(jw) . ()

The objective of the estimation is to minimise the mean square of the
magnitude of the error function e(jw) using a prediction error algorithm,

Equation (1) is not linear-in-the-parameters, and therefore linear least
squares cannot be applied unless the problem is reformulated [1]. However,
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prediction-error estimation is a general estimation method which can be
readily applied to eqns. (1) and (2). The prediction-error method (PEM)
produces an estimate of the parameter vector # by minimising a loss function
[2]. The asymptotic properties of the method are very similar to those of the
maximum likelihood estimator which can be shown to produce consistent,
asymptotically normally distributed and asymptotically efficient estimates
with a covariance matrix that reaches the Cramer-Rao bound asymptotically.
The original prediction error algorithm is not applicable to complex number
systems, and a modified version is derived below.

For a given choice of parameter vector §, define the loss function
Ly (3)
J(e) - * Ee(Jm)e (jw)

where the superscript * denotes the complex conjugate and N is the number of
points taken in the error function of eqn.(2). The gradient and Hessian of
J(8) are given by

as(e) 1 "[ , de* (jw,)  deljwy) ., . ]
Lo P e(jw,) + e(jo,
90, N Z; ! L o0, it
FJB) _ 1 v etio y 20 Weg | %elje;) Be(io)
00,00 ; N £~ i 00,6, 0, 90, (4)
de(jw,) e (jw ;) Fel(jw) . ]
+ + e (jw ;)
®, 09, 0,0, = 04
k, 1=1,2,...,n+m+2,.
where the derivatives of the error function -§%§?ﬁl, k=1,...,n+m+2 can be

k

obtained by differentiating eqn.(2). Notice that ae;é?”) - [Beégm)] . For
k k

example, if

— 0,
Hle) = g50 + 1
the error function becomes

; ; 3]
e(jo) = H{jw) - m
1

and the error function derivatives are given by

d(jo) _ _ 8Ju ) de(jw) _ ___ 1 .
06, (6,jw+1)2 ° 00, B jo+1 °

Fe(jo) _ 20,0 . Pe(ju) _ jo . Peljo) _,
062 (8,jw+1)3 " 06,06, (8,jw+1)? 063



The prediction-error estimate is expressed by

0,(k+1) = B,(k) - p*H*VT (3)

The minimisation of the loss function J(#) can be performed very efficiently
using Newton’'s method. The procedure consists of the following steps:
a.) set k=0 and chq?g an initial value #° of the parameter vector.

b.) Evaluate the gradient vector VJ = %g and the Hessian matrix H - %-{ at
k.
c.) Calculate the direction vector d* - - H*VJ.
d.) Perform a linear search to find the scalar p* such that
JO@F + pkd*) = min J(Bk + pd*)
[
e.) Set 0¥l -0k 4+ pkdk,
£.) 1f J(6%)-J(6**!) < a small tolerance, stop the algorithm. Otherwise set

k=k+1 and go to b.)

2.2 Nonlinear Systems

This algorithm equally applies for the reconstruction of nonlinear continuous
time systems. Consider the nonlinear differential equation

[y dmu(t) i
F [ dt peeay(t), dc ¢ oeeult)
- =i{E du(t
eld_}d’.égl' Foaa®t Bny(t) * B1‘1-#1}"(t) * eng% oot B.nﬂml Ud(t) * eﬂ+lﬂ'2u(t)
2
da o dn-:l.
* 91,1(——%&) ¥ 61.2 g gét) C{C( - ...t an+m+2.nu»2uz(t)

(6)

where 1 is the degree of nonlinearity, n is the order of dynamics in the
output y(t), m is the order of dynamics in the input u(t) and F[.] is a
polynomial nonlinear function. The symmetric nonlinear frequency response
functions of eqn.(6) can be obtained by probing the system equation with
exponential inputs [3,4] and the first, second and third order frequency
response functions are given by [1]

H(jw) = = (0n2 (F@) ™ +. .+ Bppi)
: (6, (Fw) 7 +...+ 8,(Jw) + B,,)
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H(jo,, jo,;) = - . -
217 @10 T 0 210, (Fo,+70,) # +...+ 0, (Jo,+jw,) + 1)
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i, > m+1, i>n+l
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B

E(jm ij rjm) - . 3 - . r "
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respectively. The n'th order error function can be defined as

€,(FWy,0ee,JO,) = HFO,, oo, JO,) = B(Joy, .n,jo,) (7)

where H (jw,,...,jw,) is one of the nonlinear frequency response function

extracted from eqn.(6) and H (jw;,...,jw,) is the frequency response function

to be evaluated. The loss function for an n'th order error function is given
by

1 o ; 8
Ja(8) - = Ee(jm“,...,jmnj)e'(jwlj,...,Jmn‘) (8)



and the optimisation algorithm can thus be applied to egn.(8) for the
estimation of n'th order nonlinear terms.

Simulated example

The estimated discrete NARMAX model for a nonlinear circuit described by the
differential equation

0.2dyd_(tt)+y(t) +0.16y%(t) = u(t) ()

was given by [1]
y(k) = 0.1758y(k-1) + 0.0623u(k) + 0.1616u(k-1)

(10)
- 0.03839y?(k-1) + 0.569y(k-2) + 0.03143u(k-2)

400 equally spaced linear frequency response data in the frequency range -5Hz
to 5Hz obtained from eqn.(10) were used for the reconstruction of the linear
part of the system model. A continuous time model of the form

6,70 + 0,

0,70 + 1

was initially specified for the optimisation process and the result obtained
using the new prediction error estimation algorithm was

0.0002jw + 1.0009
0.193670 + 1

with a loss function of

J(B) = 9.3461x1077

Notice that #§,=0.0002 is insignificant compared with #;=1.0009. 1If @, is
excluded from the final estimation, the model becomes

0.9588 (11)
0.19327w + 1

and there is no dramatic increase in the loss function which is now given by

J(B) = 1.8422x107¢

Equation (11) is very similar to the linear part of the original system
eqn.(9). For the estimation of the second order nonlinearity, nonlinear terms
y2(t), y(t)u(t) and u?(t) were specified for the estimation. 800 equally
spaced second order frequency response data were obtained from egn.(1l0) and
used to reconstruct the second order nonlinearities. The prediction error
estimates corresponding to the nonlinear terms yz(t), y(t)u(t) and u?(t) were
0.1563, -0.0051 and -0.0003 respectively while the loss function was equal to
1.0768x1077. Since the coefficients corresponding to the nonlinear terms
y(t)u(t) and u?(t) are small, if they were excluded in the final model, the
coefficient corresponding to the nonlinear term y?(t) becomes 0.1508 while the
loss function is given as 7.22291x1077. There is only a slight increase in
the loss function. Combining the linear and second order nonlinear estimates
gives the final model



0.1932 dy;tt) + y(t) + 0.1508y2(t) = 0.9998u(t) (12)

which is comparable to the original system eqn.(9). Notice that a distinct

advantage of this estimation procedure is that each degree of nonlinearity can
be independently reconstructed thus simplifying the procedure.

4., Conclusions

A prediction error estimation algorithm has been derived for the estimation
of complex number systems. The application of the algorithm to the
reconstruction of continuous time linear and nonlinear models provides a new
method of estimating continuous time models based on sampled data records with
no numerical approximation to differentiation and integration.
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