The
University
o Of

= -n,‘-_“ u}:_.'!?- Bhe&i{“:ld.

This is a repository copy of Identification and Control of Dynamic Systems via Adaptive
Neural Networks.

White Rose Research Online URL for this paper:
http://eprints.whiterose.ac.uk/78593/

Monograph:

Morles, E.C. and Mort, N. (1991) Identification and Control of Dynamic Systems via
Adaptive Neural Networks. Research Report. Acse Report 433 . Dept of Automatic Control
and System Engineering. University of Sheffield

Reuse

Unless indicated otherwise, fulltext items are protected by copyright with all rights reserved. The copyright
exception in section 29 of the Copyright, Designs and Patents Act 1988 allows the making of a single copy
solely for the purpose of non-commercial research or private study within the limits of fair dealing. The
publisher or other rights-holder may allow further reproduction and re-use of this version - refer to the White
Rose Research Online record for this item. Where records identify the publisher as the copyright holder,
users can verify any specific terms of use on the publisher’s website.

Takedown
If you consider content in White Rose Research Online to be in breach of UK law, please notify us by
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

\ White Rose o
| university consortium eprints@whiterose.ac.uk
WA Universiies of Leeds, Sheffield & York https://eprints.whiterose.ac.uk/

mailto:eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

'.'6.2/'1¢o ~ o

IDENTIFICATION AND CONTROL
OF DYNAMIC SYSTEMS

VIA
ADAPTIVE NEURAL NETWORKS

BY

E. COLINA MORLES
AND

N. MORT

DEPARTMENT OF AUTOMATIC CONTROL
AND SYSTEMS ENGINEERING
UNIVERSITY OF SHEFFIELD

P.O. Box 600.
Mappin Street

" Shefhield S1 4DU
Research Report Number 433

July 1991

g

T e -

Abstract
~ In this work we study some applications of multilayer perceptron neu-
ral networks to identify and to control certain types of dynamic systems.

Two different methods to update the weights of the neural network are
explored:a variable structure contro] formulation, and a gradient descent
approach. Both methods are digitally simulated and their performances
in parameter identification are compared.

Also, we present an adaptive model reference control scheme, and an
indirect self-tuning control scheme based on a multilayer perceptron neu-
ral network. Examples of the simulated responses for both schemes are
obtained using different linear plants.

'1 INTRODUCTION

The term artificial neural network is related to a nonlinear circuit composed of
many interconnected simpler circuits called neurons. Its origin can be traced
back to the work of McCulloch and Pitts (1943) with the first mechanistic
interpretation of the neuron doctrine. It was not until 1957, with the work
published by F. Rosenblat when the term perceptron was put forward in terms
of an automaton, rather than a class of models of the central nervous system.
(1]

During the first years of the sixties there was an enthusiastic interest in
studying the capabilities of single layer perceptron networks to generalize any
pattern similar to those presented in their training sets. This enthusiasm van-
ished with a monograph published by Minsky and Pepert in 1969 demonstrating
the incapability of simple two layer perceptron networks to represent the be-
havior of a large class of functions. (2]

After 1980, the neural network discipline has been emerging with attempts
at applications ranging from pattern recognition to parametric identification
and control of complex dynamic systems. (see [3, 4, 5, 6,)

A fundamental aspect in the design of multilayer perceptron neural networks
is the adaptation algorithm. For single layer networks, a well known procedure
to minimize the mean square error between the desired output and the actual
output is called the Delta Rule [8]. The generalized delta rule [8], usually known
as the Back Propagation algorithm, is frequently used for updating the weights
in multilayer networks. A drawback of the back propagation algorithm is the
requirement that the nonlinear activation functions be differentiable. [9]

In this paper we use two approaches to change the weights of our neural net-
work. In the first approach the weighting elements of the network are adjusted
in such a way that the error between the actual and desired outputs satisfy a
stable difference equation. In this case , unlike back propagation, the algorithm
does not require differentiability along the network signal paths. (9]

This work was supported by the Universidad De Los Andes, (Merida, Veneruela), and by
Maraven 5.A. Petroleos De Venezuela

200165451
T

The second approach is based upon making the neural network behave like a
gradient estimator. That is, with a constant input to the network, the weights
are updated in the converse direction of the gradient of the squared predic-
tion error with respect to the desired parameters. Mathematically, this can be

’written as 81T
ele
a(k+1) - a () = 2, (1)

where a, is the parameter to be identified, e is the prediction error, and v is a
convergence factor. In this case, the stability properties of the algorithm can be
guaranteed using Lyapunov functions. [10]

This report is organized as follows. In the next section we present, after
introducing a basic definition, the variable structure control approach for the
adaptation algorithm of a single layer perceptron network. This adaptation al-
gorithm is generalized for a three layer perceptron network in section 3. Then,
in section 4, we briefly review the gradient estimator in order to propose an
alternative way of adjusting the network’s weights. Section 5 contains digi-
tally simulated examples of the performances of the implemented algorithms
for parameter identification where both constant and time-varying parameters
are analysed. In section 6 we present a model reference-neural network-based
control scheme, and the responses obtained from simulating the scheme using
different linear model plants. An indirect self-tuning-neural network-based con-
trol scheme is shown in section 7. Two linear plants are used to illustrate its
performance. Section 8 contains conclusions and recommendations for further
research.

2 VARIABLE STRUCTURE CONTROL FOR
THE ADAPTATION ALGORITHM

Before we present the algorithm, it is important to consider the following defi-
nition.

Consider a dynamic system modelled by the following controlled difference
equation of the state vector W(k), with a single output signal e(k) defined by
the mapping h,

W)U, @)
MW (B)), 3)

Wk +1)
e(k)

where W(k) € R™, U(k) € R™, and e(k) € R. Consider the following level curve
of the output map

R7Y0) = {W e R" :e = h(W) = 0} (4)

DEFINITION. [11]
A quasi-sliding mode is said to exist on h~?! if there exists a control law U(k)
such that the motion of equations 2 and 3 satisfies the relation

le(k + 1)e(k)| < €*(k), (5)
for e(k) # 0.

Notice that condition 5 is equivalent to

le(k +1)] < e(k); e(k) # 0. (6)

A single layer perceptron with an arbitrary nonlinear odd operator T is shown
in figure 1. Notice that W(k) = [wi(k)wa(k)...wn(k)]T is the value at time
k, of the weight vector, X = [zlzz...zn]T 1s the input to the neural network,
e(k) = Ya—Y (k) is the present error, Yy is the desired output, and the operator
[satisfies I'(—X) = -T'(X).

THEOREM. [9]

If the weights w; of the single perceptron network, shown in figure 1, are
updated according to the rule

W(k+1):W(k)+a%;{—)), (7)

XTT(X)#0,0 < a < 2, then the error e(k) tends asymptotically to zero with
the rate of convergence (1 — a).

PROQF.

Note that

e(k+1)—e(k)

i

Y- Y(k+1) = [Ya=Y(k)]
= Yk 1) - wi ()
= -—;(:;[W(k + 1) — W(k)],
e, using the ruls Fyielde:

Tae
e(k+1)—e(k) = —%k();gx)- = —ae(k),

if XTT(X) # 0. Then e(k +1) = (1 — a)e(k). Thus, if 0 < a < 2 then
limk_.m E(k) = 0.

Observe that if ' is the identity operator then equation 7 is the same as the
Delta rule. Note that the error equation satisfies relation 5 for the existence of
a quasi-sliding mode.

3 ADAPTATION ALGORITHM FOR THREE
LAYER NETWORKS

In this section we shall extend the previous adaptation rule to three layer percep-
tron neural networks. This generalization of the algorithm is particular important
because:

o It has been proved that a neural network with a hidden layer (i.e. a three

layer network) can be used to approximate any mapping from R" to ™.
(12]

e The back-propagation algorithm has the disadvantages of lacking the con-
vergence property, requiring a large number of iteration for good learn-
ing,[13], and requiring continuous differentiability of the nonlinearities
along the network path. [9]

Consider the three layer network depicted in figure 2, and its schematic represen-
tation shown in figure 3. It is worth mentioning that in the proposed adaptation
algorithm for this configuration we can include activation functions which are
of the hard limiter type, saturation, or any other nonlinear odd operator.

The vector Y, (k) of the output components yox (k) can be represented as

Yo(k) = [W1(k)]T Z1(F), (8)

where W1(k) € R*1#"°, and Z1(k) = I'(Y'1(k)). Similarly, the vector Y1(k) of
the components yl,(k) is

Y1(k) = [W2(k)]T 22(k), (9)

-with W2(k) € ®"2="! and Z2(k) = T'(Y2(k)). Finally the vector Y2(k) of the
components y2,,(k) is
Y2(k) = [WI(k)T X, (10)
where WI(k) € ®7="2 and X = [z123...2n:]7.
Note that the nonlinear operator I' does not have to be a diagonal one. The
error vector E(k) at time k is given by

B(k) = [e1(k)ea(k)...ena(B)]T = Ya — Yo(k), (11)

’4 being the desired output vector.
The weight updates are represented by the following equations:

W1k + 1) = W1(k) + U1(k) (12)
W2k + 1) = W2(k) + U2(k) (13)
WI(k+1) = WI(k)+ UI(k) (14)

LEMMA.
The error vector E(k) satisfies the following difference equation as a function

of the input layer, hidden layer, and output layer matrix update weights UI(k),
U2(k), and U1(k):

E(k+1) — E(k) [W1(k)]™ {D(Y1(k)) — T {{W2(k)
U2(k)] T[Y2(k) + [UI(k)]T X]} }
[UL(k))TT {[W2(k) + U2(k)]TT[Y2(k)

+ [UI(R)TX} (15)

I

+

PROOF.

The proof is straightforward by substituting equations 8, 9, 10, 12, 13, and
14 into E(k + 1) — E(k) = Y, (k) — Y (k + 1).

THEOREM.

If the weight update matrices UI(k), U2(k), and Ul(k) are respectively cho-
sen as

_20(X)[Y2(R))T

UI(k) = —XTrR) XTr(X) #0, (16)
T

var) = -l IOL o) 20, ()
_ D(ZUE)AER)T

Ulk) = ZIRT(Z1(k) [Z1(R))TT(Z1(k)) # 0, (18)

then the error vector E(k) satisfies the following asymptotically stable difference
equation

E(k+1) = (I - A)E(k), (19)

where I is the identity matrix, and A is an n,zn, diagonal matrix given by
A =diag{eya3...a,.}, (20)

such that |1 — ax| < 1, for k=1,2,....n,.

PROOF.

Substituting the transposes of 16. 17, and 18 into the error difference equa-
tion 15 of the lemma yields equation 19. ‘

4 GRADIENT ES'IIIYIATOR

In this section we shall show how to use the three layer neural network depicted
in figure 2 in order to emulate the behavior of a gradient estimator. we will use
the same weight update matrices of the previous theorem, except that the input
X for the neural network will be a unit step, and equation 18 will be modified
to represent the gradient estimator.

Firstly we need an estimation model to relate the available data to the
unknown parameters. A general linear model is the equation [10]

Y(t) = w(t)a(), (21)

where ¥V is the predicted output at time t, d(t) is the estimated parameter
vector, and W(t) is an nzm signal matrix obtained from measurements of the
system signals.

The prediction error e is the difference between the predicted output and
the measured output Y,

e(t) = Y(t) — Y(t). (22)

The idea in gradient estimation is that the parameters should be updated so
that the prediction error is reduced. This is

: ET e
() = a2 e

A, (23)
where o is the estimator gain. In view of 21 and 22
() = —aW(t)e(t) (24)
Equation 24 can be rewritten as
a(k+1)-a(k) = —TaW(k)e(k)
= —yW(k)e(k), (25)

with T the sampling time, and ¥ = Ta. This gradient estimator is always stable,
as can be seen using the Lyapunov function candidate

V =d"E, (26)
with @ = @ — a, and noting that @ = —aWTW3a. The derivative V is easily

" found to be .
V=-22a"WTWa <0 (27)

Despite the stability property of the gradient estimator, the convergence of the
estimate to the true value depends on the exciting signal. [10]

5 PARAMETERIDENTIFICATION EXAMPLES

Here we shall present some examples of the results obtained from implementing
the two previous adaptation algorithms for parameter identification purposes.
The objective is to identify a single parameter or function in dynamic systems
of the type

2(t) = f(t)u(t) (28)
e(t) = g(z)u(t) (29)
z(t) = h(=z,t)+bu(t) (30)

=

The corresponding identification models used to achieve our objective are re-
spectively:

2(t) = f(t)u(t) +k1(=(t) - £(1)) (31)
(1) = §(t)u(t) + k2A=(t) - £(2)) (32)
£(t) = h(z,t)+ bu(t) + k3(z(t) — £(2)) (33)

Figure 4 shows the identification scheme.Figure 8 illustrate the results obtained,
with the variable structure control approach algorithm, considering a system of
the type shown in equation 28. In particular, figure 8-A shows the estimate of
the function and the state tracking error when the function f(t) was,

(2 if 0<t<l
f(‘)—{ 0.4Sin(10t — 1) if 1<t< oo. (34)

Figure 8-B shows the estimate of the parameter and the state tracking error
when the the function f(t) was,

f(t) = 0:35 0<t<oo. (35)
Figure 9 shows the results obtained considering a system of type 29. The func-

tion identified 1is
9(z) = Vl=zl, (36)

which was part of the system

:i:l(t) Eg(t)
#2(t) = Vielu(t)

Figures 10-A, 10-B, and 10-C illustrate the performance of the neural network
when used in a system of the type 30 described by

il

JE(t) + Bi(t) + Fz(t) = u(t),

where J is the unknown moment of inertia, and B and F are the known viscous
and compliance coefficients, respectively. ‘

Figures 11-A and 11-B show the estimation of a constant and a time varying
parameter when the the gradient estimator algorithm was implemented . In
these two cases the systermn was persistently excited with a step function. In
figure 12 can be seen different convergence rates of the estimate depending
upon the selection of the estimation gain.

If the exciting signal for the system is not persistently exciting,[10], the
convergence of the estimate to the true value is lost, as illustrated in figure 13.
Note that, despite the lack of accuracy in the estimation of the real value of the
parameter, the state tracking error remains small.

6 MODEL REFERENCE-NEURAL NETWORK-
BASED CONTROL SCHEME

The aim of this section is to present a model reference control scheme where the
adjustable parameters of the controller are supplied by a neural network. It will
be assumed that the structure of the plant is known, although its parameters
are unknown. Both the variable structure control approach algorithm and the
gradient descent algorithm will be used to update the weights of the network.

The proposed scheme, for the variable structure control approach algorithm
is shown in figure 5. Figure 6 shows the scheme used when the weights were
updated implementing the gradient estimation algorithm.

Mathematically speaking the results can be illustrated with the following
examples:

6.1 Variable Structure Control Approach Algorithm
Let the plant be described by

y(t) = —apy(t) + bpu(t), (37)

ap, bp unknown.
Let the reference model be described by

@'m(t) = —amYm(t) + bmr, (38)
@m, by known; r a step function.
Then
et) = y(t)—ym(t) (39)
ét) = (t)—Im() (40)
It will be assumed that a, and b, are constant in t € [kT, (k+1)T]. Notice that
él(k+ 1)T] = é[(k)T] = —am{el(k+1)T —e[(k)T]}

+ a{yl(k + 1)T] - y{(k)T]}

+ by {ul(k + 1)T] — u[(F)T]}, (41)

with @ = a,, — ap. Now, if we select
u[(k + 1)T] = u[(k)T] = —Sgn(bp)ee[(k)T], (42)
where o = 25;—5“—"‘, then

Elxr + amelir + bpaelir = @YlxT (43)

Obviously, for all kT € [0, 00) we have the second order differential equation
€(t) + amé(t) + bpae(t) = ay(t) (44)
Observe that the Laplace transform of the above equation yields

asY (s)

B(a) = 82 + a,,8 -E—b,,u'

(45)

and if Y(s) is bounded, then

lin"é sE(s) =0 (46)
51—

Figure 14 illustrates the results obtained when the unknown plant parameters
were a, = 5 and by, = 10, and the input to the reference model was a changing
step function. Observe the convergence of the plant output to the reference
model output. Figure 15 shows the neural network adaptive control action.

6.2 Gradient Estimation Algorithm

Consider the plant and the reference model described by equations 39 and 40.
Let the control law be defined by

u(t) = kyr + kay(t), (47)

then the closed-loop system will be
9(1) = —(ap — kaby)ult) + kabyr (48)

~Notice that if k; and k; were selected as k} = !';;u and k3 = 227%» then the

P
closed-loop behavior would correspond to the desired reference model.
Since a, and b, are unknown, we have to estimate k; and k; on line. Let
the parameter estimation errors be:

I‘.[= kl - k;, (49)
ks = ky— k). (50)
If we define
e(t) = y(t) — ym(2), (51)
then

é(t) + ame(t) = bokay(t) + bpkyr
Finally, if we select
Ey(t) = —Son(b,)ve(t)r, (54)
ka(t) = —Sgn(by)ye(t)y(t), (55)

then
‘lim e(t) =10 {56)
Equations 56 and 57 can be rewritten in their discrete time versions as
Bl(k+1DT] = kl(k)T] - Son(b,)ac(kT)r(kT), (57)
ka[(k + 1)T] ka[(k)T] — Sgn(bp)ae(kT)y(kT), (58)
where o = 5"—’%‘—! is the convergence rate. Figures 16, 17, and 18 show sim-
ulation results obtained using the above algorithm to update the weights of

the neural network. The plant under consideration here was the same of the
previous example, except for the amplitude of the reference signal.

1l

7 SELF-TUNING-NEURAL NETWORK-BASED
CONTROL SCHEME

In this section, we propose a self-tuning control scheme that uses a neural net-
work for parameter estimation purposes, Figure 7 shows the suggested scheme.
For dynamic systems of the classes described by 28 and 29, the estimation of
the single parameter or function can be done using a neural network where
the weight-update algorithm is of the variable structure control approach type.
Figures 19 and 20 show the parameter estimate, state tracking performance,
dynamic behavior, and self-tuning control action for the position control of a
mass on frictionless surface. In this particular case, the plant is described by

(1) = —ul(t), (59)

with u being the external force, and m the unknown mass.
The desired closed-loop behavior is represented by

:c(t) - al:i:(t) + ag:ﬂ(f) = aszr, (60)

where a; and a; are known, and r is a step function. In order to achieve the
desired specification, the external force u should be selected as

u(t) = mlax(r - 2(t)) - ar(1)). (61)

Notice that in order to be able to implement the above control law, the param-
eter m must be estimated on-line.

Let us consider a final example of controlling the angular position of a robotic
manipulator using a gradient estimation algorithm for updating the neural net-
work‘weights. The linearized version Pf the plg,nt s dynamics may be described
by

z1(t)
z2(t)

tz(i)

--?E:t(t) -

B 1
—fa:g(t) + —J—u(t), (62)

10

where the parameters F, B, and J represent the known compliance and viscous
coefficients, and the unknown moment of inertia respectively.
Let the desired closed-loop behavior be described by

zi(t) = =z2(t)

g F

2a(t) = —wizy(t) - 2€woza(t) + (wd — 7)11,.,1, (63)
where wq and £ are the desired natural frequency and damping coeflicient re-

spectively. In order to achieve the desired specifications, the control u must be
selected as

u(t) = (F — Jwl)[z1(t) — ures] + (B — 2T wp)za(t). (64)

Note the dependence of u with respect to the unknown moment of inertia J.
The identification model used for parameter estimation purposes is represented

by

z1(t) = =z2(t) + kaza(t) = 21(2)]
Y = --;l-zl(t)-%mz(t)+jl:u(t)+k2[:cz(t)—23(t)], (65)

where J, is the estimated moment of inertia, and k; and k; are observation
gains. Let us define the predicted error

e(t) = za(t) — 22(t). (66)
Observe that:
é(t) = @t) — 22(%)
= G- Do) = (3 = Dyealt) + (3 — 7)ult) ~ kae(t) (67)

This is
é(0) + kaelt) = ~(F = P)ml0) = (5 = Dhaalt) + (3 - hule). (69)

8

The gradient descent algorithm suggests that

()0 =-re®ut) (69)

Note that if (317) — (1) then e — 0 as t — co. Implementing the discrete-time
version of equation 69 for updating the weights of the neural network produces
the results shown in figures 21, 22, and 23. It is worth mentioning that the
parameters of the plant were assumed to be constant, otherwise by virtue of the
non-persistently exciting characteristic of the generated control signal, it would
have been impossible to estimate a time-varying parameter accurately.

11

8 CONCLUSIONS

We have presented some applications of multilayer perceptron neural netwoks
to identify and to control certain types of dynamic systems. Two approaches
were followed to update the network's weights: a variable structure control
formulation and a gradient descent algorithm. Both approaches were digitally
implemented and the performance of the resulting neural networks were checked
in terms of parameter estimation and control design for linear systems.

Two model reference-neural network-based control schemes were proposed
and their performances were digitally tested using examples of linear systems.
In the first scheme, the neural network acts as the controller for the given
plant. In the second scheme the neural network is used to update the controller
parameters in such a way that the error between the reference model output
and the plant output goes to zero.

Finally, an indirect self-tuning-neural network-based control scheme was pre-
sented, and its performance to control two different linear systems was digitally
tested.

It should be pointed out that the variable structure control approach algo-
rithm presented here assumnes a constant desired output vector Y -(equation
11)-. Also it should be noted that the linear systems considered in the control
schemes are noise free. Qur final coment is related to the selection of the sam-
pling time for the neural network. Its selection must take into consideration the
speed at which the system responds to an external input.

Research is now underway to apply the proposed adaptation algorithms to
estimation and control of nonlinear dynamic systems.

References

- [1] Nagy G. “Neural Networks-Then And Now”.
IEEE Trans. On Neural Networks, Vol. 2, Number 2, pp 316-318, March
1991

(2] Minsky M.; Papert S. “Perceptrons: An Introduction To Computational
Geometry.
The M.I.T. Press, Cambridge, Ma. 1969.

(3] Pao Y.H. “Adaptive Pattern Recognition And Neural Networks” .
Addison-Wesley, Reading, Mass. 1989

(4] Haykin S. “Introduction To Adaptive Filters”.
MacMillan publishing Co., New York 1984

(5) Widrow B.; Winter R. “Neural Nets For Adaptive Filtering And Adaptive
Pattern Recognition”.
IEEE Computer, Vol. 21, Number 3, pp 25-39, 1988

12

(6]

(7]

(8]

10]

(11]

(12]

[13]

Reynold Chu S.; Shoureshi R.; Tenorio M. “Neural Networks For System
Identification”.
IEEE Control Systems Magazine, pp 31-34, April 1990

Narendra K.; Parthasarathy K. “Identification And Control Of Dynamical
Systems Using Neural Networks”.
IEEE Trans. On Neural Networks, Vol. 1, Number 1, pp 4-27, March 1990

Rumelhart D.E.; McClelland J.L. “Parallel Distributed Processing: Explo-
rations In The Macrostructure Of Cognition”.
Chapter 8, A Bradford Book, The MIT Press, Cambridge 1986

Zak S.H.; Sira Ramirez H. “On The Adaptation Algorithms For General-
ized Perceptrons”.

8% International Congress Of Cybernetics And Systems, Hunter College,
Cuny, New York, June 1990

Slotine J.E.; Li W. “Applied Nonlinear Control”.
Chapter 8, Prentice Hall International Editions 1991

Sarpturk S.Z.; Istefanopulos Y.; Kaynak O. “On The Stability Of Discrete-
Time Sliding Mode Control Systems”.

IEEE Trans. On Automatic Control, Vol. AC-32, Number 10, pp 930-932,
October 1987

Hornik K.; Stinchcombe M.; White H. “Multilayer Feedforward Networks
Are Universal Approximators”.
Neural Networks, Vol. 2, pp 359-366, 1989.

Levine E.; Gewirtzman R.; Inbar G. “Neural network architecture For
Adaptive System Modelling And Control”.
Neural Networks Vol. 4, pp 185-191, Pergamon Press 1991

13

Adaptive
Algorithm

Figure 1: Single Layer Perceptron.

TNPUT FIRST HIDDEN
LAYER LAYER OUTPUT

o Q2Hmn LAYER
Tl i

INPUTS

X 4 71 o
. \ ANALOG
. QUTPUTS
Yn,
X nI e

0
‘q_.®.<_Yd
Adaptive Y o

Algorithm | Sy=7e,

Figure 2: Three Layer neural Network.

1_1-7-'21-{ \ Y1H 1—1

Adaptive

Algorithm ""@

Figure 3: Schematic Representation Of The Three Layer Neural Network.

x)

= Algorithm P_

Figure 4: Neural Nelwork-Based ldentification Scheme.

Algorithm

‘—)i Comtrolier ¥ Piant

Figure 7: Self-Tuning-Neural Network-Based Control Scheme.

a4

Reference
Model!

-
[‘\\}

~

/K Plant
k/'

Ret

Algorithm

Figure 5: Model Reference-Neural Network-Based Control Scheme.
Variable Control Approach Algorithm.

Ref

————— -—>
Algorithm

e
pd

Figure 6: Model Reference-Neural Network-Based Control Scheme.
Gradient Estimation Algorithm.

Ret. Model
Ty Ym
' '—-—j Controll U Plant v
oniroller . i
T N
L = ’

f(t),£(tv)

_- estimate

K

A

1 actual parameter
9 s error
-1 i _é :'; i T t(sec)
2]
Figure 8-A.
Eit) E(E)
3
- estimate
2
1
k [actual parameter
8], error
- T 1 T T T t(sec)
2 1 2 3 4 5
Figure 8-B.
Figure 8.

8-A Time-varying parafneter estimate and state acking error.
8-B Constant parameter estimate and stabe tracking error.

19

4 1 é :i 4 Sl t(sec)

Figure 9-A.

g(x) ,E(X)

error

T
] i 2] 113 & 5 .t(sec)

‘Tlﬁure’z!}lB {! ;| i

z
P

g

Figure 9.
9-A State variables and their estimates.
9-B Estimate of sqr(abs(x1)) and state tracking error.

e

L

Lo

|

Y

: t(sec)
o 1.5 2
Figure 10-A.
i
|
|
i
|
i
- |
1
i
|
!
1 i
i g !
K 1 I
: P
: i]
¥ : : t(sec)
a.3 5 2
Figure 10-B.
g
i
i
8.5 1.3 2 tlseq)

Figure 10-C.

. Figure 10.
10-A Actual moment of inertia.
10-B Estimated moment of inertia.
10-C State tracking error.

F(E),1() &

8.1
18
8
5
8.1
|
, 8 9.2
]] T 1 T 1 1] 1
8 1 2 3 4 5 t(sec) 8 1 2 3 4 3 t(sec)
?
; Figure 11-A.
F(t),F(t) g
8.1

LAV

-

B 1 2 3 4 5 ¢(sec) 8 1 2 3 & 5 t(sec)

Figure 11-B.

Figure 11.
11-A Constant parameter estimation and state tracking error.
11-B Time-varying parameter estimation and state tracking error.

/ actual paramecter
\ __\M—

o
(X

4 :‘l, t(sec)

Figure 12: Parameter estimation for different estimation gains.

F(£),1 (1) e

8.1

o —AAARAR

5}
.1
i) -8.2
T t
8 1 2 3 4 g tsed) B 1 2 3 4 5 t(se0)
Figure 13-A.
X% Xy 5%y
5 5]
\‘H‘
3] 8
-5 -3
] T 1] I T 1 [T T
B 1 2 3 4 5 t(sec) 8 1 2 3 4 3 t(sec)
Figure 13-B.

Figure 13.
13-A Time-varying parameter estimation and state tracking error.
13-B State variables and their estimations.

Y

8

-2

-4 i : . - I t(sec)
8 2 4 6 8 18

i

}l (1
l

Figure 14: Plant and model referencc outputs.
Variable structure control algorithm.

u(t)

e b

e

-4 . . t(sec)

Figure 15 Neurai netwnrk adapuve contral action.

[y*]
e T
—_.___._____‘7

t(sec)

]
o]
[+ =]

Figure 16: Plant and model reference outputs.
Gradient algorithm.

-4 i t(sec)

Figure 17: Adjustable controller parameters.

Ut)

t (sec)

-]
ra
.Y
o-
oo -
'&j_

Figure 18: Model reference adaptive control law.

m,m e
m 8.1)
18 v
\ BA
9
8.1
8 8.2 |
8 _i 2 é A ét(sec) 8 1 2[é 4 %_t(sec)
Figure 19-A.
. Loy X)s%,
5] 5
l
B 8
-5 -5]
8 1 2 3 4 5c(sec) 8 1 2 3 4 5 t(sec)

Figure 19-B.

Figure 19.
19-A Parameter estimate and state tracking error.
19-B State variables and thewm comnanomee- - ——

(Rt

Uu(t)

1.5

B.Si

I t(sec)

Figure 20: Sell-tuning control action.

-18

4 P

] I 1

3 4 35
Tigure 21-A.

-

|

Figure 21-B.

Figure 21.

21-A Angular position of the arm.
21-B Angular velocity of the arm.

t(sec)

t(sec)

u(t)

t-|

T

Figure 22: Self-tuning control action.

t (sec)

