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1 Abstract

In recent years considerable work have been done in the field of neural networks due
to the recent development of effective learning algorithms, and the results of their
applications have suggested that they can provide useful tools for solving practical
problems. Artificial neural networks are mathematical models of theorized mind
and brain activity. They are aimed to explore and reproduce human information
processing tasks such as speech, vision, knowledge processing and control. The
possibility of using artificial neural networks for fault and accident diagnosis in
the Loss Of Fluid Test (LOFT) reactor, a small scale pressurised water reactor, is
examined and explained in the paper.

2 Introduction

Artificial neural networks,- which are referred to as neural networks, connections,
adaptive networks, neurocomputers and parallel distribution processors, are mas-
sively parallel interconnected networks of simple elements intended to interact with
the real world in the same way as biological nervous systems.

They have been used to solve a wide variety of science and engineering prob-
lems that involve extracting useful information from complex or uncertain data (1,2].
The back propagation algorithm has been used effectively to control a space lander
simulation where the space craft should be landed before the fuel runs out and with
as little velocity as possible [3]. Another application of the back propagation neural
net is for the dynamic modelling and control of chemical process systems where it
has been applied to model the dynamic response of pH in a stirred tank reactor [4].
In the field of fault detection and diagnosis, the neural network approach has been
used to diagnose faults in a three continuous-stirred tank reactor using a multi-layer
feedforward perception model [5]. Neural networks have also been used as a con-
nectionist expert system knowledge base for medical diagnosis [6,7]. In the field of
nuclear reactors, neural networks have been used with the back propagation algo-
rithm applied to identify four different abnormal behaviour patterns in the response
of a simulated steam generator (8].

In this paper, the concept of artificial neural networks will be explained, two
different approaches for their use for fault diagnosis in the LOFT reactor [15] will be
illustrated, and finally the two techniques will be examined and discussed through

a hypothetical accident.
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Artificial Neural Network Model

Neural networks use the massively parallel-distributed processing potential of com-

putational hardware and are aimed at developing information processing that is

analogous to the biological nervous system [9,2,10].

The main unit of an artificial neural network is the processing element. They

are referred to as nodes, neurons or threshold logic units. As shown in figure 1, the

processing element is a multi-input single-output unit and consists of:

1.

Inputs
They can come from either sources external to the neural network or outputs

of other processing elements, including itself, and form an input vector I;,1 =
1,2,...,n.

Weights

Within each connected pair of processing elements is an adjustable numerical
value called a weight, denoted by W;;, which roughly represents the connec-
tion strength from the processing element i to the processing element j and

determines how much influence an input has on the processing element.

Combining function

This relates the weights W;;, their associated processing element input values
I; and the internal threshold value ®; which must be exceeded for there to be
any processing element activation. The combining function is performed by
taking the dot product of I; and W;;, adding the threshold and passing the
result through a threshold function f ( ). It is defined as:

Y=f (i Wil + @j)

1=1

. Threshold function

The threshold function, also referred to as an activation function, transfer
function or signal function, interprets the result of combining functions and
determines the output which could be connected to any other processing ele-
ment including itself, or can be output to external sources. The most common

types of threshold function are the linear, ramp, step and sigmoid functions.
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Figure 1: The topology of a processing element

Processing elements within a neural network are grouped together to form
a structure called a layer, hence neural networks emerge from the interconnection
of one or more layers of processing elements. A typical neural network usually
consists of one or more intermediate or hidden layers of processing elements which
are responsible for additional information processing with the input and output layer.
The input layer receives input from the external world while the processing elements
in the output layer have outputs that are taken to be the outputs of the network as
a whole and delivers the representation of the input after processing has occurred.
The hidden layers usually contain hidden units or processing elements that are not
directly connected to both the input and output processing elements.

Networks are classified as either feedforward networks if the output of the
processing element in a layer can flow to the processing element in the following
layer, lateral feedback if it flows to an element in the same layer or feedback if it
flows to itself.

Neural networks perform by receiving inputs from the external world at their
input layer, processing the input through its layer and producing a pattern of acti-
vation at its output layer, where each individual processing element functions inde-
pendently and in parallel with other processing elements.

The intelligence of a network is contained in the shape of connections between
processing elements and the strength of those connections, which is achieved through
the learning laws associated with each layer. In a neural network model, learning
deals with the ability of processing elements to modify and find the weights that will

produce the desired behaviour where the learning algorithms usually work from the



tralning examples or experience.
Back propagation and the threshold logic unit are the learning algorithms
adopted in this work and are used for fault diagnosis in the LOFT reactor.

4 The Back Propagation Algorithm

The back propagation algorithm is the most common learning algorithm which has
been tested with a number of different problems and has been found to perform well
in most cases and to find good solutions. Back propagation is a learning algorithm
designed to solve the problem of choosing weight values for a three layer artificial
neural network with feedforward connections from the input layer to the hidden
layer and then to the output layer. The back propagation algorithm performs the
input to output mapping by minimizing a cost function using a gradient search
technique, where the cost function, which is equal to the mean square difference
between the desired and the actual net output, is minimized by making weight
connection adjustments according to the error between the computed and desired
output -processing element values.

The back propagation involves two stages, the forward stage includes initially
selecting small random weights and internal threshold for the processing elements,
entering the input values, which are propagated forward by computing through-out
the network layers to produce the output value for each unit and comparing the
calculated output with the given desired output, resulting in an error term for each
output. The backward stage involves a backward pass through the network layers
during which the error term is computed for each unit in the layers, and finally
the weight connections are adjusted using the calculated error term associated with
the unit it projects to and the output of the unit it projects from, and the internal
threshold of the processing elements are also adjusted.

The procedure continues until the error term for each output unit is either
sufficiently low or zero. Table 1 illustrates the back propagation algorithm [11,12,13].



H Back Propagation Algorithm H

Assign small random values for the weights and thresholds for the network
Present the input data and the desired output to the network
For each non input unit, the net input to the unit, net;, is computed
net; = ZJ- W,-J'Ig + @j
4. In the case of a sigmoid function, the output of the unit is calculated as

W o =

= ol
exp(—net;)
5. Compare the outputs of the network with the desired outputs to calculate
the error
(d; - Y;)

6. For each output node compute the error function § as
=Y, (1-%)(d - ¥
7. For each hidden layer, calculate the é function as
6 = X; (1 - X;) Te Wi
where X; is the output of the hidden layer
8. Adjust all weights in the network
Wij (t+1) = Wi () + 06, X; + a (Wi () — Wi; (1 - 1))
9. Adjust the threshold of the processing elements
0; (t+1) = 0;(t) +né; +a(0;(t) - ©; (¢ - 1))
where 7 is a small positive constant controlling the learning
rate and « is a momentum constant where 0 < a <1
10. Repeat step 3 to 8 until convergence

Table 1: The description of the back propagation algorithm

5 Network Design and Structure Using the Back
Propagation Algorithm

A neural network technique will be used to assist .the operator in diagnosing and
identifying any abnormal behaviour in the LOFT reactor, by modelling the effects of
the different accidents and faults that might occur. The back propagation algorithm
is applied to train the network to identify and diagnose any fault by choosing the
appropriate connection weights and internal thresholds for the processing elements.

The inputs for the networks are the symptoms for the different faults and
accidents, however most of these symptoms are identified through monitoring the
state variables of the LOFT reactor model which is simulated using C language on

a Sun workstation. The state variables of the LOFT reactor model are analysed for



any deviation from the normal operating limit which could happen due to increase or
decrease in the values of the state variables due to abnormal behaviour in the reactor.
For each state variable, two limits have been designed to identify the increase or
decrease and further increase or decrease from the normal operating limits. Another
set of symptoms which involves information about the whole power plant is obtained
and entered to the system by asking the user about their occurrence.

The input values for the network are discrete, taking on values of 1 and 0,
where 1 refers to the occurrence of the symptoms which could be a deviation in the
value of the state variable, and any increase or decrease is assigned a value equal
to 1, or it could be a sensor alarm received by the operator in the control room
where the user of the system records the occurrence of the symptom. A zero value
indicates that the system is in normal operating condition.

For the network with four processing elements in the input layer, as shown in
figure 2, the input of the network is a set of four elements, one element for each
node, and each element has a value equal to 1 or 0, thus there are a possibility of
16 sets of data which can be entered to the network ranging from (0 0 0 0) which
indicates reactor normal operation to (1 1 1 1) which refers to the occurrence of all
the symptoms of the accident.

The desired output of the network ranges between 0 and 1 depending on the
state of the input set. When all the elements of the input set are equal to 0 then
the desired output should be equal to 0 referring to normal operation and indicating
that the percentage of faults occurring is 0 %. When all the elements of the input
set are equal to 1, the desired output is given as equal to 1, indicating that the
fault has occurred with a percentage possibility equal to 100 %. However, when one
element of the set is equal to 1 and the rest are 0 the desired output is given as
equal to 0.2 indicating a 20 % possibility of the fault occurring. Thus, in the case
of two elements of the set equal to 1, the desired output is equal to 0.4 indicating
a 40 % possibility of a fault occurring, while in the case of three elements are equal
to 1 the desired output is given to be equal to 0.7 recording that the possibility of a
fault occurring is 70 %. Table 2 illustrates all the possibilities of the input data to

the network with the desired output value for each possible input set.



[LThe input sets { The desired outputﬂ

0000 0
(1000) 0.2
(0001) 0.2
(1100) 0.4
(0011) 0.4
(1110) 0.7
(0111) 0.7
1111 1.0

Table 2: The input data for four processing elements in the input layer

Output

Figure 2: Network with four processing elements in the input layer

6 Applying the Back Propagation Algorithm

The back propagation algorithm illustrated in table 1 is used to train the networks

to find the correct output value for each set of input data. The algorithm starts by

b |



assigning small random values for all the weights and the internal thresholds of the
processing elements.

After calculating the combining function, the output of the network is cal-
culated by passing it through the sigmoid threshold function which has an output
range between 0 and 1. The error between the desired and the calculated output
is computed and then the weights and thresholds are updated. The procedure is
continued until convergence is achieved. The final set of weights and thresholds for
the network with four nodes in the input layer which achieves convergence is given
in table 3.

The learning factor is chosen as 0.6 while the momentum constant is equal
to 0.9. The back propagation algorithm used to train the networks is coded in C

language and run on a Sun workstation.

| Weights | Thresholds |
Input to Input to Hidden layer | Node in | Node in
1st node 2nd node to output hidden | output
hidden layer | hidden layer layer layer layer

-2.2646 1.4386 -4.283 0.6459 | -0.8011
-2.2614 1.4413 7.2953 -5.5387

-2.2596 1.4432

-2.2586 1.4434

Table 3: Weights and thresholds for four processing elements in the input layer

7 Network Performance Using the Back Propa-
gation Algorithm

The computer program simulates the 27th order LOFT reactor model, monitors the
state variables to identify any deviation from the normal operating limit, asks the
user about the availability of some other information concerning the whole reactor
plant and arranges and inputs the complete information to the networks. The output
of the program is a list of the percentage possibilities of fault occurrence in the LOFT
reactor. The program is designed to simulate the model, analyse the state variables,
input the data to the networks and obtain the percentage list for all faults and
accidents, at each second interval.

Partial loss of flow due to blockage in a fuel assembly is assumed to occur in



the LOFT reactor to test and examine the ability of the program to diagnose the

reactor accident. The hypothetical accident is assumed to be initiated by a drop in

the coolant flow from 3.7 (lbm/hr) to 1.6 (Ibm/hr) at a time greater than 2.0 sec.
As shown in figure 3, the indication for this accident involves four possible sets

of symptoms which are

1. Decrease in coolant flow, change in flow distribution, increase in reactor coolant

average temperature and change in temperature distribution.

2. Decrease in coolant flow, change in flow distribution, increase in reactor coolant

average temperature and change in power distribution.

3. Decrease in coolant flow, change in flow distribution, increase in temperature

difference across reactor core and change in temperature distribution.

4. Decrease in coolant flow, change in flow distribution, increase in temperature

difference across reactor core and change in power distribution.

The network with four processing elements in the input layer is used to model
this accident where the network is used four times, once for each set of symptoms,
resulting in four possible output values in which the highest value will be considered
as the network output.

Table 4 illustrates the percentage possibility of all faults and accidents in the
reactor at times 0, 3, 4 and 5 sec. At time 0 sec, the maximum network output or
fault percentage is 2.8 % revealing that the reactor is in a normal situation. At time
3 sec, the accident has occurred, the faults percentage for the partial loss of flow due
to blockage in a fuel assembly has the highest accident percentage which is 19.9 %.
At times 4 sec and 5 sec the partial loss of flow also has the highest percentage value
where at time 5 sec the percentage value is 96.3 % meaning that the network output
is near to the desired output 1, indicating that all the symptoms for the accident
have occurred and the network input set is (1 11 1).
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Accident type Percentage failure
Time

0] 3 | 4 BE

Failure in power control system to respond to 2.8 | 2.8 | 31.04 | 50.07

boron increase

Failure in power control system to respond to 28| 28 2.8 2.8
boron decrease
Failure in the rod drop 271 27 | 199 | 19.9

Failure due to misalignment of RCCA (Reactor | 2.8 | 2.8 | 2.8 2.8
Control Cluster Assembly)

Leakage in feedwater piping 28| 28 | 28 2.8
Blockage in feedwater piping 28} 28 | BT 9.7
Excessive feedwater heat removal L7 1.7 | 1.7 | 299
Blockage in fuel assembly 271199 | 70.3 | 96.3
Loss of coolant i | 3.7 | I+F 1.7
Failure in the pressuriser heater control | 1.7 1 Ld 1.7
Failure in the pressuriser spray control 17 | L7 17 1.7
Failure in the pressuriser water level control 24 | AT | 27 2.7
Steam generator tube rupture L7 1.7 | 1.7 1.7
Steam line break 28| 28 | 2.8 2.8

Table 4: The fault percentage for the different faults in the reactor at time 0 sec
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8 Threshold Logic Unit

A threshold logic unit is referred to a processing element with a step threshold
function, so the output of the processing element is discrete, taking on values 1 or
0. These values can be used to solve logic problems where 1 corresponds to a fault
condition while 0 corresponds to a normal condition.

The single threshold logic unit first initializes the connection weights and the
threshold value to small random values and then computes a weighted sum of the
input elements, adds a threshold © and passes the result through a step function
such that the output Y is either 1 or 0. )

The iteration of the network contains several layers of processing elements,
which reevaluate each processing element in index order and change their output
before the next processing element is reevaluated. One iteration is sufficient to
bring the network to the steady state. The threshold logic algorithm is illustrated
in table 5 [7,16].

I Threshold Logic Algorithm 1
1. Initialize weight W; and threshold © to small random value
2. Present the input value X; and the desired output d(¢)
d(t) = { 1 if input in faulty condition
0 if input in normal condition
3. Calculate the net input to the output unit
net =3, WX +0 ,
4. Find the output of the processing element as
1 ifnet>1
¥it)= { 0 otherwise
5. Update all the weights
Wilt+1) = Wi(t)+1[d(8) = ¥ (1) X: (1
6. Repeat step 3 to 5 until convergence

Table 5: The description of the threshold logic algorithm

9 Threshold Logic Approach for Fault Diagnosis

New network models will be designed to assist the nuclear reactor operator in iden-
tifying the different accidents and alarms that might occur in the reactor. The
approach is based on designing a network for each logic tree of the faults and alarms

that might happen in the reactor. A threshold logic algorithm is applied to train the
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networks where the training algorithm involves calculating the output for the pro-
cessing elements in the first layer, computing the error by comparing the calculated
output with the desired value and adjusting the weight and threshold and changing
the output so that the error is 0 before processing to the next layer of processing
elements.

The inputs for these networks are discrete values of 1 and 0, where 1 refers to
the occurrence of the symptoms of the fault which arises as a result of the deviation
in the state variables of the simulated LOFT model, while the 0 refers to the nor-
mal operation situation. The inputs for the network are found by monitoring the
state variables for any increase or decrease from the normal operating limit and the
appearance of any sensor alarms concerning the whole reactor plant.

The output of the network is either 1 or 0 where 1 refers to the occurrence of

the fault or the alarm while 0 means normal operation.

10 Applying the Threshold Logic Algorithm

The idea of this approach is based on processing through the network starting from
the first layer, where the output for each processing element is calculated until the
output of the last processing element in the final layer is found. If this output is 1
then the fault or the alarm has occurred otherwise this type of fault will not arise.
To demonstrate the performance of this approach, an example that deals with
the failure of a power control system to respond to boron increase in which the net-
work is shown in figure 4 is considered. The fault tree for this accident is illustrated
in figure 5. The symptoms for this type of accident include, an increase in boron
concentration, temperature difference across the reactor core and reactor power, and
a decrease in the average coolant temperature and pressuriser pressure. Assuming
all these symptoms have occurred, the input set to the network is (1 1 1 1 1), where
the one’s are the input values for the processing elements in the input layer. The
network consists of two processing elements in the hidden layer and the output of

the first one is calculated according to the threshold logic algorithm as
1x1+05=1.5

Since 1.5 > 1.0 then the output of this processing element is 1 indicating the first
alarm of failure in the power control system to respond to boron increase. While

the output for the second element is

Ix14+1x14+1x14+1x1-25=1.5

13



Thus the output is also taken as 1. The output of the processing element in the
output layer is then calculated using the same procedure and is found to be equal

to 1.5 thus assuring the occurrence of this type of fault.

Figure 4: The network for failure in the power control system to respond to boron
increase

14



Faultoceur

—~

Increase in Decreasein Increase in Decreasein Increase in
boron conc. average temp. temp. diff. gmrc:;unzer reactor power

Figure 5: Fault tree for failure in the power control system to respond to boron
Increase

11 Network Result Using the Threshold Logic
Approach

The computer program, again written in C language, simulates the LOFT model,
monitors the state variables for any deviation from normal operation, asks the user
about the occurrence of other symptoms of different accidents, arranges and inputs
the data to the networks and interprets the network output concerning the occur-
rence of any fault or alarm in the reactor. The program is designed to execute all
these procedures every second.

The same hypothetical accidenist used to demonstrate the ability of the back
propagation algorithm is used here to examine the ability of this system to assist
the nuclear reactor operator in diagnosing accidents. The accident starts by a drop
in the value of the coolant flow at a time greater than 2 sec. The neural network
model for this type of accident is illustrated in figure 6.

Table 6 illustrates the output of the program where at time 0 sec the system
indicates normal operation of the reactor. At time 3 sec it alarms the user for the

15



partial loss of flow and at time 5 sec the system assures the occurrence of the first,
second, and third alarms of partial loss of flow as well as the occurrence of the

accident.

I , {stalarm

Figure 6: Network {for partial loss of flow due to blockage in {uel assembly

” Time | Faults and alarms “

0.0 | Nothing wrong with the reactor

1.0 | Nothing wrong with the reactor

2.0 | Nothing wrong with the reactor

3.0 | First alarm for blockage in fuel assembly
4.0 | First alarm for blockage in fuel assembly
5.0 | First alarm for blockage in fuel assembly
Second alarm for blockage in fuel assembly
Third alarm for blockage in fuel assembly
Failure due to blockage in fuel assembly

Table 6: The different faults and alarms wilh respect to time

16



12 Conclusion

The ability of the neural network to diagnose malfunctioning of the reactor is at-
tractive and encouraging, and the back propagation algorithm worked very well in
training the networks to identify the accidents. In all cases, the network output is
very near to the desired output indicating that convergence has been achieved using
the back propagation algorithm. This approacﬁ has been applied to fourteen differ-
ent accidents and can be easily extended to include different models of faults and
accidents that might occur in the reactor plant. The results of the threshold logic
approach are also very good, and the approach is simple and easy to apply. The
system can be used to represent any type of logic tree and to identify and diagnose

any alarm or accident that might occur.
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