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Abstract

A novel inverse problem which consists of the simultaneous determination of a source together

with the temperature in the heat equation from integral observations is investigated. These

integral observations are weighted averages of the temperature over the space domain and over

the time interval. The heat source is sought in the form of a sum of two space- and time-

dependent unknown components in order to ensure uniqueness of solution. The local existence

and uniqueness of the solution in classical Hölder spaces are proved. The inverse problem is

linear, but it is ill-posed because small errors in the input integral observations cause large

errors in the output source. For a stable reconstruction a variational least-squares method

with or without penalization is employed. The gradient of the functional which is minimized is

calculated explicitly and the conjugate gradient method is applied. Numerical results obtained

for several benchmark test examples show accurate and stable numerical reconstructions of the

heat source.

Keywords: Heat equation, heat source, conjugate gradient method, inverse problem.

1 Introduction

Mathematical models related to inverse source problems arise in various practical settings, e.g.

the determination of sources of water and air pollution in the environment, the determination of

heat sources in heat conduction, etc. Consequently, inverse source problems for the heat equation

have attracted considerable interest, see e.g. [3]–[8], [12], [17]–[19]. In all these studies the source

function is sought as a function of either space or time. The reason for this restriction is the
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lack of uniqueness of solution in the general case when the source depends on both space and

time, [10]. That is why inverse problems for finding sources depending on various/several variables

are of great interest. For example, it is possible to restore uniqueness if we seek the source as a

linear combination of point sources, [1], or as an additive, [11], or multiplicative, [20], expression

of separate time and space-dependent continuous components.

The objective of this paper is to determine heat source functions depending on both space and

time, but which are the sum of two unknown components depending separately on space and

time, with known weights depending on time and space, respectively. The additional measure-

ments/overspecified conditions are given by integral observations of the temperature over space

and time. This is particular advantageous in practical applications where local point or instant

temperature measurements contain too large errors and then the use of non-local average measure-

ments appears more realistic and reliable.

The inverse problem is linear, but ill-posed. The local existence and uniqueness of a classical

solution in Hölder spaces are established in section 2, but more importantly this novel inverse

formulation based on non-local average integral observations rather than local space or time point

measurement enables the development of a weak solution theory for which variational methods are

at hand, as developed in section 3. The discretization of the direct and adjoint problems is based

on the finite element method (FEM) which is briefly discussed in section 4. The iterative conjugate

gradient method (CGM) employed for minimizing the least-squares gap between the measured

and computed data is also presented in section 4. As expected, since the solution of the inverse

problem does not depend continuously on the input data, regularization needs to be enforced in

order to obtain a stable solution. This is performed by either stopping the CGM iteration at a

threshold given by the discrepancy principle, or by penalizing the least-squares functional with

extra regularization terms. Numerical results obtained for several benchmark test examples are

presented and discussed in section 5. Finally, section 6 gives the conclusions of the paper.

2 Mathematical Formulation

In this paper, we consider the particular practical application of the inverse analysis in the search

of the heat source distribution in a multi-dimensional conductor. The determination of this heat

source distribution across the space and time solution domain has a significant importance on

finding the characteristics and performances of the thermal field. Further, it also assists in the

designing of new heat conducting devices with an improved performance.

Let Ω be a bounded domain in Rn with boundary ∂Ω, and T a given positive number. Denote

Q := Ω×(0, T ], and S := ∂Ω×(0, T ]. In [11], the problem of determining the right hand coefficients

f1(x) and f2(t) in the Dirichlet problem

ut = ∆u+ g0(x, t) + f1(x)g1(t) + f2(t)g2(x), (x, t) ∈ Q, (2.1)

u|t=0 = u0(x), x ∈ Ω, (2.2)

u|S = uS , (2.3)
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from the two additional conditions

u(x0, t) = h(t), t ∈ [0, T ], (2.4)∫ T

0
u(x, t)dt = g(x), x ∈ Ω̄, (2.5)

where x0 is a fixed point in Ω, has been considered. Based on the trivial identity (f1(x) +

cg2(x))g1(t) + (f2(t) − cg1(t))g2(x) = f1(x)g1(t) + f2(t)g2(x), where c is an arbitrary constant,

one can see that problem (2.1)–(2.5) does not have a unique solution. However, if one imposes the

additional condition that f1(x0) is known then, under some conditions on the smoothness of the

data and their compatibility, it can be established, see [11], that if T is small, then there exists a

unique solution to the inverse problem. The aim of our paper is to solve this inverse source problem

by a variational method. Since the pointwise measurement (2.4) cannot be defined in the usual

weak form framework, we replace it by the integral measurement

l1u :=

∫
Ω
ω1(x)u(x, t)dx = h(t), t ∈ (0, T ), (2.6)

where ω1 is a given function.

We also assume that we have available as prescribed the quantity∫
Ω
ω1(x)f1(x)dx = C0. (2.7)

Then we have the following local uniqueness solvability theorem.

Theorem 2.1. Suppose that the following conditions are satisfied:

(A1) Equation (2.2) holds for x ∈ Ω, equation (2.3) holds on S and equation (2.6) holds for

t ∈ [0, T ];

(A2) u0 ∈ H2+γ(Ω), g ∈ H2+γ(Ω), us ∈ H2+γ,1+γ/2(Ω), g0 ∈ Hγ(Ω), h ∈ H1+γ/2[0, T ], ω1 ∈
H2+γ(Ω), ∂Ω ∈ H2+γ, where γ ∈ (0, 1);

(A3) u0|∂Ω = us(·, 0)|∂Ω, g|∂Ω =
∫ T
0 us(·, t)|∂Ωdt, h(0) =

∫
Ω ω1(x)u0(x)dx,

∫
Ω ω1(x)g(x)dx =∫ T

0 h(t)dt;

(A4)
∫ T
0 g1(t)dt ̸= 0,

∫
Ω ω1(x)g2(x)dx ̸= 0, g1(t)/

∫ T
0 g1(τ)dτ ≥ 0, t ∈ [0, T ].

Then for sufficiently small T > 0 there exists a unique solution (f1, f2, u) ∈ Hγ(Ω)×Hγ/2[0, T ]×
H2+γ,1+γ/2(Q) of the inverse problem given by equations (2.1)–(2.3) and (2.5)–(2.7).

For the definition of the above Hölder spaces involved, see [14, p. 7].

Proof. Differentiating (2.6) yields

h′(t) =

∫
Ω
ω1(x)ut(x, t)dx =

∫
Ω
ω1(x)

(
∆u(x, t) + g0(x, t) + f1(x)g1(t) + f2(t)g2(x)

)
dx

=

∫
Ω

(
u(x, t)∆ω1(x) + ω1(x)(g0(x, t) + f1(x)g1(t))

)
dx+ f2(t)

∫
Ω
ω1(x)g2(x)dx

+

∫
∂Ω

(
ω1(x)

∂u

∂ν
(x, t)− us(x, t)

∂ω1

∂ν
(x, t)

)
ds.
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Rearranging we obtain

f2(t) =
1∫

Ω ω1(x)g2(x)dx

[
h′(t)−

∫
Ω
(ω1(x)g0(x, t) + u(x, t)∆ω1(x))dx− C0g1(t)

+

∫
∂Ω

(us(x, t)
∂ω1

∂ν
(x, t)− ω1(x)

∂u

∂ν
(x, t))dS

]
, t ∈ [0, T ]. (2.8)

Integrating (2.8) and using (2.5) we obtain∫ T

0
f2(t)dt =

1∫
Ω ω1(x)g2(x)dx

[
h(T )− h(0)−

∫ T

0

∫
Ω
ω1(x)g0(x, t)dxdt−

∫
Ω
g(x)∆ω1(x)dx

− C0

∫ T

0
g1(t)dt+

∫
∂Ω

(g(x)
∂ω1

∂ν
(x)− ω1(x)

∂g

∂ν
(x))dS

]
=

1∫
Ω ω1(x)g2(x)dx

[
h(T )− h(0)−

∫
Q
ω1(x)g0(x, t)dxdt

−
∫
Ω
ω1(x)∆g(x)dx− C0

∫ T

0
g1(t)dt

]
:= F1. (2.9)

We remark that F1 is known from the data of the problem.

Taking the Laplacian of (2.5) yields

∆g(x) =

∫ T

0
∆u(x, t)dt =

∫ T

0
(ut(x, t)− g0(x, t)− f1(x)g1(t)− f2(t)g2(x))dt

= u(x, T )− u0(x)−
∫ T

0
g0(x, t)dx− f1(x)

∫ T

0
g1(t)dt− g2(x)

∫ T

0
f2(t)dt.

Using (2.9) and rearranging we obtain

f1(x) =
1∫ T

0 g1(t)dt

[
u(x, T )− u0(x)−

∫ T

0
g0(x, t)dx−∆g(x)− g2(x)F1

]
, x ∈ Ω. (2.10)

Let U0 ∈ C2,1(Q) ∩ C1,0(Q) be the solution of the direct problem (2.1) with f1 = f2 = 0 subject

to (2.2) and (2.3). Then, if G is the Green function of the Dirichlet problem for the heat equation

(2.1) with f1 = f2 = g0 = 0, the solution u(x, t) possesses the representation

u(x, t) = U0(x, t) +

∫ t

0

∫
Ω
G(x, t; ξ, τ)

(
f1(ξ)g1(τ) + f2(τ)g2(ξ)

)
dξdτ, (x, t) ∈ Q. (2.11)

Applying (2.11) for t = T and substituting into (2.10) we obtain

f1(x) = f01(x) +
1∫ T

0 g1(t)dt

∫ T

0

∫
Ω
G(x, T ; ξ, τ)

(
f1(ξ)g1(τ) + f2(τ)g2(ξ)

)
dξdτ, x ∈ Ω, (2.12)

where

f01(x) =
1∫ T

0 g1(t)dt

[
U0(x, T )− u0(x)−

∫ T

0
g0(x, t)dx−∆g(x)− F1g2(x)

]
=

1∫ T
0 g1(t)dt

[ ∫ T

0
∆U0(x, t)dt−∆g(x)− F1g2(x)

]
, x ∈ Ω (2.13)
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is a known function from the data of the problem. Also, taking the gradient of (2.11) multiplied

with the outward unit normal ν and substituting into (2.8) we obtain

f2(t) =
1∫

Ω ω1(x)g2(x)dx

{
h′(t)− C0g1(t)−

∫
Ω
ω1(x)g0(x, t)dx+

∫
∂Ω
us(x, t)

∂ω1

∂ν
(x)dS

−
∫
∂Ω
ω1(x)

[∂U0

∂ν
(x, t) +

∫ t

0

∫
Ω

∂G

∂νx
(x, t; ξ, τ)(f1(ξ)g1(τ) + f2(τ)g2(ξ)

)
dξdτ

]
dSx

−
∫
Ω
∆ω1(x)

[
U0(x, t) +

∫ t

0

∫
Ω
G(x, t; ξ, τ)(f1(ξ)g1(τ) + f2(τ)g2(ξ))dξdτ

]
dx
}
,

or

f2(t) = f02(t)−
1∫

Ω ω1(x)g2(x)dx

∫ t

0

∫
Ω

(∫
Ω
ω1(x)∆xG(x, t; ξ, τ)dx

)
× (f1(ξ)g1(τ) + f2(τ)g2(ξ))dξdτ, t ∈ [0, T ], (2.14)

where

f02(t) =
1∫

Ω ω1(x)g2(x)dx

[
h′(t)− C0g1(t)−

∫
Ω
ω1(x)g0(x, t)dx+

∫
∂Ω
us(x, t)

∂ω1

∂ν
(x)dS

−
∫
∂Ω
ω1(x)

∂U0

∂ν
(x, t)dS −

∫
Ω
∆ω1(x)U0(x, t)dx

]
=

1∫
Ω ω1(x)g2(x)dx

[
h′(t)− C0g1(t)−

∫
Ω
ω1(x)

∂U0

∂t
(x, t)dx

]
, t ∈ [0, T ] (2.15)

is a known function from the data of the problem. Now the problem is equivalent to the coupled

system of equations formed with the Fredholm integral equation (2.12) and the Volterra integral

equation (2.14), and the functions f01(x) and f02(t) are known from the data of the problem. It is

shown in [11] that the equation

f1(x) = f01(x) +
1∫ T

0 g1(t)dt

∫ T

0

∫
Ω
G(x, T ; ξ, τ)f1(ξ)g1(τ)dξdτ, x ∈ Ω,

has a unique solution which may be represented in terms of the resolvent Γ(x, ξ). So, the function

f1(x) can be expressed via the function f2(t) in the following way:

f1(x) =

∫
Ω
Γ(x, y)

(
f01(y) +

1∫ T
0 g1(t)dt

∫ T

0

∫
Ω
G(y, T ; ξ, τ)f2(τ)g2(ξ)dξdτ

)
dy, x ∈ Ω. (2.16)

Introducing (2.16) into (2.14) gives the following integral equation with respect to f2(t):

f1(t) = f̃02(t)−
1∫

Ω ω1(x)g2(x)dx

∫ 1

0

∫
Ω

(∫
Ω
ω1(x)∆xG(x, t; ξ, τ)dx

)
× f2(τ)g2(ξ)dξdτ −

1∫
Ω ω1(x)g2(x)dx

∫ T
0 g1(t)dt

∫ t

0

∫
Ω

(∫
Ω
ω1(x)∆xG(x, t; ξ, τ)dx

)
× g1(τ)dτ

[ ∫
Ω
Γ(ξ, y)

(∫ T

0

∫
Ω
G(y, T ; η, σ)g2(η)f2(σ)dηdσ

)
dy
]
dξ, t ∈ [0, T ], (2.17)

where

f̃02(t) = f02(t)−
1∫

Ω ω1(x)g2(x)dx

∫ 1

0

∫
Ω

(∫
Ω
ω1(x)∆xG(x, t; ξ, τ)dx

)
× g1(τ)dτ

(∫
Ω
Γ(ξ, y)f01(y)dy

)
dξ, t ∈ [0, T ].
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It is easy to see that the right-hand side of (2.17) is composed of two integral operators; one of

them being a Volterra operator and another one a Fredholm operator. In summary, the equation

(2.17) is of Fredholm type and, therefore, existence and uniqueness of solution for this equation

are provided by the condition that the norm of its kernel is less than 1. From this condition, one

may find the value of T0 such that the equation (2.17), and the system (2.12), (2.14), in the whole,

possesses a unique solution for x ∈ Ω, t ∈ [0, T0].

In the above, we have already replaced the pointwise measurement (2.4) by the integral measure-

ment (2.6). We also generalize (2.5) by replacing it with

l2u :=

∫ T

0
ω2(t)u(x, t)dt = g(x), x ∈ Ω, (2.18)

where ω2 is a known function. Then we can formulate the inverse problem (2.1)–(2.3), (2.6), (2.7)

and (2.18) in the weak sense as follows.

First, we suppose that the given data g0 ∈ L2(Q), g1 ∈ L2(0, T ), g2 ∈ L2(Ω), u0 ∈ L2(Ω), uS ≡
0, h ∈ L2(0, T ), g ∈ L2(Ω), ω1 ∈ L2(Ω), ω2 ∈ L2(0, T ) are non-negative almost everywhere and∫
Ω ω1(x)dx > 0,

∫ T
0 ω2(t)dt > 0. The sought functions f1 and f2 are supposed to be in L2(Ω) and

L2(0, T ), respectively.

Note that if we formally take ω1 and ω2 as Dirac δ-like functions then this leads to approximate

point-wise observations of u.

The solution of (2.1)–(2.3) with uS ≡ 0 (this condition is for convenience only) is understood in the

weak sense. Denote F (x, t) := g0(x, t) + f1(x)g1(t) + f2(t)g2(x). A function u ∈ W (0, T ) := {u ∈
L2(0, T ;H1

0 (Ω)), ut ∈ L2(0, T ;H−1(Ω))} is said to be a weak solution to (2.1)–(2.3), if it satisfies

(2.2) and the identity∫ T

0
⟨ut, η⟩(H−1(Ω),H1

0 (Ω))dt = −
∫
Q
∇u · ∇ηdxdt+

∫
Q
Fηdxdt, ∀η ∈ L2(0, T ;H1

0 (Ω)). (2.19)

Here H1(Ω) and H1
0 (Ω) are standard Sobolev spaces. It can be proved [2, Theorems 2, 3, pp.

354–357] (or [21]) that there exists a unique weak solution of (2.1)–(2.3), and furthermore, there

exists a constant c independent of F and u0 such that

∥u∥W (0,T ) ≤ c(∥F∥L2(Q) + ∥u0∥L2(Ω)). (2.20)

Since W (0, T ) is compactly embedded into L2(Q), the mapping (f1, f2) ∈ L2(Ω) × L2(0, T ) →
(l1u, l2u) ∈ L2(0, T ) × L2(Ω) is compact. Therefore, the inverse problem (2.1)–(2.3), (2.6), (2.7)

and (2.18) is ill-posed.

Consider the adjoint problem

−ψt = ∆ψ +G(x, t), (x, t) ∈ Q, (2.21)

ψ(x, T ) = ψT (x), x ∈ Ω, (2.22)

ψ|S = 0, (2.23)

with G ∈ L2(Q) and ψT ∈ L2(Ω). The solution of this adjoint problem is also understood in the

weak sense as above and it is known, [2, Theorems 2, 3, pp. 354–357], that there exists a unique

solution ψ ∈W (0, T ), and there exists also a constant c′ such that

∥ψ∥W (0,T ) ≤ c′(∥G∥L2(Q) + ∥ψT ∥L2(Ω)). (2.24)
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Furthermore, the following Green formula is valid [21]:∫
Ω
u0(x)η(x, 0)dx+

∫
Q
Fψdxdt =

∫
Ω
u(x, T )ψT (x)dx+

∫
Q
Gudxdt. (2.25)

We are now ready to introduce the least-squares method for solving the inverse problem (2.1)–(2.3),

(2.6), (2.7) and (2.18).

3 Variational Method

Denote the solution of (2.1)–(2.3) by u(x, t; f) = u(x, t; f1, f2) = u(f), where f = (f1, f2). The

variational method for solving the inverse problem of determining f1 and f2 from (2.1)–(2.3), (2.6),

(2.7) and (2.18) minimizes the functional

Jα(f) =
1

2
∥l1u(f)− h∥2L2(0,T ) +

1

2
∥l2u(f)− g∥2L2(Ω) +

1

2

(∫
Ω
ω1(x)f1(x)dx− C0

)2
+
α1

2
∥f1∥2L2(Ω) +

α2

2
∥f2∥2L2(0,T ), (3.1)

with α1, α2 ≥ 0 being the regularization parameters, α = (α1, α2), over L
2(Ω)×L2(0, T ). We take

the convention that if α1 = α2, then we simply denote them by α.

Now we prove that Jα is Fréchet differentiable and derive its gradient formula.

Let δf := (δf1, δf2) ∈ L2(Ω) × L2(0, T ) be a variation of f . Denoting by δu = u(f + δf) − u(f),

we see that it satisfies the system

δut = ∆δu+ δf1(x)g1(t) + δf2(t)g2(x), (x, t) ∈ Q, (3.2)

δu|t=0 = 0, x ∈ Ω, (3.3)

δu|S = 0. (3.4)

It is clear that there exists a unique solution in W (0, T ) of this problem and, see [2, Theorems 2,

3, pp. 354–357],

∥δu∥W (0,T ) ≤ c
(
∥δf1(·)g1(·)∥L2(Q) + ∥δf2(·)g2(·)∥L2(Q)

)
. (3.5)

We have

J0(f + δf)− J0(f) =⟨l1δu, l1u(f)− h⟩L2(0,T ) + ⟨l2δu, l2u(f)− g⟩L2(Ω)

+ < ω1, δf1 >L2(Ω) (< ω1, f1 >L2(Ω) −C0)

+
1

2
∥l1δu∥2L2(0,T ) +

1

2
∥l2δu∥2L2(Ω) +

1

2
< ω1, δf1 >

2
L2(Ω)

=

∫
Q
ω1(x)

(
l1u(f)− h(t)

)
δudxdt+

∫
Q
ω2(t)

(
l2u(f)− g(x)

)
δudxdt

+
(∫

Ω
ω1(x)δf1(x)dx

)(∫
Ω
ω1(x)f1(x)dx− C0

)
+

1

2
∥l1δu∥2L2(0,T ) +

1

2
∥l2δu∥2L2(Ω) +

1

2
< ω1, δf1 >

2
L2(Ω) .
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Consider the adjoint problem

−ψt = ∆ψ + ω1(x)
(
l1u(f)− h(t)

)
+ ω2(t)

(
l2u(f)− g(x)

)
, (x, t) ∈ Q, (3.6)

ψ(x, T ) = 0, x ∈ Ω, (3.7)

ψ|S = 0, (3.8)

The function ψ ∈W (0, T ) and from the Green formula (2.25) we obtain∫
Q

(
δf1(x)g1(t) + δf2(t)g2(x)

)
ψ(x, t)dxdt

=

∫
Q

(
ω1(x)

(
l1u(f)− h(t)

)
+ ω2(t)

(
l2u(f)− g(x)

))
δudxdt.

Hence

J0(f + δf)− J0(f) =

∫
Q

(
δf1(x)g1(t) + δf2(t)g2(x)

)
ψ(x, t)dxdt

+
(∫

Ω
ω1(x)δf1(x)dx

)(∫
Ω
ω1(x)f1(x)dx− C0

)
+

1

2
∥l1δu∥2L2(0,T ) +

1

2
∥l2δu∥2L2(Ω) +

1

2
< ω1, δf1 >

2
L2(Ω) .

Due to the a priori estimate (2.20)

∥l1δu∥2L2(0,T ) + ∥l2δu∥2L2(Ω) = o(∥δf1∥L2(Ω) + ∥δf2∥L2(0,T )).

It follows that J0 is Fréchet differentiable and its gradient has the form

J ′
0(f) =

{∫ T

0
g1(t)ψ(x, t)dt+

(∫
Ω
ω1(x)f1(x)dx− C0

)
ω1(x),

∫
Ω
g2(x)ψ(x, t)dx

}
. (3.9)

Thus, Jα is also Fréchet differentiable and its gradient has the form

J ′
α(f) =

{∫ T

0
g1(t)ψ(x, t)dt+

(∫
Ω
ω1(x)f1(x)dx− C0

)
ω1(x) + α1f1(x),∫

Ω
g2(x)ψ(x, t)dx+ α2f2(t)

}
. (3.10)

Since we minimize Jα in the whole space L2(Ω)× L2(0, T ), the optimal solution satisfies∫ T

0
g1(t)ψ(x, t)dt+

(∫
Ω
ω1(x)f1(x)dx− C0

)
ω1(x) + α1f1(x) = 0, (3.11)∫

Ω
g2(x)ψ(x, t)dx+ α2f2(t) = 0. (3.12)

4 The Conjugate Gradient Method

First, we shall discretize the variational problem of the previous section by the FEM and prove

some convergence results. We do not use the boundary element method (BEM) because we want

to allow, if necessary, for a spacewise-dependent thermal conductivity k(x) > 0 material, i.e. we

can replace the Laplacian term ∆u in (2.1) by the term ∇ · (k(x)∇u).
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To this end, we suppose that Ω is a polyhedral domain and u0 ∈ H1
0 (Ω). We note that when

u0 ∈ H1
0 (Ω), the solution u ∈W (0, T ) to (2.1)–(2.3) belongs to L2(0, T ;H2(Ω))∩H1(0, T ;L2(Ω)) ↪→

C(0, T ;H1(Ω)), see [2, Theorem 5, pp. 360–361].

We triangulate Ω into a shape regular quasi-uniform mesh Th of simplicial elements and then define

the piecewise linear finite element space Vh ⊂ H1
0 (Ω) by

Vh = {vh : vh ∈ C(Ω), vh|K ∈ P1(K), ∀K ∈ Th}, (4.1)

where P1(K) is the space of linear polynomials on the element K. To fully discretize (2.1)–(2.3)

we introduce a uniform partition of the interval [0, T ] : 0 = t0 < t1 < · · · < tN = T , where

τ = T/N is the temporal step size and tk = kτ for k = 0, 1, . . . , N , are the partition points.

For a sequence {wk}, k = 0, 1, . . . , N , denote by w̄h,τ its piecewise constant interpolant, i.e., for

t ∈ (tk−1, tk), k = 1, . . . , N , w̄ = wk. We denote this space by Wτ .

Now we discretize problem (2.1)–(2.3) by the Crank-Nicolson-FEM as follows: Find ukh ∈ Vh for

k = 1, 2, ..., N such that⟨
ukh − uk−1

h

τ
, v

⟩
L2(Ω)

+

⟨
∇
ukh + uk−1

h

2
,∇v

⟩
L2(Ω)

=

⟨
F (·, tk) + F (·, tk−1)

2
, v

⟩
L2(Ω)

,

∀v ∈ Vh, k = 1, ..., N, (4.2)

< u0h, v >L2(Ω) =< u0, v >L2(Ω), ∀v ∈ Vh. (4.3)

Denote by ūh,τ the piecewise constant interpolant of {ukh}. It is standard that (see e.g., [13])

∥ūh,τ − u∥L2(Q) ≤ c(τ + h2).

Suppose that h and g are approximately given by hδ1 ∈ L2(0, T ) and gδ2 ∈ L2(Ω), respectively:

∥h− hδ1∥L2(0,T ) ≤ δ1, ∥g − gδ2∥L2(Ω) ≤ δ2. (4.4)

If δ1 = δ2, we simply denote them by δ.

The discretized version of (3.1) has the form

Jh,τ,α(fh,τ ) =
1

2
∥l1ūh,τ (fh,τ )− hδ1∥2L2(0,T ) +

1

2
∥l2ūh,τ (fh,τ )− gδ2∥2L2(Ω)

+
1

2

(∫
Ω
ω1(x)f1h(x)dx− C0

)2
+
α1

2
∥f1h∥2L2(Ω) +

α2

2
∥f̄2τ∥2L2(0,T ). (4.5)

We shall minimize this functional over Vh ×Wτ . It is easily seen that this optimization problem

has a unique solution (f∗1h, f
∗
2τ ) if α1, α2 > 0. Furthermore, if α1 = α2 := α > 0, δ1 = δ2 := δ ≥ 0,

denoting the solution of the minimizing the functional (3.1) by (f∗1 , f
∗
2 ), we have

∥f∗1 − f∗1h∥L2(Ω) + ∥f∗2 − f∗2τ∥L2(0,T ) ≤ c
1

α
(τ + h + δ) (4.6)

for some positive constant c . The proof of this inequality directly follows from [9] or [6], therefore,

we do not present it here.

At this stage, it is useful and timely to give the algorithmic implementation of the iterative CGM,

[5], which runs as follows.

1. Initialization
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1.1 Choose an initial guess f0 = (f0,1, f0,2) ∈ L2(Ω)× L2(0, T ).

1.2 Calculate the residual

r̃0 =

 r̃0,1(t)r̃0,2(x)

r̃0,3

 =

l1u− hδ1
l2u− gδ2
l3f − C0

 =



∫
Ω

ω1(x)u
0(x, t)dx− hδ1(t)

T∫
0

ω2(t)u
0(x, t)dt− gδ2(x)∫

Ω

ω1(x)f1(x)dx− C0


by solving 

u0t = ∆u0 + g0(x, t) + f0,1(x)g1(t) + f0,2(t)g2(x), (x, t) ∈ Q,

u0|t=0 = u0(x), x ∈ Ω,

u0|S = uS .

1.3 Calculate Jα(f0) =
1
2∥r̃0∥

2 + α1
2 ∥f0,1∥2 + α2

2 ∥f0,2∥2,
where

∥r̃0∥2 = ∥r̃0,1∥2L2(0,T ) + ∥r̃0,2∥2L2(Ω) + r̃20,3.

1.4 Calculate the gradient r0

r0 =

(
r0,1(x)

r0,2(t)

)
=


T∫
0

g1(t)ψ
0(x, t)dt+ α1f0,1(x) +

(∫
Ω

ω1(ξ)f0,1(ξ)dξ − C0

)
ω1(x)∫

Ω

g2(x)ψ
0(x, t)dx+ α2f0,2(t)


by solving 

−ψ0
t = ∆ψ0 + ω1(x)r̃0,1(t) + ω2(t)r̃0,2(x), (x, t) ∈ Q,

ψ0(x, T ) = 0, x ∈ Ω,

ψ0|S = 0.

1.5 Define d0 = −r0 =

(
d0,1(x)

d0,2(t)

)
.

2. For n = 0, 1, 2, ...

2.1 Solve 
unt = ∆un + dn,1(x)g1(t) + dn,2(t)g2(x), (x, t) ∈ Q,

un|t=0 = 0, x ∈ Ω,

un|S = 0

and calculate A0dn =



∫
Ω

ω1(x)u
n(x, t)dx

T∫
0

ω2(t)u
n(x, t)dt∫

Ω

ω1(x)f1(x)dx

 :=

A0,1dn
A0,2dn
A0,3dn

. Then calculate

βn = −
(A0,3dn)r̃n,3 + ⟨dn,1, rn,1⟩L2(Ω) + ⟨dn,2, rn,2⟩L2(0,T )

∥A0dn∥2 + α1∥dn,1∥2L2(Ω)
+ α2∥dn,2∥2L2(0,T )

,
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where

∥A0dn∥2 = ∥A0,1dn∥2L2(0,T ) + ∥A0,2dn∥2L2(Ω) + |A0,3dn|2.

2.2 Update fn+1 = fn + βndn.

2.3 Calculate the residual r̃n+1 = r̃n + βnA0dn.

2.4 Calculate the gradient rn+1

rn+1 =

(
rn+1,1(x)

rn+1,2(t)

)
=


T∫
0

g1(t)ψ
n+1(x, t)dt+ α1fn+1,1(x) +

(∫
Ω

ω1(ξ)fn+1,1(ξ)dξ − C0

)
ω1(x)∫

Ω

g2(x)ψ
n+1(x, t)dx+ α2fn+1,2(t)


by solving 

−ψn+1
t = ∆ψn+1 + ω1(x)r̃n+1,1(t) + ω2(t)r̃n+1,2(x), (x, t) ∈ Q,

ψn+1(x, T ) = 0, x ∈ Ω,

ψn+1|S = 0.

2.5 Calculate Jα(fn+1) =
1
2∥r̃n+1∥2 + α1

2 ∥fn+1,1∥2L2(0,T ) +
α2
2 ∥fn+1,2∥2L2(Ω), where

∥r̃n∥2 = ∥r̃n,1∥2L2(0,T ) + ∥r̃n,2∥2L2(Ω) + r̃2n,3.

2.6 Calculate γn = ∥rn+1∥2
∥rn∥2 .

2.7 Update dn+1 = −rn+1 + γndn.

For α = 0, we stop the iteration procedure if ∥r̃n∥ ≤ σ
√
δ21 + δ22 , where σ = 1.1. It is well-known

that such a stopping criterion has a regularization effect, [15, 16].

5 Numerical Examples and Discussion

An important feature of our analysis is that is valid in any dimension. Consequently, we illustrate

typical numerical results for two-dimensional time-dependent solution domains. For the following

three numerical examples, we choose T = 1,Ω = (0, 1)× (0, 1),

u(x, t) = 1− ex
2
1+x2 cos(2t), ω1(x) = 1, ω2(t) = 1,

ut −∆u = 2ex
2
1+x2 sin(2t) + (3 + 4x21)e

x2
1+x2 cos(2t) = g0(x, t) + f1(x)g1(t) + f2(t)g2(x),

g1(t) = 2 + sin(2t), g2(x) = (3 + 4x21)e
x2
1+x2 ,

where x = (x1, x2). This generates the input data (2.2), (2.3), (2.6), and (2.18) given by

u0(x) = 1− ex
2
1+x2 , x ∈ Ω,

uS(x, t) = 1− ex
2
1+x2 cos(2t), (x, t) ∈ S,

h(t) = 1 +

√
π

2
(1− e) cos(2t)erfi(1), t ∈ (0, 1),

g(x) = 1− ex
2
1+x2 sin(2)/2, x ∈ Ω,
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δ1 = δ2 n∗ ∥f1 − f1n∗∥L2(Ω) ∥f2 − f2n∗∥L2(0,T ) J0(fn∗)

5× 10−4 101 0.0390 0.0122 3.01E-7

10−3 56 0.0432 0.0160 1.14E-6

10−2 9 0.4887 0.0415 1.18E-4

Table 1: The results for Example 1 with noise.

where erfi is the imaginary error function. One can easily check that the conditions of Theorem

2.1 are satisfied such the the local existence and uniqueness of a classical solution are ensured.

The FEM is applied, as described in section 4, using the time step size τ = T/N = 1/N with

N = 32 and the space mesh composed of M = 4096 finite elements. The initial guess for the

initialization of the CGM was taken as f0 = (f01(x), f02(t)) = (0, 0). In the case of no noise, we

select some values for the regularization parameters α1 and α2 and run the CGM until convergence

is achieved. In fact, for no noise, in order to illustrate typical results we present them as those

obtained after 500 iterations which was found sufficiently large to capture all the essential features

of the numerical solution and do not increase the computational time beyond purpose. In the case

of noisy data we take α1 = α2 = 0 and stop the CGM at the first iteration number n∗ for which

the stopping criterion

∥r̃n∗∥ ≤ 1.1
√
δ21 + δ22 (5.1)

is satisfied. We test the stability of the numerical solution for various amounts of noise δ1 = δ2 ∈
{5× 10−4, 10−3, 10−2}.

Example 1. The exact solution is

f1(x) = sin(2πx1) sin(3πx2), f2(t) = sin(2πt). (5.2)

Then C0 = 0. In this example, both functions f1 and f2 are smooth.
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Figure 1: The objective functions without noise (left) and with noise (right) for Example 1.

Example 2. The exact solution is

f1(x) = sin(2πx1) sin(3πx2), f2(t) =

{
1 if t ∈ [1/3, 2/3],

0 otherwise.
. (5.3)
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2.

δ1 = δ2 n∗ ∥f1 − f1n∗∥L2(Ω) ∥f2 − f2n∗∥L2(0,T ) J0(fn∗)

5× 10−4 96 0.0687 0.0831 2.9E-7

10−3 59 0.0702 0.0848 1.1E-6

10−2 12 0.4870 0.1066 1.10E-4

Table 2: The results for Example 2 with noise.
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Figure 9: The approximate solutions f1h(x) without noise obtained with α1 = α2 = 0 (left) and

α1 = α2 = 5× 10−4 (right) for Example 2.
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Figure 10: The approximate solutions f1h(x) with noise: δ1 = δ2 = 5 × 10−4 (left) and δ1 = δ2 =

10−3 (right) for Example 2.
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Figure 12: The approximate solutions f2τ (t) without noise (left) and with noise (right) for Example

2.

Then C0 = 0. In this example, the function f1 is smooth, but f2 is discontinuous.

Example 3. The exact solution is

f1(x) =

{
1 if x ∈ [0.3, 0.7]2,

0 otherwise,
f2(t) =

{
1 if t ∈ [1/3, 2/3],

0 otherwise.
(5.4)

Then C0 = 0.16. In this example, both functions f1 and f2 are discontinuous.

5.1 Input Data Without Noise

We consider first the case of exact data, i.e. the input data (2.6) and (2.18) is without noise

δ1 = δ2 = 0.

The objective function (3.1) is plotted, as a function of the number of iterations, in the left hand

sides of Figures 1, 7 and 13 for Examples 1–3, respectively. Both cases of with, i.e. α ̸= 0, and

without, i.e. α = 0, regularization terms in (3.1) are illustrated. First, from these figures it can be

seen that for α ̸= 0, the objective function Jα rapidly decreases and settles at a stationary value

in about 20 iterations, showing that convergence has been achieved. Secondly, especially from the

left hand side of Figure 1 it can be seen that for α = 0 the objective function J0 rapidly decreases

for the first 100 iterations after which it starts increasing showing a semi-convergence phenomenon.

This is expected since although we have no noisy random errors in the input data (2.6) and (2.18),

because we input the analytical values for g(x) and h(t), there will still exist a numerical ”noise”

generated by the use of a numerical discretization method with a fixed finite mesh size.

The behaviour of the errors ∥f1 − f1h∥L2(Ω) and ∥f2 − f2τ∥L2(0,T ), as functions of the number

of iterations, are shown in Figures 2, 8 and the right-hand side of Figures 13 for Examples 1–3,

respectively. From these figures it can be seen that for α = 0, after about 100 iterations the

errors ∥f1 − f1h∥L2(Ω) decrease, whilst the errors ∥f2 − f2τ∥L2(0,T ) increase. On the other hand, we

can reverse this behaviour by including some regularization. This reveals an interesting balancing

phenomenon happening in the sum of the sources in (2.1), namely, increasing the accuracy in f1(x)

results in decreasing the accuracy in f2(t) and vice versa.
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The numerical solutions f1h(x1, x2) are shown in comparison with the exact solutions f(x1, x2) in

Figures 3, 9 and 14 for Examples 1–3, respectively. From these figures it can be seen that there

is good agreement between the exact solutions and the numerical solutions obtained with α = 0.

Regularization with α ̸= 0 does not seem to improve further the accuracy of the numerical solutions

f1h(x1, x2). The above conclusion is more clearly illustrated by taking a slice through the plane

x2 = 0.5 and comparing in the left-hand sides of Figures 5, 11 and 16 the numerical solutions

f1h(x1, 0.5) with the exact solutions f1(x1, 0.5) for Examples 1–3, respectively. Finally, the left-

hand sides of Figures 6, 12 and 17 show the numerical solutions f2τ in comparison with the exact

solutions f2(t) for Examples 1–3, respectively. From these figures it can be seen that the numerical

solution f2τ (t) obtained with no regularization, i.e. α = 0, is slightly oscillatory, but this instability

can be alleviated by the inclusion of some small regularization with α ̸= 0. Finally, we wish to

mention that in the case of input data without noise the choice of α ̸= 0 is irrelevant since most of

the results are stable and accurate as obtained using α = 0, and in any case, the stability of the

numerical solutions should be tested for noisy data, as described in the next subsection.

5.2 Input Data With Noise

We next consider the case of noise data, i.e. the input data (2.6) and (2.18) is contaminated by some

random noise δ1 = δ2 ∈ {5× 10−4, 10−3, 10−2} which is introduced in order to test the stability of

the numerical solution, as well as to model the errors which are inherently present in any practical

measurement. In this case, we can take α = 0, but then we will stop the CGM according to the

stopping rule (5.1).

The stopping iteration numbers n∗, the errors ∥f1−f1n∗∥L2(Ω) and ∥f2−fn∗∥L2(0,T ) and the values

of the objective function J0(fn∗) are given in Tables 1–3 for Examples 1–3, respectively. The

decreasing monotonic behaviour of J0(fn), as a function of the number of iterations n, is also

illustrated in the right-hand sides of Figures 1 and 7 for Examples 1 and 2, respectively. From

these tables and figures it can be seen, as expected, that the stopping iteration number n∗(δ) is a

decreasing function of the amount of noise δ. Also, the numerical results become more accurate

and the objective function J0 decreases as the amount of noise δ decreases. Finally, we observe

that the values of n∗ are relatively small which show that the CGM is a much faster regularizing

algorithm compared to other much slower iterative algorithms such as the Landweber method for

example.

For δ1 = δ2 ∈ {5× 10−4, 10−3} noise, the numerical solutions f1h(x1, x2) are shown in comparison

with the exact solutions f(x1, x2) in Figures 4, 10 and 15 for Examples 1–3, respectively. From

these figures it can be seen that the numerical solutions are stable and reasonably accurate. The

numerical results for a larger amount of noise such as δ1 = δ2 = 10−2 are not illustrated in these

figures because the numerical solutions obtained in this case were oversmoothed by the discrepancy

principle (5.1). All these conclusions are further clearly illustrated in the right-hand side of Figures

5, 11 and 16 for Examples 1–3, respectively.

Finally, the results presented in the right-hand sides of Figures 6, 12 and 17 for Examples 1–3,

respectively, show that the numerical solutions f2τ (t) are stable and reasonably accurate predictions

of the exact solutions f2(t) for all the amounts of noise considered. We also observe that there is no

significant dependence (on t) of the numerical results as t increases, vis-a-vis of the local uniqueness

solvability result of Theorem 2.1
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δ1 = δ2 n∗ ∥f1 − f1n∗∥L2(Ω) ∥f2 − f2n∗∥L2(0,T ) J0(fn∗)

5× 10−4 123 0.1586 0.0829 2.98E-7

10−3 60 0.1760 0.0848 1.18E-6

10−2 13 0.2966 0.1133 1.06E-4

Table 3: The results for Example 3 with noise.
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Figure 13: The objective functions (left) and the L2-errors (right) for Example 3 without noise.
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Figure 14: The exact solution f1(x) (left) and the approximate solution f1h(x) without noise

obtained with α1 = α2 = 0 (right) for Example 3.
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Figure 15: The approximate solutions f1h(x) with noise δ1 = δ2 = 5×10−4 (left) and δ1 = δ2 = 10−3

(right) for Example 3.
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Figure 16: The approximate solutions f1h(x1, 0.5) without noise (left) and with noise (right) for

Example 3.
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3.
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6 Conclusions

A novel inverse heat source problem with integral observations has been investigated. The local

existence and uniqueness of a classical solution have been established and furthermore, a variational

formulation has been proposed. The numerical method for obtaining a stable solution was based

on the FEM combined with the CGM. The numerical results demonstrate that accurate and stable

numerical solutions can be obtained. There seems to be a balance between predicting simultane-

ously the space and time-dependent components of the additive source. Moreover, as expected, the

reconstruction of the multi-dimensional space component is more difficult than the single-dimension

time component of the source. Future work may consist into developing the analysis of this study

for recovering a heat source which separates as the product, rather than sum, of two unknown

functions; one which depends on space and one which depends on time. However, in this situation

the inverse problem becomes nonlinear and the details appear more complicated. All the above

programme builds upon ultimately attacking the challenging inverse problem of retrieving a heat

source which depends on both space and time variables in a general way.
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