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ABSTRACT

Here we show that the Rns regulator of Escherichia coli dimerises in vivo and in
vitro. Furthermore, we demonstrate that Rns forms aggegrates in vitro and
describe a methodology to ameliorate aggregation thus permitting the analysis of

Rns by cross-linking.
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1. INTRODUCTION

The Rns protein of Enterotoxigenic Escherichia coli positively regulates the
expression of CS1 fimbriae, which are required for host cell adhesion. Rns is a
member of the AraC-like family of regulators [1, 2], a defining feature of which is
a 100 amino acid region of homology that contains two predicted helix-turn-helix
(HTH) motifs [1]. Insolubility is also a characteristic of these proteins, therefore
only a fraction have been experimentally characterised. [1].

AraC-like proteins are functionally active as monomers or dimers. Family
members MarA and Rob are monomers while several others that are involved in
regulating the metabolism of sugars are active as dimers [2]. The AraC protein
itself functions as a dimer in solution and binds to DNA as a dimer [3].

It is not yet known whether the AraC family members that regulate virulence
act primarily as monomers or oligomers [2]. Some, such as ToxT [7] and RegA

[8] have been found to dimerise, while a recent report suggested that it was not
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possible to detect dimerization of the Rns N-terminal domain in vivo or of full-
length Rns in vitro [6]. Amongst the Rns-related regulators it has been suggested
that VirF of S. flexneri is a dimer [4] and PerA is a monomer [5]. However, aside
from these examples, progress in the biochemical analysis of AraC-like virulence
regulators has been hampered due to their insolubility and instability in vitro.

Here we show that Rns can dimerise in vivo and in vitro. Furthermore we
show that Rns is prone to aggregation. In response to this we have defined the

appropriate conditions to examine the protein:protein interactions of Rns in vitro.
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2. MATERIALS AND METHODS

2.1 In vitro cross-linking. In vitro cross-linking was carried out with purified
MBP-fusion proteins. The zero-length chemical cross-linker 1-ethyl-3-(3'-
dimethylaminopropyl) carbodiimide (EDC) and the catalyst N-hydroxy-
succinimide (NHS) were added to 1.25 ug of protein. The reaction volume was
made up to 20 ul with 7 mM MES buffer (pH 6). The final concentrations of EDC
and NHS were 50 mM and 200 mM, respectively [9]. The reaction mixture was
incubated at room temperature for 60 min. The reaction was stopped by the
addition of an equal volume of Laemmli buffer. The samples were heated at

100°C for 5 min prior to Western immunoblotting.

2.2 In vitro cross-linking and snap denaturation. Alternatively, and to prevent
protein aggregation, cross-linking reactions were stopped by treating the samples
with urea using a modification of the method of Soulié et al. [10, 11]. Briefly, a
master mix was prepared in which 15 ul (per sample) of a mixture containing
6.7% (w/v) SDS and 4.6 M p-mercaptoethanol was added to 12.5 mg of
crystalline ultra-pure urea. The mixture was then vortexed for 2 min. 22.5 ul of
this master mix was added to each cross-linking reaction and the samples were
heated at 100°C for 70 s. Crucially, the entire process from dissolving the urea
until loading the gel was <10 min duration.

2.3 Gel filtration chromatography. MBP-Rns was passed through a Superdex
200 10/30 column and eluted with PBS at a flow rate of 0.4 ml/min. The protein
content of each fraction was measured at 280,,,. The column was calibrated with

six high and low molecular weight standards ranging from 29 to 669 kDa to
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obtain a calibration graph for determination of the molecular weight of the eluted
proteins. Eluted fractions were analysed by immunoblotting with an anti-Rns
sera.

2.4 Construction of a LexA-Rns fusion. The rns ORF was amplified by PCR
from plasmid pSS2192 [12]. The PCR product was digested and inserted into
pSR660 [13] resulting in the plasmid pRns660. Repression of a chromosomal
sulA::lacZ fusion was measured in E. coli SU101 by B-galactosidase assay using

the method of Miller [14].
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3. RESULTS

3.1 Cross-linking of MBP-Rns in vitro. The Rns protein has previously been
expressed as a maltose-binding protein (MBP) fusion, which is functional both in
vivo and in vitro [12]. MBP is a monomer [15], and was previously shown not to
interfere with cross-linking of an MBP fusion of XyIS, an AraC family member
[16]. MBP-Rns protein was used in NHS-catalysed EDC cross-linking reactions in
vitro. The purified proteins MBP-paramyosinASal and MBP (NEB) were included
as positive and negative oligomerization controls, respectively. After cross-
linking, one set of protein samples was denatured using the standard method of
heating at 100°C for 5 min in the presence of Laemmli buffer. Another set of
samples was denatured using a modified urea-based method which was
demonstrated to reduce protein aggregation [10, 11]. When the samples were
denatured by heating in Laemmli buffer, cross-linking was found to result in a
reduced amount of the MBP monomer, the detection of an oligomeric form of
MBP-paramyosinASal and a lack of detection of any form of MBP-Rns (Fig. 1 A).
Using the urea-based denaturation procedure, however, detection of each of the
proteins after cross-linking was much improved (Fig. 1 B). Under these conditions
the EDC-NHS treatment was found to have no effect on monomeric MBP but to
result in the appearance of bands corresponding to oligomers of MBP-
paramyosinASal. For cross-linked samples of MBP-Rns, in addition to the band
corresponding to monomeric protein, a species migrating with an apparent
molecular weight more than two-fold greater than that of the monomer was

present. This species was reliably detected after EDC-NHS cross-linking of MBP-
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Rns and is likely to be a dimer of the fusion protein. Therefore these cross-linking
studies revealed that MBP-Rns is capable of dimerizing.

Further support for this notion was gained by gel filtration studies of affinity-
purified MBP-Rns. When this preparation was subjected to gel filtration MBP-Rns
eluted as a single peak with a molecular mass of 134 kDa (confirmed by
immunoblotting of fractions with anti-Rns antiserum) (results not shown). This
does not correlate exactly with the molecular mass predicted for a dimer of MBP-
Rns (~146 kDa). However, as only perfectly globular proteins migrate precisely
according to size during gel filtration it was still likely that this represented a

dimeric form of MBP-Rns.

3.2 A LexA-based genetic system indicates that Rns dimerises in vivo

The LexA DNA-binding domain (DBD) alone can recognise the sulA
operator, but the repressor is functional only as a dimer [13]. Thus the ability of a
protein to dimerise can be evaluated by determining whether a fusion of the
protein and the LexA DBD is capable of repressing transcription of a
chromosomal sulA::lacZ fusion in the E. coli reporter strain SU101. The vector
pSR660, which encodes the DBD of LexA alone, was used to construct pRns660,
a plasmid encoding a fusion of Rns and the LexA DBD.

Proteins corresponding to the LexA DBD alone and the LexA DBD-Rns
fusion were detected in induced cultures of E. colilpSR660 and E. coli/pRns660
respectively (Fig. 2A), thus confirming that the fusion protein was expressed.
Furthermore, this protein fusion retained the transcriptional activation

characteristics of Rns, as introduction of pRns660 into E. coli bearing a CS1
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promoter-gfp fusion (pCoo-GFP) [12] resulted in activation of that fusion (result
not shown).

As the LexA DBD-Rns fusion had been shown to be both
expressed and active, it was possible to assess whether it formed homodimers.
The p660AraC plasmid encodes a LexA fusion to the known homodimer AraC
and therefore serves as a positive control. The reporter strain SU101
constitutively transcribes lacZ from the strong sulA promoter. The LexA DBD-
AraC fusion and the LexA DBD-Rns fusion were found to repress f-
galactosidase activity by 97%, and 67% with strong statistical significance
respectively, compared to E. coli SU101 with the LexA DBD alone (Fig. 2B).

Therefore, this implies that the Rns protein homodimerises in vivo.

4. DISCUSSION
4.2 Rns dimerises in vitro

MBP-Rns was subjected to NHS-catalysed EDC cross-linking reactions
after which it was denatured using a urea-based treatment and then analysed by
immunoblotting. Under these conditions protein complexes corresponding in size
to dimers of MBP-Rns were consistently detected. This differs from the findings
of Basturea et al. who reported that MBP-Rns dimers were not observed
following SDS-PAGE analysis of denatured samples of MBP-Rns that had been
cross-linked with glutaraldehyde [6]. However, as the work performed herein
illustrates, the denaturation method is significant as it can affect the results of

cross-linking. Basturea et al. do state that the mobility of MBP-Rns was reduced
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following cross-linking. Indeed the amount of monomeric MBP-Rns present
decreased significantly as the concentration of cross-linker increased [6].
Intriguingly, glutaraldehyde cross-linking of Rns resulted in the presence of large
complexes that did not enter the gel suggesting aggregation of Rns protein [6].

Aggregation is a general characteristic of many AraC-like proteins. AraC
itself, RhaS, ToxT and XylS have been reported to aggregate and this has
impeded the analysis of these proteins [17-20]. There has been conjecture that
AraC may be incompletely folded prior to binding to DNA; thus the exposure of
an excessive number of hydrophobic might explain its propensity to aggregate
[17]. The tendency of Rns to aggregate appeared to increase when the protein
was heated in the presence of Laemmli buffer, the standard method of
denaturation used prior to SDS-PAGE. Thermal denaturation can cause proteins
to unfold and expose buried hydrophobic patches. Aggregation then occurs as a
consequence of intermolecular interactions between these hydrophobic protein
surfaces [21]. Hydrophobic interactions are abolished in the presence of high
concentrations of urea. Therefore, snap-denaturation of MBP-Rns enabled the
observation of protein cross-linking in the absence of aggregation.

4.2 Rns dimerises in vivo.

The finding that transcription from the sulA promoter was repressed by a
fusion of the LexA DBD to full length Rns inferred that Rns is capable of
dimerising in vivo. This LexA-based gene fusion system has previously been
used to assess the dimerization of several AraC family members [5, 16, 18, 22,

23]. It was recently reported that dimerization of Rns could not be demonstrated
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using an alternative gene fusion system based on the A phage repressor, cl [6].
In that report, a fusion of the N-terminal 154 amino acids (of 265 amino acids)
was used and found to be unable to restore repressor function to the cl DBD [6].
The findings that a fusion of full length Rns to the LexA DBD is functional, and
therefore a dimer, while a fusion of Rns (1-154) to the cl DBD is not, suggests
that the dimerization domain of Rns reside within residues 155-265.

4.3 Conclusion.

Here we show that Rns is capable of forming dimers in vitro and in vivo. The use
of cross-linking followed by snap denaturation may be useful in the analysis of

other AraC-like proteins that have been heretofore intractable to this procedure.
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Fig. 1
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Fig. 2
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FIGURE LEGENDS

Fig. 1 Cross-linking of MBP fusions in vitro. Western immunoblot analysis
(using anti-MBP antiserum) of MBP or MBP fusions, as indicated at the top of
each panel, incubated with (+) or without (-) EDC-NHS cross-linking reagents.
Prior to electrophoresis the proteins were denatured either by heating at 100°C
for 5 min in the presence of Laemmli buffer (A) or by snap denaturation (B) as
described in section 2.2. Molecular mass markers are indicated. The positions of
bands corresponding to monomeric and potentially dimeric MBP-Rns are

indicated with an asterix or a hash sign, respectively

Fig. 2 Analysis of the LexA DBD-Rns fusion. (A) Western immunoblot analysis
(with an anti-LexA) of lysates of induced cultures of E. coli pPSR660 and pRns660
demonstrating that the LexA DBD and LexA DBD-Rns fusion (respectively) are
expressed. (B) Regulation of the sulA promoter by LexA DBD or LexA DBD
fusions. p-galactosidase activities of E. coli SU101 carrying LexA, LexA DBD-
AraC) or LexA DBD-Rns were measured. Measurements were performed
independently three times; a representative data set is shown. Statistical

significance is indicated by **, where P < 0.005.
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