The
University
o Of

= -n,‘-_“ u}:_.'!?- Bhe&i{“:ld.

This is a repository copy of The Use of an Object Oriented Technique for Fault Diagnosis
in Nuclear Reactors.

White Rose Research Online URL for this paper:
http://eprints.whiterose.ac.uk/78466/

Monograph:

Jalel, N.A. and Nicholson, H. (1990) The Use of an Object Oriented Technique for Fault
Diagnosis in Nuclear Reactors. Research Report. Acse Report 414 . Dept of Automatic
Control and System Engineering. University of Sheffield

Reuse

Unless indicated otherwise, fulltext items are protected by copyright with all rights reserved. The copyright
exception in section 29 of the Copyright, Designs and Patents Act 1988 allows the making of a single copy
solely for the purpose of non-commercial research or private study within the limits of fair dealing. The
publisher or other rights-holder may allow further reproduction and re-use of this version - refer to the White
Rose Research Online record for this item. Where records identify the publisher as the copyright holder,
users can verify any specific terms of use on the publisher’s website.

Takedown
If you consider content in White Rose Research Online to be in breach of UK law, please notify us by
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

\ White Rose o
| university consortium eprints@whiterose.ac.uk
WA Universiies of Leeds, Sheffield & York https://eprints.whiterose.ac.uk/



mailto:eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

7]
i
e,
A
-
(A
S

The Use of an Object Oriented Technique for
Fault Diagnosis in Nuclear Reactors

by

N. A. Jalel and H. Nicholson

Department of Control Engineering
University of Sheffield
Mappin Street
Sheffield S1 3JD

Research Report No. 414
November 1990



1 Abstract

In recent years there has been an increased growth of interest in object oriented pro-
gramming which is a new approach to software construction having wide application.
The possibility of using object oriented programming to build a software package
that will assist the nuclear reactor operator in diagnosing any faults or alarms in
the Loss Of Fluid Test (LOFT), a small scale pressurised water reactor, reactor is

investigated in this work.

2 Introduction

Object oriented programming is a powerful programming concept that is used widely
in expert system packages, graphics, systems programming, database management
systems and for many other demanding applications, including the analysis of fault
trees and overall system reliability [17]. |

Smalltalk-80 is an object oriented language used to build the Troubleshoot-
ing Assistant System Prototype which is an expert system developed to provide
technicians with advice and assistance in repairing faults in a steam generator [2].

Object oriented programming can be used for the simulation of continuous or
discrete processes since it is based on a hierarchical classification of procedures and
data that allows modeling of the systems in terms of objects and actions on objects.
Flavors is an object oriented language used to simulate a nuclear reactor [3].

An interesting application of object oriented programming has been the build-
ing of a fault diagnosis expert system for a personal computer. The process of diag-
nosis is divided into fault classifications to determine which parts of causal knowledge
are valid and causal diagnosis where the selected parts are used to identify the cause
of the fault [4].

A survey of some of the applications which highlight the use of the Smalltalk
language is given by Alexander [1]. The applications include, symbolic algebra
knowledge collection and expert system shells, Prolog interfaces and integrated cir-
cuit design.

Some of the applications of object oriented programming involve implementing
a general window system which includes menus, check boxes and bottoms, building
a computer assisted navigation system, developing a computer aided design system
and knowledge base and expert system applications [6].

Some work has been done to link object oriented programming and the theory

of Petri nets. It involves modeling, simulating and the evaluation of Petri nets

T

200137001

I




using an object oriented style of programming. The applications include designing a
system within the Smalltalk environment which transforms programs to Petri nets
and subsequently checks the nets for concurrence and invariants. The Petri net
environment implemented in an object oriented programming language has been
used for process control and for building distributed systems [7,8,9,10].

Object oriented programming incorporates a powerful set of concepts that can
be applied in any field in the same way as structured programming. There are
some applications for which object oriented programming particularly stands out,
including exploratory programming environments where the program development is
carried out by making modification to what already exists, frameworks and toolkits,
user interface, for building integrated systems and in the field of artificial intelligence
and knowledge representation [11].

In this paper, the object oriented programming concept is illustrated, a brief
description of Smalltalk which is used to build the system is given, a general de-
scription of the system is.explained and finally the system performance is examined

using a hypothetical accident simulated in the LOFT reactor model.

3 Object Oriented Programming

The main idea behind the development of object oriented programming stemmed
from the Smalltalk project at the Xerox Palo Alto Research Centre (PARC) in
the early 1970’s. The output of the research is the development and release of the
programming environment Smalltalk-80. In the Smalltalk project the technical influ-
ences were from the SIMULA-67 language with its class mechanism and inheritance
and the LISP language with its dynamic binding and interactive environment.

There are two groups for object oriented language, the Smalltalk group which
includes Smalltalk-80 and Smalltalk/V which run on an IBM PC, while the other
group 1s the C group which involves C++ and objective C. In addition, a number
of other object oriented languages have recently become available such as Loops,
Flavors, and Common LISP which are LISP-based systems. There are also Eiffle,
Object Logo and Object Pascal.

Object oriented programming can be defined generally as a new way of thinking
about data, procedures and the relationships among them and emphasises reusability
and sharing. It can be implemented in any language in which it’s concepts are
provided using different constructs and to differing degrees [12,13,14,15,5,16].

[R]



3.1 Elements of Object Oriented Programming

A language must exhibit four characteristics to support object oriented program-

ming:

1. Encapsulation
This is the ability to pack a structure so that it is accessed in terms of its
properties rather than its implementation, and accessed in a way that is care-
fully controlled and defined. It simply means that the two essential elements
of processing, data and code, are packaged together inseparably in a capsule
called an object. '

2. Polymorphism
Polymorphism is a unique characteristic of object oriented programming where
different objects respond to the same message with their own unique behaviour.
It is the ability to simplify code that deals uniformly with many different
structures. The program is permitted to refer to objects of more than one
class, and operations are permitted to have different realizations in different

classes.

3. Inheritance
Inheritance is the concept that is used to define objects that are almost like
other objects. This technique is important because it is possible to declare that
certain specifications are shared by multiple parts of a program. Inheritance
allows us to reuse the code while knowing only its properties and without
altering it. It enables programmers to create classes and, therefore, objects
that are specializations of other objects. Creating a specialization of an existing
class is called subclassing where the subclass inherits the variables and methods

from it’s superclass.

4. Storage management
The new style of programming encourages the creation of internal structures
corresponding to things in the problem domain. Object oriented languages
provide aspects for the structured allocation and release of memory to do this

safely and efficiently.

3.2 Mechanisms of Object Oriented Languages

The key concepts for object oriented programming techniques are:



1.

Objects

An object is central to the object oriented program and it represents something,
often from the application domain such as a car or a computer. Objects are
analogous to data structures such as numbers, arrays and records in other
conventional languages. They combine the properties of procedures and data
since they perform computations and save the local state. The data within
the object can be accessed only by the code surrounding the object where the

code is private in that it can’t be modified by other objects.

. Messages

The action in object oriented programming comes from sending messages be-
tween objects. It is a request for an object to carry out one of its operations
and is similar to function calls in conventional language. A message consists
of three parts, a receiver object which is the object to which the message was
sent and determines how to carry out the requested operation, a selector which
tells the object what to do with the message and zero or more arguments. For

example consider in Smalltalk the simple message
‘T hope 1 will get my PhD’ size

After evaluation the result should be the integer 24, however in this message
the string is the receiver object, the message selector 1is size and there are no

arguments.

Methods

When an object receives a message, it must decide what to do and who will
do it. Methods can be defined as the code associated with the object that
takes care of handling the message, or in other words it is the algorithm that
determines an object’s behaviour and performance. Methods are like function
definitions in other conventional languages and are evaluated with an object as
an output result when a message is sent to an object. The following example

shows that the object sent the message “at: put:”
‘pass the exam’ at:1 put:P [Pass the exam)]

In the example, the object recognized that it was a string and interpreted the

message that a “P” should be placed at the first character position.

Classes

Objects fall naturally into classes and subclasses based on their similarities,

4



thus a class describes the implementation of a set of objects that all represent
the same kind of system component. They define the behaviour of similar
objects by specifying the variables they contain and the methods available for
responding to messages sent to them. In most object oriented programming
environments there is a hierarchy of classes and subclasses where every object
is an instance or a member of a class. Thus for example in Smalltalk #(1 2 3)

is instance of class Array, and all objects know which class they belong to.

4 Smalltalk

Smalltalk is a very pure object oriented language, and the concept of objects pene-
trates the whole Smalltalk system. It is a graphical interactive programming envi-
ronment which provides many tools to aid the user to develop the programming code
using windows, pop-up menus and a mouse in order to simplify computer usage.

Smalltalk is a tool for enhancing communication and creativity, encouraging
rapid prototyping and the exploratory development of applications. It is a program-
ming language for developing solutions to both simple and complex problems and has
been used for simulation, expert systems, computerized typesetting and integrated
programming environments.

Using Smalltalk, the program is built piece by piece and the result is seen
immediately since with Smalltalk it is possible to edit and install small code parts
without lengthy compile and link sessions. It also assists the programmer to examine
in detail the execution of the code and to easily modify and refine the code.

In this work, Smalltalk/V is adopted to run on an IBM compatible with 512k
RAM, monochrome or colour monitor and MS-DOS version 2.0 or later. Smalltalk/V
is an advanced implementation of Smalltalk and is used for creating Smalltalk pro-
grams and an environment for a personal computer. It also provides its own compo-
nents, including the Smalltalk source code as building blocks for the user to include
in his applications. Reference (18] provides a full description and explanation of the
Smalltalk/V system.

5 General Description of the System

The main purpose of the prototype system is to help the nuclear reactor operator
in identifying and diagnosing any alarms or faults that could occur in the LOFT
reactor. The LOFT reactor model is simulated using C language and runs on a Sun

workstation, and the state variables of the simulated model are stored in a file on a



floppy disk.

The system generally consists of two classes, one is the subclass for the main
class object while the other is the subclass for the first one. The first one, Accident,
consists of 19 ‘methods’ and is intended to read the values of the simulated state
variables from the floppy disk, assign the values for the right variables, store the
values of each state variable in an array where the dimension of the array is equal to
the number of times the state variables are read and for each state variable convert
the variables from string to an integer. From the 19 ‘methods’, one ‘method’ is
for reading data from the floppy disk while the rest are for assigning the values for
the state variables, where one ‘method’ is for each state variable. The ‘method’ for

reading the data from the floppy disk is coded in the form of

linput output xValue]
xValue := Array new:6.
input := DiskA file: ‘naj.dat’.
input lineDelimiter.
Output := ReadWriteStream on: Array new.
[input atEnd]
whileFalse:[output nextPut: input nextLine].
output reset.
1 to: 5 by: 2 do: [:i |
xValue at: i put: output next.
xValue at: i + 1 put: output peak.
output skip: 1].
"xValue

The second one, Faulty, is a subclass of Accident and thus in class Faulty the
variables and ‘methods’ are inherited from its super class in addition to containing
the ones defined in its own. It involves 46 ‘methods’ and it is responsible for mon-
itoring the state variables for any increase or decrease from the normal operating
limit, asking the user some questions concerning information about the whole power
plant through using the Prompter which is a special kind of window allowing the
system to ask questions, open a window to maintain all the output results and a
menu to provide the user with the options available with the system and to diagnose
any alarms or faults in the reactor where the symptoms for each alarm or fault are
modelled using a single ‘method’. Figure 1 illustrates the overall structure of the

system.



ReadDatafrom
the floppy disk

|

Accident Find the :‘ight
values foe each
statevanable

| Convertthe values
ofthestatevariable

fromstringinto
integerand store

itin an array
Methodsandvariables are
inherited fromthe superclass l
Open a window
and a menu
anyfaults oralarms
. Thenextperiod
Faulty : oftime

Finalresult
isreached

The faults and
alarmsareidentified

Figure 1: The structure of the system

|



6 System Performance

The prototype system is built to assist the operator in identifying any faults or
alarms in the reactor. The ability of the system is tested through the use of a
hypothetical accident which is assumed to be a failure in the reactor control rod.

The accident is initiated at a time greater than 2.0 sec by a drop in the control
rod causing a change in the rod reactivity from 0.0 to -0.5 (%). As shown in figure
2, the symptoms for this type of accident are a decrease in the reactor power, in the
average coolant temperature and in the pressuriser pressure, and the indicator for
the control rod bottom position should be on.

The system output environment is illustrated in figure 3, and consists of two
windows and a menu, the top window contains a fixed message concerning the pur-
pose of the system and advices the user to use the mouse to see the system menu
and the options available. In the bottom window the final conclusion which in-
cludes; the fault diagnosis, the alarm analysis and the values of the state variables
are shown while the system menu provides the user with the following options, the
State variable which provides the user with the values of the important state vari-
ables of the LOFT reactor at a fixed period of time, Alarm analysis to identify the
different alarms that might occur, Accident analysis to diagnose the different faults
that might happen in the reactor and Continue to carry on the calculation for the
next period of time.

The accident starts at a time greater than 2.0 sec, so at a time 0.0 sec the
reactor is at normal operation. After choosing the State variable option from the
menu, the values of the state variables at a time 0.0 sec are shown in figure 4 while
figures 5 and 6 illustrate the system response after choosing the Alarm and Accident
analysis options, respectively. The system indicates that there are no alarms or
faults in the reactor at this period of time.

The values of the state variables at time 10 sec are illustrated in figure 7 where
it is possible to indicate the decrease in the reactor power due to rod reactivity.
Figure 8 indicates the occurrence of the first alarm for failure in the rod drop, loss
of coolant and steam generator tube rupture. The system diagnoses the accident at
this time and indicates the occurrence of failure in the rod drop as shown in figure
9.

If the user asks the system for further calculation at the end of the availabe
set of data, the system will respond with a message indicating the end of data as

illustrated in figure 10.



7 Conclusion

The object oriented style of programming is very promising and attractive and hope-
fully will be used more extensively in the future. The system results are very en-
couraging and are able to diagnose the fault in the reactor as illustrated with the
hypothetical accident.

Programming in Smalltalk can be improved dramatically by practice since
the program development is carried out entirely by making modification to what
already exists in the Smalltalk environment. The main advantage of programming
with Smalltalk/V is the possibility of dividing the program into different levels and
each level can be built independently from the others, thus each level can be easily
modified and refined, in the other hand the main difficulty with Smalltalk/V is the
problem of using it espacially for a person who is used to the ordinary style of

programming.



Faultoccur

™~

Firstalarm
C.Rbottom Decreasein D;g:arf;;? Decreasein
position is on reactor power gm average temp.

Figure 2: Fault tree for the rod drop fault

FaultDiagnosisand Accident Analysis in Nuclear Reactor.
Use the mouse tosee the options available.

Statevariable

Thecontinueoptionis to carry on the calculation

Aarmanalysis

for the next period of time

Accidentanalysis

Continue

Figure 3: System output environment

10



FaultDiagnosisand Accident Analysisin Nuclear Reactor.
Usethe mouse to see the options available. ' Aa = Ivsh
Thecontinueoptionis to carry on the calculation rmana‘tysis

for the next period of time

S

Accidentanalysis
Contnue

Atthis time 0 the values for the
Reactorpower is 49
Outputtemperatureis 570
Inputtemperature is 535
Average temperatureis 552
Loop tlow is 3655546
Pressurizer pressure is 2280
Pressurizerwaterlevel is 47
Steam generator flowis 57

Steam generator pressure is 749
Steam generatorwater levelis 125
Feedwater flowis 57
Feedwatertemperature is 414
Primaryloop pressure is 2279

Figure 4: Values of the state variables at time 0 sec

FaultDiagnosisand Accident Analysis in Nuclear Reactor.

Usethe mouse to see the options available. L ,Stit_?‘_}?nabie
Thecontinue optionis to carry on the calculation . Aarmanalysis
for the next period of time Accidentaﬁalysis
L Continue

Atthis time there isn’t any alarm signal in the system

Figure 5: Selecting the Alarm analysis option at time 0 sec

L1



g

FaultDiagnosisand Accident Analysis in Nuclear Reactor. Statevardable

Usethe mouse to see the options available. e .
Thecontinue optionis to carry on the calculation it i

for the next period of time

Continue

At this time there isn’t any fault in the system

Figure 6: Selecting the Accident analysis option at time 0 sec

e

FaultDiagrosisand Accident Analysis in Nuclear Reactor.

Use the mouse to see the options available. Aa — ]" ;
Thecontinueoptionis to carry on the calculation analysts
for the next period of time Accidentanalysis
Continue

At this time 10 the values for the
Reactorpoweris 28
Qurputtemperatureis 558
Inputtemperature is 534
Average temperature is 546
Loop flowis 3706670

Pressurizer pressure is 2221
Pressurizer water evel is 43
Steam generatorflowis 56

Steam generator pressure is 737
Steam generator water level is 125
Feedwater flowis 57
Feedwatertemperature is 414
Primaryloop pressure is 2220

Figure T: Values of the state variables at time 10 sec

12




Accidenthnalysis

FaultDiagnosisand Accident Analysis in Nuclear Reactor.
Usethe mouse to see the options available.
The continue optionis to carry on the calculation

for the next period of time

Statevaniable

Accideatanalysis
Continue

Firstalarmfor failurein the rod drop
Firstalarm forloss of coolant

Firstalarm for steam generator tube rupture

e e orbowdon A FAdiatoT

Figure 8: Selecting the Alarm analysis option at time 10 sec

ety

bed

]_FaultDiagnosisandAccidentAnalysis in Nuclear Reactor.
Use the mouse tosee the options available. Eroramalyno
The continue optionis to carry on the calculation

for the next period of time i

Statevariable

Lccidencanalys

) Continue J

Failure in the rod drop

Fa B AT g pumpspera o Lehan 2ed (7)

|

Figure 9: Selecting the Accident analysis option at time 10 sec

13



 AccidentAnalys

FaultDiagnosisand Accident Analysis in Nuclear Reactor
Usethe mouse tosee the options available.

Statevariable
Thecontinueoptionis to carry on the caleulation Frpanalyi
for the next period of time Accidentanalysis
. Confime,
[amsorry this was the last set of data

[cannotdoany furthercalculation

Figure 10: The response of the system at the last set of data

14




References

[

(2]

[4]

[5]

(6]

[7]

8]

[9]

[10]

Alexander, J. (1985). Ezploratory Application Development Using Smalltalk.
Computer Research Laboratory, Tektronix Inc., USA, Technical Report No.
CR-85-16, pp. 1-11.

Alexander, J. and Freiling, M. (1984). Building an Ezpert System In Smalltalk-
80. Artificial Intelligence Department, Computer Research Laboratory, Tech-
nical Report No. CR-85-06, pp. 1-14.

Robinson, J. and Otaduy, P. (1990). An Object Oriented Simulation Package
for Power Plants. Artificial Intelligence and Simulation, The Diversity of the

SCS Multiconference on Artificial Intelligence and Simulation, San Diego, pp.
55-38.

Nishiuchi, N. (1988). Concurrent Object Oriented Diagnostic System. IEEE
Proceedings of the International Workshop on Artificial Intelligence for Indus-
trial Applications, Japan, pp. 591-596.

Pascoe, G. (1986). Elements of Object Oriented Programming. Byte, Vol. 11,
No. 8, pp. 36-48.

Tesler, L. (1986). Object Oriented Languages Programming Ezperiences. Byte,
Vol. 11, No. 8, pp. 195-206.

Bologna, S., Pisacane, F., Ghezzi, C. and Mandrioli, D. (1988). An Environ-
ment for Requirements Specification and Analysis of Real Time Software Based
on Timed Petri Nets. Safety of Computer Control Systems, Proceedings of the
[FAC Symposium, West Germany, pp. 7-10.

Bruno, G. and Balsamo, A. (1986). Petri Net-Based Object-Oriented Modelling
of Distributed Systems. SIGPLAN NOT. (USA), Vol. 21, No. 11, pp. 284-
293. (OOPSCA’86. Object Oriented Programming Systems, Languages and
Applications Conference Proceedings, Portland, USA).

Christodoulakis, D. (1988). Modelling the Semantics of Smalltalk-80 With
Petri Nets. SIGPLAN NOT, Vol. 24, No. 4, ACM SIGPLAN Workshop on
Object Based Concurrent Programming, San Diego, USA, pp. 156-158.

Mittelmann, R. (1990). Object Oriented Implementation of Petri Nets Con-
cepts. Cybernetics and Systems’88 Proceedings of the 9th European Meeting

on Cybernetics and Systems Research, Vienna, Austria, pp. 759-766.

15



(I T L
A IED SLniil
LIERARY
[11] Cook, S. (1990). The Object Oriented Programming and It’s Applications. Tu-
torials and Workshops on Applied Software Development OOPS (Object Ori-
ented Programming Systems) Brunel Conference Centre.

[12] Anderson, B. (1987). Object Oriented Programming. Microprocessors and Mi-
crosystems, Vol. 12, No. 8, pp. 433-442.

[13] Cox, B. (1986). Object Oriented Programming an Evaluationary Approach.
Addison-Wesley.

[14] Howard, G. (1988). Object Oriented Programming an Evaluationary Approach.
Journal of Systems Management, Vol. 39, No. 7, pp. 13-19.

(15] Meyer, B. (1988). Object Oriented Software Construction. Prentice Hall Inter-
national.

[16] Stefik, M. and Bobrow, D. (1984). Object Oriented Programming: Themes and
Variations. Al Magazine, Vol. 6, No. 4, pp. 40-62.

[17] Sharif Heger, A., Patterson-Hine, F., Harringtton, R. and Koen, B. (1989).
Reliability Database Development for Use With an Object Oriented Fault Tree
Evaluation Program. Annual Reliability and Maintainability Symposium Pro-
ceedings, Atlanta, USA, pp. 283-287.

[18] Digitalk Inc. (1986). Smalltalk/V Tutorial and Programming HandBook. Dig-
italk Inc.

[19] Tylee, J. (1980). Low Order Model of the Loss Of Fluid Test (LOFT) Reactor
Plant for Use in Kalman Filter Based Optimal Simulation. Proceedings of the

4th Power Plant Dynamics, Control and Testing Symposium, Gatlinburg, pp.
1-31.

[20] Tylee, J. (1980). Low Order Model of the Loss Of Fluid Test (LOFT) Reactor
Plant for Use in Kalman Filter Based Optimal Estimators. EGG-2006, EG &
G Idaho Falls, Idaho.

16



