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Abstract

A technique is given for the choice of a stable, and globally-attracting switching
surface for a linear-analytic system, assuming discontinuous feedback is imple-
mented. The method is based on the solution of a pair of coupled partial dif-
ferential equations, and a simple geometrical alternative is derived. Only mild
conditions are required to be satisfied by the system, and a generalization to
systems expressed as polynomials in the control, is also considered.
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equivalent to the two PDE’s will be derived in section 5, and a brief discussion

of nonlinear control systems will be given in section 6.

2 Notation
The notation in this paper will be standard. Two points only need to be speci-
fied. First we shall denote the inner product of two vectors x and y by

<xX,¥y >

rather than the usual x-y or xTy. Secondly, in section 6 we shall use a number
of vector fields g% g',..., g". The superscript index notation is needed to
distinguish a vector field from its components, and should not be confused with
a power.

A final point to note is that || - || denotes the standard Euclidean norm.

3 Choice of Switching Manifold

Consider the nonlinear system

x = f(x)+ g(x)u (3.1)
We shall assume that the set

Q = {x:g(x)=0}

is a smooth submanifold of R*. We shall also assume that the vector field

defined by f(x) is nowhere tangent to §.



In this section we shall consider the existence of a switching manifold, and

prove its global attractivity. The discussion of the stability of the equivalent

system on the manifold will be left to section 4. In order to determine a switching

manifold we use an idea from (Banks 1986).

THEOREM 1 Let a(x) be a nonnegative real-valued function such that

(1)) a(x)#0 for all x if g(0)#0

(i) a(x)#0, x#0, a(0)=0 if g(0)=0

and assume that the partial differential equation

g do(x
gif) 9(x) + ...+ gin)gn(x) = a(x)

has a solution o(x) such that ¢(0) = 0 and the level curves o(x)

(3.2)

= const.

are (n-1)-dimensional smooth submanifolds (or algebraic submanifolds) of R™.

Let § = {x:a(x) = 0} and suppose that SNQ is an (n-1-(n-m))-dimensional

submanifold of R™, and that S and Q intersect properly, where n = dimQ. Then

S 1s a globally atiracting switching manifold for the system (1) if the control is

defined by

_ifé'g;raaddaa;;—c’ 'z;f xE S+\Q

-<¥f. d i -
e i BeED

and

(3.3)

(3.4)

where ST = {x:0(x) >0}, S~ ={x:0(x) <0}, and ¢ > 0 is a constant.



Proof: Note first that if x # 0, then < g, grad ¢ >= a(x) # 0 by (2), and so
u is well-defined. The proof that S is a globally attracting switching manifold

is now easy. For, we have

0 =<grado, x>=<grado,f> +u< grado, g>

and if, for example x € S+ \ Q, then by (3),

and so 0 — 0 again in finite time. If x € Q then by assumption (2) if u = 0 the
trajectories leave (2 and enter either S*\ Q or $~ \ Q and the above reasoning

holds. O

Ezample 1: Consider the bilinear system with n =3

x = Ax+uBx (3.5)

with scalar control. For simplicity we shall assume that B is diagonalizable with
eigenvalues A; < 0, A2 >0, A3 = 0. By changing coordinates we can write (4)
in the form

x = Az +udx (3.6)

where A = diag (A1, Az, A3)



Then equation (2) becomes

LW L

Bz, 632)\2332 = a(x) (3.7)

A solution of this equation can be found by solving the ordinary differential

equations

dzy dzo do
)\121 - )\21‘2 - [ (38)

However, in this case, if we take
2 2
a(x) = i+ 23

Then a solution to (8) can be obtained directly as

2 2
oSl o R
) = ot o,
If we assume for simplicity that A\; = =X, = A, then
2 2
o B D
o) = 9373

and ¢(0) = 0 when z; = £a,
In this case Q = {x: z; = 22 = 0}, and the control (3)-(4) is now

( E " aurg)%l'-f-(zk agkr*)%}—

]
Ti+T5

L if e>0

(Ek G1k$k)%"+(zk azkzx) 2 +c

2 2
:ri+:z2

, if o0<0

Remark 1: The ideal control in (3) is unbounded near Q. This can be overcome

in practice by making u = 0 in a neighbourhood of Q.



Remark 2: We can also allow a(x) to be zero away from the origin, provided
{x:a(x)=0}Nn{x: o(x)=0} = {0}

and again that f is nowhere tangent to {x : o(x) = 0}.
This allow us to extend Example 1 to the case where A;, A; > 0 by taking

a(x) ==z —z3if Ay # Xy and a(x) = 23 + 2, — 23 if Ay = A,

4 Stability of the Switching Manifold

Having obtained conditions for the existence of a switching manifold we must
now consider the stability of the dynamics on this manifold. By Filippov’s
result (Filippov 1960) the equivalent dynamics on the manifold are given by the

equation

<f, grado >

. = f
x (x) < g, gradec >

g(x) (4.1)
where < g, grad ¢ >= a > 0 on the switching manifold (and possibly at x = 0).
The next result gives a condition on f and g for the switching manifold to be

stable.

THEOREM 2 Suppose that the switching manifold ¢ satisfies (in addition to
(2)) the partial differential equation

£, grad
<f,x>-=1297¢ Z><g'x> = —B(x) (4.9)

for some function B satisfying

B(x)>0, 0#x€e S



then the dynamics (9) are stable.

Proof: This follows from (9) by taking the inner product of the equation with

x. Thus, on S,
1d 2 . <f, grade >
-z-a-{Hx“'=<x,x>=<f,x>——;————<g,x>
= —f(x)<0 =
Equation (10) may be written in the form
(%";J’J(X)‘r+ ;; fa(xX)y+...+ 625: fn(x)y = 7 (4.3)

where

(x) =<gx>

n(x) =<fix>a+4aj

Ezample 2: Consider the bilinear system given by (6) with A\;, A2 > 0 as in

Remark 2. Then
r? z3
i 3 2
& =¢8] —%5

U TV

(from A; # Az). Then (10) becomes

ﬂf _ &, _ (hzi+ fors + fars + B)(2] — 23)
R Mz + Aoz}

where f; = Eaijirj, with A = (aij]-

On ¢ = 0 we have



and so, taking A; = 2, A; = 1 for simplicity, gives
0'.13:0, 023‘—"0: G-33<D

2 9 - 3
and 2a;;2} + 2a,5752; — 6412125 + Bagyz} > 0 when z; = ++/2z,. From this

one can obtain, for example, the conditions

a;; >0, 342@‘112 — 6v2a; 4 6az2 > 0
2a1; — 2—35012 + \%021 >0, a>0

Note that choosing a different function a will give rise to different conditions
and the choice of a is difficult in practice. Therefore, in the next section we shall

derive a simple geometrical condition for the existence of stable sliding modes.

5 [Existence of Stable Sliding Modes

We have shown that for a stable sliding mode to exist it is sufficient for the

partial differential equations (2) and (11), i.e.

%gl(x)+...+ %gn(x) = a(x) (5.1)

and

do do
é—z—l—fl(x)<g,x>+...+a$n

fax)<gx>=<f,x>a+ef (52

to have a solution such that S = {x : o(x) = 0} is an (n-1)-dimensional algebraic

submanifold of R" with 0 € S, and 3(x) > 0 for 0 # x € 5. Moreover we should



have
SN {x i 0‘()() = 0} = {0}

In general we could solve (12) and (13) under suitable compatibility assumptions
for various functions o and 3. However, the choice of such functions o and 8
is far from obvious, and the solutions of (12), (13) is not an easy matter for
highly nonlinear systems. We shall therefore give a simple geometrical criterion
equivalent to (12) and (13) which may be used to construct a switching manifold

directly.

THEOREM 3 Ifgl,gg,'!,f)l,l!?g are g!"UETL by

PRI, 1. SO ). .. B
£ |l gl IIx|
cos Uy = < grad o, f >  cos ¢y = < grad o,g >
| grad o || || £ | lgrad o || gl

then a necessary and sufficient condition for (12), (13) to hold is that

cos a2 >0 (5.3)

and

cos 8) cos s — cos 02 cos P >0 (5.4)

Proof: Since a > 0 for all x # 0, we have

lélg de
cos s = (gt oot o) [l grad ol g 1) >0

Hence, by (13)

cosy ||fll<gx> —cosa|gll<cf, x>
cos Yo || g ||

=IB>O 0O
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Erample §: Consider the system

é} 10 1 Z1 0

I
+
1~
—_
(<) ]
&
~—

2'2 0 -1 I I
The conditions (14) and (15) can easily be implemented numerically and give
rise to a switching surface of the form shown in fig.1. Note, however, that this

is by no means unique.

6 Higher Order Systems
In this section we shall consider the more general system

x = g'(x)+ugl(x)+...+u"g"(x) (6.1)
A simple generalization of Theorem 1 gives

THEOREM 4 Suppose that there exists a differentiable function o such that

the equations

Zui <gradeo, g (x) >= —c¢ (6.2)
i=0

forx € 8%, and
Zu." < grade,g'(x) > = +c (6.3)

i=0

forx € 57, have a real solution u for all x, where

8 = {x:0ox) =0}

11



and St 5~ are defined as before, then the hypersurface S is globally attracting

for the system (17).

Proof: As before we simply differentiate o along the trajectories of (17). O

Conditions for the existence of solutions of the polynomials (18) and (19)
in terms of the discriminant variety can be found in (Banks 1986). We shall

merely state two obvious special cases.

Case 1. m odd. In this case equations (18) and (19) always have a real

solution and we can bound the size of the control by solving the equation
<grado,gm(x) > = a(x) (6.4)

for ¢ just as with linear control.

Case 2. m even. and g™~!(x) is never parallel to g™ (x). In this case we
can solve the equation

<grado,g"(x)>= 0 (6.5)

for o and then we shal] have

<grado, g™ '(x)> £ 0

for all x, and this reduces to case 1 with m replaced by m — 1.

12



7 Conclusions

In this paper we have given a technique for the automatic calculation of a stable,
globally attracting switching manifold for a linear-analytic system (and more
general systems in section 6).

The method can be implemented by solving a pair of coupled PDE’s or by
satisfying the geometrical conditions (14) and (15). As we have seen, even in
simple examples, this can lead to strange switching surfaces which could not be
predicted by other methods.

Further work remains to be done in the study of the PDE’s (existence and
uniqueness theory, for example) and to obtain explicit solutions. Identification
of appropriate functions ¢ and # must also be considered in more detail. We

shall address these issues in a future paper.

8 References

BANKS, S.P., 1986, ‘Stabilizability of Finite- and Infinite-Dimensional Bilinear
Systems ’, I.M.A. J. Control Info., 3, 255-271.

BARTOLINI, G., and ZOLEZZI, T., 1986, ‘Control of Nonlinear Variable Struc-
ture Systems ’. J. Math. Analysis App., 118, 42-62.

FILIPPOV, A.F., 1960, ‘Differential Equations with Discontinuous Right-Hand
Side ’, Am. Math. Soc. Translation, 62, 199-231.

ITKIS, U., 1976, ‘Control Systems of Variable Structure ’. (N.York: Wiley).

13



UTEKIN, V.1, 1977, ‘Variable Structure Systems with Sliding Modes ’, IEEE

Trans. Autom. Control, 22, 212-222.

14



Ewitchine Curve

|
iy

5;3.1

Obtainad with | prad o | =1



