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ORIGINAL ARTICLE

Estimating Multiparameter Partial Expected
Value of Perfect Information from
a Probabilistic Sensitivity Analysis Sample:
A Nonparametric Regression Approach

Mark Strong, PhD, Jeremy E. Oakley, PhD, Alan Brennan, PhD

The partial expected value of perfect information (EVPI)
quantifies the expected benefit of learning the values of
uncertain parameters in a decision model. Partial EVPI is
commonly estimated via a 2-level Monte Carlo procedure
in which parameters of interest are sampled in an outer
loop, and then conditional on these, the remaining parame-
ters are sampled in an inner loop. This is computationally
demanding and may be difficult if correlation between input
parameters results in conditional distributions that are hard
to sample from. We describe a novel nonparametric regres-
sion-based method for estimating partial EVPI that requires
only the probabilistic sensitivity analysis sample (i.e., the set
of samples drawn from the joint distribution of the

parameters and the corresponding net benefits). The
method is applicable in a model of any complexity and
with any specification of input parameter distribution. We
describe the implementation of the method via 2 nonpara-
metric regression modeling approaches, the Generalized
Additive Model and the Gaussian process. We demonstrate
in 2 case studies the superior efficiency of the regression
method over the 2-level Monte Carlo method. R code is
made available to implement the method. Key words: value
of information; expected value of perfect information; eco-
nomic evaluation model; nonparametric regression; Bayes-
ian decision theory; computational methods. (Med Decis
Making 2014;34:311-326)

I Iealth economic decision analytic models are
used to estimate the expected net benefits of
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competing decision options. The true values of the
input parameters of such models are rarely known
with certainty, and it is often useful to quantify the
value to the decision maker of reducing uncertainty
about the model input parameters. The value of
learning an input parameter (or a group of input
parameters) can be quantified by its partial expected
value of perfect information (partial EVPI)."™* The
partial EVPI value for an input parameter reveals
the sensitivity of the decision to our uncertainty
about that input parameter, and as such can be used
to inform the design and prioritization of future
research.

The partial EVPI for a single parameter (or group of
parameters) of interest is typically calculated via a 2-
level nested Monte Carlo approach. This requires us
to sample values of the input parameter(s) of interest
in an outer loop and then to sample values from the
joint conditional distribution of the remaining
parameters and run the model in an inner loop.”®
We recognize 3 important limitations to this method.
First, the 2-level method is computationally demand-
ing for all but very simple models because of the
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nested loop scheme. Second, the approach requires
that the model is run as part of the EVPI calculation
process, which may be difficult in certain software
applications. Last, a potential problem arises in cases
in which correlations exist between parameters. If the
parameters of interest are correlated with the remain-
ing parameters, then for the 2-level Monte Carlo
method to work, there must be some method of sam-
pling from the distribution of the remaining parame-
ters, conditional on the values of the parameters of
interest that have been sampled in the outer loop. If
the required conditional distributions are difficult
to sample from, say requiring Markov chain Monte
Carlo (MCMQ), then the computational burden will
be substantially further increased.

Our experience is that although probabilistic sen-
sitivity analyses (PSA) have become the norm in
many economic evaluations for health technology
assessment across the world, it is much less common
for partial EVPIs to be estimated. In our view, the rea-
sons for this are partly technical (in terms of the extra
demands on the statistical and programming skills of
the analyst), partly computational (the additional
model development and model running time to
implement 2 nested loops rerunning the model on
each iteration), and partly structural (in that decision
makers and research funding bodies have not always
demanded these analyses).

The following scenario is typical of the kinds of
problems we have encountered. A probabilistic sen-
sitivity analysis sample (i.e., a set of sampled input
parameters with their corresponding model outputs)
has been generated for a patient-level simulation
model. Each PSA run has required in the order of
tens of thousands of patient-level runs of the simula-
tion model to achieve convergence, with consider-
able computational cost. The analyst now wishes to
estimate the partial EVPI value for a subset of input
parameters (e.g., those that relate to clinical efficacy).
Parameters within this subset of interest may be cor-
related with other input parameters. To achieve the
partial EVPI calculation via the 2-level partial EVPI
scheme might then have a computational cost of
1000 outer loops times 1000 inner loops times
10 000 runs of the patient-level simulation model
(i.e., 10'' model evaluations in total). Not surpris-
ingly, such calculations are often considered too
computationally costly.

Recently, computationally efficient methods for
calculating partial EVPI have been published,”® but
these work only when we require the partial EVPI
for each model parameter separately. This restriction
to single parameters is potentially problematic
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because we often expect research to update our
knowledge about groups of parameters (for example,
a set of relative risks or a group of related costs) rather
than just single parameters.

In this article, we present a nonparametric regres-
sion-based method for calculating partial EVPI that
overcomes the 3 limitations above and can be used
to evaluate the partial EVPI of any subset of model
parameters without rerunning the model. The article
is structured as follows. In the second section, we
introduce the nonparametric regression method and
describe its general application. In the third section,
we demonstrate the method in 2 case studies. In
both of our case studies, we assume we have only
a single PSA sample but wish to calculate the partial
EVPI values of several sets of parameters of interest.
The first case study is based on a model that is simple
in structure but in which there are correlations
between inputs. The second case study is a more com-
plex Markov model. Both models have been used
before for illustrative purposes.>”*'° In the fourth
section, we conclude with a discussion of the impli-
cations and limitations of the approach.

METHOD

Partial EVPI

The partial expected value of information is the
expected difference between the value of the optimal
decision based on perfect information about those
inputs and the value of the decision made only with
prior information. To express this, we introduce
some notation.

We assume that we are faced with D decision
options, indexedd =1, ..., D, and have built a model
NB(d, x) that aims to predict the net benefit of deci-
sion option d given a vector of r input parameter val-
ues, X = (X1, ...,%,).

The true values of the input parameters are
assumed to be unknown. We denote the true but
unknown parameter values as upper case
X=(Xj, ...,X,) and a sample drawn from the joint
distribution of the parameters as x = (x1, ...,x,). We
denote the vector of p input parameters for which we
wish to calculate the partial EVPI as X; and the remain-
ing r —p input parameters as X_;. We denote the
expectation over the full joint distribution of X as
Ex, over the marginal distribution of X; as Ex,, and
over the conditional distribution of X ;X; as Ex ,x,.

The expected value of our optimal decision, made
only with current information, is
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mdaxEx{NB(d,X)}. (1)

If we knew the value of the inputs of interest, X;,
then the optimal decision would be that with the
greatest net benefit, after averaging over the condi-
tional distribution of the remaining unknown inputs
X_;|X;. The expected net benefit would be

mﬂ?XEX,ﬂXi{NB(d:Xi-,X*i)}- (2)

But, because X; is unknown, we must average over
our current information about X;, giving

Ex, |maxEx (X ANB(d, X;, X )} (3)

The partial EVPI for inputs X; is the difference
between Equation 3, the expected value of the deci-
sion made with perfect information about X;, and
Equation 1, the expected value of the current optimal
decision option,®*

EVPI(XL) = Exi |:II1§[XEX i‘xl{NB(d,Xi,X_i)}
- IIl(;:lXEx{NB(d, X)}. (4)

We are commonly in a situation in which we
cannot evaluate any of the 3 expectations in Equation
4 analytically. Important exceptions are cases in
which models are either of linear form (e.g.,
Y = B,X; + BoX2) or multilinear (sum-product) form
(e.g., Y = B;X1 Xy + BoX3Xy; where B; and B4 are con-
stants). In the linear case, both the expectation in Equa-
tion 1 and the inner expectation in Equation 3 have an
analytic solution, and in the multilinear case, these
expectations have an analytic solution if inputs are
independent.'* In the case of correlated inputs, ana-
lytic solutions to these 2 expectations will sometimes
exist, such as the case in which the inputs have a mul-
tivariate Normal distribution. The outer expectation in
Equation 3 is more problematic because of the maximi-
zation step, and analytic solutions rarely exist. See
Brennan and others for a fuller discussion.”

A PSA takes N samples from the joint distribution
of the input parameters, {xV, ..., x™}, and gener-
ates a corresponding set of N net benefits,
{NB(d,x"V), ... ,NB(d,x™)}, for each decision
option d. From this, the Monte Carlo solution to
the second term in Equation 4 is simply
maxg 3 EI,:’: | NB(d,x™).

The first term in Equation 4 requires more work,
and unless there are analytic solutions to the expect-
ations, the usual approach is to use a nested 2-level

ORIGINAL ARTICLE

Monte Carlo method with K ‘“outer” simulations
and J “inner” simulations.'* Here, the estimator is
given by

1 1¢ (B) o U:h)

I_{; méaijNB(d,xi X7 >, (5)
=1 Jj=1

where xg‘ik) are samples drawn from the conditional

distribution X_;|X; =x*).

Sufficient numbers of runs of both the outer and
inner loops are required to ensure that the partial
EVPI is estimated with sufficient precision and with
an acceptable level of upward bias that is induced
by the maximization step. For models that are slow
to run, this 2-level scheme can represent a consider-
able computational burden.

To address the problems of the 2-level method, we
focus our attention on the estimation of the inner
expectation. To avoid the need for the inner loop sim-
ulation, we reframe the estimation of this conditional
expectation as a regression problem.

Principles of Estimating Partial EVPI Using
Regression

Our target is to estimate the conditional expecta-
tion Ex ,x,-x,{NB(d,x;,X_;)} evaluated at some par-
ticular value x;, because given this, the partial EVPI is
easily obtained. To estimate this conditional
expected net benefit, we undertake 3 conceptual
moves.

First, we recognize that we can express the model
output for model run n as a sum of the conditional
expectation that we require, and a mean-zero error
term,

NB(d,x") =E w{NB(d,x X )} +e™.  (6)

i

X i‘x,:X

To see why the error term must have zero mean, we
rearrange and take expectations,

E(c) = E{NB(d,X)} — Ex,[Ex ,x,—x {NB(d,x;,X ;)}]
= E{NB(d.X)} - E{NB(d,X;,X_,)} (7)
— E{NB(d,X)} — E{NB(d,X)} = 0.

The second move is to realize that the expectation
Ey i\xi:x?”>{NB(d( xi”),X_i)} takes a different value
for each ‘'value x;”’ and can therefore be thought of
as a function of x;. We do not know the form of
this function, but we can denote it as the unknown
function g(d,x;), allowing us to write for the n®

model run
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NB(d, x™) = g(d,x") + ™. (8)

The third key idea is that we can treat the N model
outputs from the probabilistic sensitivity analysis
{NB(d,x"1), ...,NB(d,x™)} as ‘“noisy” data
through which we can learn about the functional
form of g(d,x;). Within Equation 8, we know
n=1,...,N values for the left-hand side NB(d,x™)
and the corresponding n=1,...,N values of the
xl(n), and therefore, we can think of this as a regression
problem. However, we immediately recognize that
the target function g(d,x;) has unknown form, and
we have no desire to impose any particular form.
We could begin by fitting a standard linear model
with power and interaction terms to model the non-
linearity between the net benefits and the inputs of
interest, but we choose instead to adopt a more flexi-
ble nonparametric regression approach.

As an illustration, Figure 1 shows the results from
a hypothetical PSA in which we plot the net benefit
function, NB(x1,x92,x3), against a single parameter of
interest, x1. The scatter of points suggests some kind
of U-shaped function. The dashed line shows a non-
parametric regression of NB(x1,x9,x3) on x;. This
regression provides an estimate of the expected value
Ex, x,)x, =, NB(x1,X2,X3) as a function of x1, that is,
it provides the g(d,x;) from Equation 8. In this
particular illustrative model, the expectation
Ex, x,)x, =x,NB(x1,X2,X3) can be obtained analyti-
cally (solid line), showing that the true expectation is
very well estimated by the nonparametric regression.

Once we have obtained the regression function
estimate, g(d, x), for each decision option in our eco-
nomic model, we can proceed to calculating the par-

tial EVPI. Evaluating g(d, x) at {xgl)7 ...,XEN)} gives
us {g(d, xgl)), .., 8(d, XEN))}, which are the estimates
of the conditional expectations that we require, and
hence we can compute the partial EVPI by

N N
EVPI(X;) = zlv > max &(d,x") - max ! 3 g(d.x").
n=1 n=1

9)

N o

Note that we use maxq# > ,-18(d, xgn)) as our
Monte Carlo estimator of the second term in Equation
4 rather than max, & >N_; NB(d,x™). By choosing
this as our estimator, we exploit the positive correla-
tion between the 2 terms in Equation 9 and hence esti-
mate the partial EVPI with increased precision.

We also note at this point that EVPI (calculated by
any method) is invariant to the reexpression of net
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20
1

—— Analytic inner expectation
- Non-parametric regression

Net Benefit

-5
1

Input of interest

Figure 1. Net benefit against single input parameter of interest for
hypothetical model with 3 parameters.

benefits as incremental net benefits, relative to
some chosen baseline option (which is therefore
defined as having an absolute net benefit of zero).
This reduces the number of regression problems
fromDtoD — 1.

In the next sections, we give an overview of 2 partic-
ular nonparametric regression methods that are suitable
in this context, Gaussian process regression and regres-
sion based on a Generalized Additive Model (GAM).

GAM Regression

When we adopt a GAM, we represent the unknown
function g(d, x;) as the sum of a set of smooth functions
of the inputs. In the simplest form of GAM, we have

NB(d,x) =g(d,x;) + &,
gld,x;) =s1(x1) + ... +sp(xp), (10)

where each smoothing function s;(x;) is a function of
one of the j=1,...,p model input parameters of
interest, and ¢ is a mean-zero Normally distributed
error with constant variance. For an introduction to
GAM models, see Hastie and Tibshirani'? or Wood.*®

The usual choice for the smoothing functions is
some form of spline, a common choice being the
cubic spline. A cubic spline represents an arbitrary
smooth function as a series of short cubic polyno-
mials joined piecewise, as shown in Figure 2.
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Figure 2. A cubic spline, showing the piecewise construction from
4 sections of cubic polynomial, each with different coefficients.

The cubic spline shown in Figure 2 can also be
expressed as the weighted sum of a series of polyno-
mial basis functions, b;(x), that take values of x across
the whole range of x, rather than values in short seg-
ments of the range of x (this builds up the spline func-
tion in a manner similar to the way in which an
arbitrary sound wave can be built up from sine waves
of increasing frequency). This allows us to write

L
= > Bbi), (11)
=1

for some basis dimension L. The basis dimension con-
trols the degree to which the spline can be “wiggly”” (we
can loosely think of this as akin to determining the
number of segments in Figure 2). The basis functions
themselves tend to be cumbersome to write out, and
the reader is referred to Wood for further details.*®

By expressing our unknown function (Equation
10) in the same way, we get

Lp
g(d,x;) Z By, b, (x1) D Byby (). (12)

L=1 =1,

Estimation of the model coefficients is typically
via penalized maximum likelihood, in which the
penalties are designed to suppress overly wiggly esti-
mates that would result in overfitting. The choice of
basis dimension for each spline is usually not impor-
tant as long as it is sufficiently large to avoid con-
straining the spline to be overly inflexible (we
found any any dimension greater than 3 to be suffi-
cient). In practice, the software in which GAM is
implemented makes the choice of basis dimension
for each spline automatically.

ORIGINAL ARTICLE

Although the simple additive model in Equation
10 performs well in many situations, it will not ade-
quately capture interactions between the input
parameters of interest that may be a feature of the
health economic model. To model interactions, we
must include multivariate smoothing functions in
our GAM model specification. So, for example, if
we expect there to be interactions between inputs x;
and x9, then we would specify the model

spalg).  (13)

The multivariate smoothing function s; is built up
using a tensor product construction, which results in
the spline’s being the sum of all multiplicative combi-
nations of the basis functions for each variable,

84(X;) =s1(x1,%2) +s2(x3), ...

Ly Ly

D D Bunbu (e1)by (x2). (14)

Li=1l=1

s1(1,22) =

Modeling a large number of potential interactions
does therefore have a cost. Given m inputs that are
expected to interact in the economic model, and
assuming the same basis dimension, n, for each input
variable, the GAM model must estimate n™ coeffi-
cients. If n™ approaches the size of the PSA sample,
then the GAM method will break down. This is one
motivation for the more flexible Gaussian process
regression approach described in the next section.

After estimating the GAM model parameters and
hence obtaining g(d X), we Can evaluate %
the PSA inputs to give {g(d, x< )y - } and
therefore the partial EVPI via Equatlon 9 The code
in Box 1 illustrates the simplicity of the GAM regres-
sion approach using the mgcv package in R.** In the
example, there are 2 decision options, with the vector
object INB holding the incremental net benefits from
the PSA. The PSA samples from the 2 parameters of
interest are held in vector objects x5 and x14. We
assume the parameters do not interact in the model.
If they did, we would simply replace the model for-
mula INB ~ s(x5) + s(x14) with the tensor product
multivariate specification INB ~ te(x5,x14).

Box 1 Example R Code for Estimating Partial
Expected Value of Perfect Information via
Generalized Additive Model Regression

library (mgcv)

model <- gam (INB ~ s (x5) + s

g.hat <-modelS$fitted

partial.evpi <-mean(pmax(0,g.hat)) -
max (0, mean (g.hat))

(x14))
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A method for estimating the standard error of the
GAM-based approximation of the partial EVPI is
given in Appendix A. R functions for computing the
partial EVPI via GAM and its standard error are avail-
able at http://www.shef.ac.uk/scharr/sections/ph/
staff/profiles/mark.

Gaussian Process Regression

The Gaussian process is a highly flexible represen-
tation of an unknown function, in our case g(d, x;),
that again requires no parametric assumptions
regarding functional form.'"> When we model the
function g(d,x;) as a Gaussian process, we assume
that we can represent the unknown values of the
function  evaluated ~at the PSA inputs,
{g(d, xﬁl)), ..,8(d, x§N>)}, via a multivariate Normal
distribution. To be more precise, we are representing
our beliefs about the function using the multivariate
Normal distribution. The function itself is unknown.
We will therefore require a method for specifying the
mean, variance, and covariance of the distribution
that specifies our beliefs about the unknown function
g(d,x;) given the PSA values {x! M1 and
{NB(d,x), ...,NB(d,x™)} that we have observed
(sampled).

It is very important to note that by representing the
unknown function g(d, x;) as a Gaussian process, we
do not require that the model input parameters x; are
Normally distributed (Gaussian) or that the net bene-
fits NB(d,x) are Gaussian. In practice, the main
requ1rement is that g(d,x;) is a smooth functlon of
its inputs in the sense that for any x( ) and x ) that
are close, g(d, x( ) and g(d, x ™)) are ‘also close. This
is a weak requlrement and hkely to hold in most
health economic models because costs and health
benefits (e.g., quality-adjusted life-years [QALYs])
are usually continuous functions of the uncertain
model input parameters.

Until now, the use of the Gaussian process in
health economics has been rare and restricted to the
modeling of the net benefit function in the context
of a computationally expensive model."®'® For
a practical introduction to building Gaussian process
models, see the Managing Uncertainty in Complex
Models toolkit at mucm.aston.ac.uk/MUCM/MUCM-
Toolkit/.

Gaussian Process Regression Model Specification.
Recall that our PSA sample consists of N input vec-

tors {x(V, ..., x™} and N corresponding net bene-
fits {NB(d,x), ... NB(d,x™)} for each decision
option d. For each model run n=1,...,N, we
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have NB(d,x™)=g(d,x") + & from Equation 8.
We assume that the vector of unknown values of
the function )g (d,x;) evaluated at the PSA input val-
ues, {g(d, x ,.,8(d, x )} jointly follows a mul-
tivariate Normal dlstrlbutlon,
{g(d.x"), ....g(d.x")}~N(HB,0%%).  (15)
The mean of the distribution HB is a vector of
length N and is the matrix product of a design matrix

1
H= M1 o (16)
TRPTA

ofsize N X q, (whereq =p + 1), and a vector of regres-
sors B = (By, - .-, B,). The covariance matrix is a prod-
uct of a scalar variance term o? and a correlation
matrix X, of size N X N.

We require that the correlation matrix % describes
the smoothness of the function g(d x;) with respect to
each input parameter of interest in the set of p mputs
that makes up x;. We therefore define the {n, m} ele-
ment of 3 to be a function of the p input parameters of
interest in the following way,

3 = exp Z{ Y| an

The superscripts () and (m) denote arbitrary runs
in the PSA sample, and j indexes the p parameters of
interest that make up x;. The correlation length
hyperparameters §; describe the smoothness of

g(d,x;) with respect to each parameter of interest

and are estimated from the PSA sample as described
below.

Note that the form of the correlation function
ensures that diagonal entries in the matrix 3 are equal
to 1 as they should be for a valid correlation matrix.
To see why, observe that on the diagonal, we have

n,n 2
30 = exp| = Y0 {(x" =) /3} | = exp (0) = 1.
The value of ™™, and therefore the correlation
between g(x\") and g(x\™), decreases toward zero
as the distance between X£n> and x§m> increases,
with the values of §; controlling how fast this decay
to zero occurs.

Finally, we require a method for learning about g,
o2, and d; from the net benefits, NB(d, x). To do this,

we must link the Gaussian process model for g(d, x;)
to the net benefits, NB(d, x). Recalling Equation 8, the
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net benefit obtained on the n* PSA model run,
NB(d,x™), is considered to be the sum of g(d,x")
and a noise term £™, which implies that we can
write

{NB(d,xY), ... NB(d,xM )\ ~N{HB,o*( +vI)}, (18)

where I is the identity matrix of size N and v is a
“nugget” term that controls the variance of a
Normally distributed mean zero, constant variance
noise term &.'%*° For compactness of notation in
the remainder of the article, we write 3" =3 +vI
and define the vectors nby = {NB(d,xV), ... NB

d,x™)}, g, ={gd,x"), ....g(d,x™)}, and g,=
(g(d,x"y, ... .&(d,x")}.

Estimation of Hyperparameters f3, o2, 6j, and v.
The first step is to estimate the correlation lengths
9; and the nugget term v from the PSA sample. The
most straightforward approach is to find the values
d; and v that maximize the joint posterior density
of §; and v given the net benefits nbg. This requires
numerical methods, and details are given in Appen-
dix B. An R function is available at http://www.shef
.ac.uk/scharr/sections/ph/staff/profiles/mark. Given
8; and v (and hence 3"), the posterior mean of B,
which can be derived analytically, is

B=(H"S"H)'H'S 'nb, (19)
and the posterior mean of o is

s> _ (nby — HB)'S"'(nb, — Hp)
n—q-—2

. (20)

Estimation of g(d,x;). Once we have determined X"
and 3, we can use the properties of the Normal dis-
tribution to obtain the expected value of g; condi-
tional on the net benefits nb,,

g, =Hp+33 '(nby — HP). (21)

The components of g; are {g(d, xgl)), ce
g(d,x§N>)} and hence can be plugged into Equation
9 to give the partial EVPL. A method for estimating
the standard error of the Gaussian process regression
approximation for the partial EVPIis given in Appen-
dix A. The R code for computing the Gaussian process
regression-based partial EVPI and its standard error is
available at http://www.shef.ac.uk/scharr/sections/
ph/staff/profiles/mark.

ORIGINAL ARTICLE

Implementation Issues and Regression Diagnostics

We recommended above that net benefits are
expressed as incremental net benefits, relative to
a chosen baseline option. This not only reduces the
number of regression problems from D to D — 1 but
also improves numerical stability, particularly for
the Gaussian process method. For the same reason,
we also suggest that, for the Gaussian process
method, the input parameters of interest are each
scaled to lie in the [0, 1] interval. This ensures that
the smoothness parameters §; are estimated on a com-
mon scale. EVPI is invariant to linear rescaling of the
input parameters.

For both Gaussian process and GAM models,
examination of the residuals is useful for assessing
the robustness of assumptions. A plot of residuals
(i.e., y; — g4) against fitted values (g;) allows assess-
ment of the mean-variance relationship and will
highlight deviation from the assumption of constant
variance. A Normal quantile-quantile plot of resid-
uals will show deviation from the assumption of Nor-
mality of the residuals.

CASE STUDIES

Case Study 1: A Simple Decision Tree Model with
Correlated Inputs

Case study 1 is based on a hypothetical decision
tree model previously used for illustrative purpo-
ses.””?1% The model predicts net benefit, NB(d, x),
under 2 decision options (d = 1,2) and can be written
in sum product form as

NB(1,x) = N asxex7 + x8%9x10) — (X1 + 222x3%4), (22)

NB(2,x) = N(x14%15X16 + X17%18%19) — (X11 + X12013%4),
(23)

where x1, ...,x19 are sampled realizations of the
uncertain input parameters Xi, ...,Xj9 listed in
Table 1, and the willingness to pay for 1 unit of health
output in QALYs is A =10,000/QALY. Note that
some components of x = (x1, ...,x19) are redundant
in NB(d, x) for each d.

We assume that our uncertainty about the inputs
can be represented by a multivariate Normal distribu-
tion, with X5, X7, X14, and X6 all pairwise correlated
with a correlation coefficient of 0.6, and with Xg and
x15 correlated with a correlation coefficient of 0.6. All
other inputs were assumed independent. In a simple
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Table 1 Summary of Means and Standard Deviations for Case Study Model Parameters

Mean (sd)

Parameter d=1 d=2
Cost of drug (X7,X31), £ 1000 (1) 1500 (1)

% Admissions (Xg,Xi2) 10 (2) 8(2)
Days in hospital (X3,X13) 5.20 (1.00) 6.10 (1.00)
Cost per day (X4), £ 400 (200) 400 (200)
% Responding (X5,X14) 70 (10) 80 (10)
Change in utility if respond (Xg,X15) 0.30 (0.10) 0.30 (0.05)
Duration of response (X7,Xi¢), years 3.0 (0.5) 3.0 (1.0)
% Side effects (Xg,X17) 25 (10) 20 (5)
Change in utility if side effect (Xy, X1g) —0.10 (0.02) —0.10 (0.02)
Duration of side effect (X19,X19), years 0.50 (0.20) 0.50 (0.20)

sum product form model, the assumption of multi-
variate Normality allows us to compute the inner con-
ditional expectation analytically.

We define 3 parameter sets of interest: set 1 com-
prising effectiveness parameters X5 and Xi4, repre-
senting information that could be gained from
a trial; set 2 comprising effectiveness and utility
parameters X5, Xs,X14 and X5, representing informa-
tion that could be gained from a trial that also col-
lected utility data; and set 3 comprising duration of
response parameters X; and Xj, representing infor-
mation that could be gained from the long-term fol-
low-up of trial participants.

Although the case study model is computationally
cheap to evaluate, we assume that we are in a position
of being able to evaluate the model only 10 000 times.
Given this limitation, we calculated partial EVPI
using 3 methods. First, we calculated the partial
EVPI for each parameter set using a single-loop Monte
Carlo approximation for the outer expectation in the
first term of the right-hand side of Equation 4 with
10 000 samples from the distribution of the parame-
ters of interest, an analytic solution to the inner con-
ditional expectation, and hence 10 000 model runs.
Next, we calculated the partial EVPI values using
the standard 2-level Monte Carlo approach with 3 dif-
ferent sets of / inner loop samples and K outer loop
samples, where ] X K = 10 000 model runs in total
(see Table 2 for values of J and K). Third, we com-
puted the partial EVPI values using the GAM regres-
sion method with a total of 10 000 PSA samples.
Finally, we computed the partial EVPI values using
the Gaussian process regression method with the
same 10 000 PSA samples.

We compared values with a gold standard measure
of partial EVPI calculated using the analytic solution
to the inner conditional expectation, and 107 outer
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loop samples. Standard errors for the 2-level Monte
Carlo partial EVPI estimates were obtained using
the method given in Appendix A. Estimates of partial
EVPI using the 2-level Monte Carlo method are
upwardly biased for small values of/, due to the max-
imization step. The estimates of upward bias were
obtained using the method presented in Oakley and
others® (see Appendix A).

For each method, we report the mean time taken to
compute the partial EVPI for the 3 parameter sets of
interest.

Results for Case Study 1. Regression diagnostic
plots for the Gaussian process and GAM models
are shown in Figure 3. A random subset of 500
points is shown on each plot. First of note is, for
each parameter set, the similarity in the pattern of
residuals between the Gaussian process model and
the GAM model (reflecting the similarity in esti-
mates of g). In each case, the plots of residuals
against fitted values show no worrying heterosce-
dasticity, and the residual Normal Q-Q plots show
no gross deviation from Normality.

Figure 4 shows the values of g obtained via the
regression methods against the analytically calcu-
lated values of g. Good agreement is seen over the
whole range.

Table 2 shows the estimated partial EVPI values for
the 3 sets of parameters of interest. The overall EVPI
for all 19 parameters is £1047. The top line shows
the gold standard estimates, obtained by generating
10”7 samples from the joint distribution of the inputs
of interest and then analytically calculating the
expected net benefits for each decision option, condi-
tional on these sampled values. The standard errors
of the gold standard estimates are small. When we
restrict ourselves to only 10 000 model evaluations,

Downloaded from mdm.sagepub.com at Royal Hallamshire on April 8, 2014


http://mdm.sagepub.com/
http://mdm.sagepub.com/

PARTIAL EVPI VIA NONPARAMETRIC REGRESSION

Table 2 Partial Expected Value of Perfect Information (EVPI) Values and Timings for Case Study 1

Sample Size

Partial EVPI (SE; Upward Bias), £

Outer Loop Inner Loop Total Parameter Set1 {X5,X;4} Parameter Set 2 {X5,X¢,X14,X15} Parameter Set 3 {X7,X15} Mean Time

One-level Monte Carlo®

107 — 107 247.95 (0.14; unbiased) 840.84 (0.27; unbiased) 536.28 (0.31; unbiased) 1.3 h
One-level Monte Carlo®

10* — 10* 255.15 (4.41; unbiased) 845.73 (8.53; unbiased) 534.80 (9.01; unbiased) 1.0 s
Two-level Monte Carlo®

10° 10° 10* 232.80 (140.28; 1.42) 474.22 (452.56; 0.17) 301.55 (269.00; 0.42) 0.04 s
102 102 10* 222.75 (49.34; 14.28) 796.77 (143.94; 1.83) 501.51 (86.71; 5.88) 0.07 s
108 101 10* 351.92 (25.20; 130.69) 909.06 (47.95; 20.35) 583.05 (32.46; 62.99) 0.5s
Two-level Monte Carlo®

10* 10° 107 243.61 (4.37; 1.34) 834.73 (13.67; 0.25) 552.97 (9.13; 0.74) 34s
Gaussian process regressionb

10* — 10* 234.44 (17.02, 0.82) 830.48 (11.44, 0.65) 541.13 (15.76, 0.49) 170 s
GAM regression”

10* — 10* 234.52 (16.24, 1.76) 832.19 (10.48, 0.25) 540.50 (15.49, 0.51) 0.9s

a. Reference gold standard.
b. Model runs restricted to 10*,

c. Jand K chosen to achieve SE and bias of the same order of magnitude as the regression estimates.

but again use the analytic solution to the conditional
expectation, the standard errors are unsurprisingly
larger. The estimates are still unbiased. In contrast,
estimates obtained via the 2-level Monte Carlo
approach are biased due to the maximization
over quantities that are subject to sampling variabil-
ity.” When restricted to 10 000 model evaluations,
there is a clear tradeoff between bias and variance
when using the 2-level method, with small values
of the inner loop resulting in considerable upward
bias.

In comparison, the regression-based estimates all
have lower variance than any of the 2-level
Monte Carlo estimates when model runs are
restricted to 10 000. The upward bias due to the max-
imization in the first term of Equation 9 is small in
each case and comparable with that obtained by
the 2-level Monte Carlo method with 1000 inner
loop samples. To achieve a similar level of bias
and variance to that obtained using the regression
method with 10* PSA samples, the 2-level Monte
Carlo would require approximately 107 model
runs.

The computational cost of obtaining the gold stan-
dard estimate is greatest, because of the large sample
size. The 2-level Monte Carlo method is fast in this
example because of the simplicity of the model but
will typically be slower and will increase as the com-
putational complexity of the model increases. In con-
trast, the speeds of the Gaussian process and GAM
methods are independent of the computational

ORIGINAL ARTICLE

complexity of the model because the model itself is
not evaluated during the regression fitting process.
The GAM method takes less than 1 s with a PSA sam-
ple size of 10*, whereas the Gaussian process method
takes approximately 3 min.

Case Study 2: Three State Markov Model

Case study 2 is an extension of the case study 1
model that incorporates a 20-time cycle Markov
model for the response to each intervention. The
parameters for mean duration of response (x7 and
x16) are replaced with Markov models of natural his-
tory of response to each drug with health states
“responding,” ‘“not responding,” and ‘““dead.” The
model is

20
I\IB(].7 X) = )\{ Z (S'{MSIUl) + xgxgxlo} — (x1 + 3(223(?3.’)(74)7

n=1

(24)

20
NB(2,x) = )\{ > (ngguz) + x17x18x19} — (11 + x12%13%4),
n=1
(25)
where the VectoTrs Sy and Uy are Tdefined as
S1=(x5,1—-x5,0)", Sg=(x14,1—2x14,0)", Uy = (s,

0,0)", and Uy = (x15,0,0) and where the transition
matrices are defined as
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Figure 3. Regression diagnostic plots for case study 1.
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M; = (x93 w24 xo5 | and My = | x99 x30 31 (26)
0 0 1 0 0 1

Uncertainty regarding the transition matrix param-
eters (Xg to X31) was expressed using Dirichlet distri-
butions with (Xg0,X21,X92)~ Dirichlet(70,40,10);
(Xas,Xo4,Xo5)~ Dirichlet(10,100,20); (Xa6, X7,
XZS)N DiI‘iChlet(70,40,10); and (X29,X30,X31)~
Dirichlet(10,100,20). Means and standard deviations
for the remaining input parameters are as for case
study 1 (Table 1), but now instead of assuming Nor-
mality for all parameters, we expressed our uncer-
tainty about Xg, X5, Xs,X12,X14 and X37 using Beta
distributions and  our uncertainty about
X3,X4,X10,X13 and X79 using Gamma distributions.
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In contrast with case study 1, it is assumed that
each input parameter X; to Xig is independent of all
other parameters in the model.

We again defined 3 parameter sets of interest: set 1
comprising effectiveness parameters X5 and Xi4,
representing information that could be gained from
a trial; set 2 comprising effectiveness and utility
parameters X5, X, X14 and Xi5, representing informa-
tion that could be gained from a trial that also col-
lected utility data; and set 3 comprising the
transition matrix parameters Xy to X3, representing
information that could be gained from the long-term
follow-up of trial participants.

Results for Case Study 2. A similar pattern of
results is seen for case study 2 as for case study 1.
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Figure 4.
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Gaussian process and Generalized Additive Model regression predictions versus analytic values for case study 1.
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Regression diagnostic plots shown in Figure 5 are
similar in character to the those obtained in the first
case study, and again, no worrying departures from
the model assumptions are indicated.

Figure 6 shows the values of g calculated by the
regression methods against the corresponding values
obtained by the 2-level Monte Carlo method with 10°
model runs (defined as our gold standard in this
case). Very good agreement is seen over the whole
range of g in each case.

Table 3 shows the estimated partial EVPI values.
The overall EVPI is £775. Standard errors for the
gold standard 2-level Monte Carlo estimates with
10° model runs are small, as are the values of the
upward bias. When the number of model evaluations
is restricted to 10*, the regression methods perform
considerably better than the 2-level Monte Carlo
method, resulting in estimates that have both mini-
mal upward bias and substantially greater precision.
To achieve a similar level of bias and variance to that
obtained using the regression method with 10* PSA
samples, the 2-level Monte Carlo would require
approximately 10” model runs.

With a PSA sample size of 10*, the GAM takes
approximately 1 s and the Gaussian process takes
approximately 3 min. In contrast, the 2-level Monte
Carlo method with 10” model runs takes 1.8 h.

DISCUSSION

Main Result and Implications

The regression-based approach we propose
requires only the single set of model evaluations
that is generated in a standard probabilistic sensitiv-
ity analysis to calculate partial EVPI for any set of
inputs. It leads to a considerable gain in precision
over the 2-level Monte Carlo method with the same
number of model runs while retaining an acceptably
small upward bias. The GAM method in particular is
straightforward to implement in the freely available
software R, thus allowing an analyst to compute par-
tial EVPI for any subset of input parameters quickly
and with relative ease.

The regression method allows the complete sepa-
ration of the EVPI calculation step from the model
evaluation step, which may be particularly useful
when the model has been built using specialist soft-
ware (e.g., for discrete event simulation) that does
not allow easy implementation of the EVPI step or
where those who wish to compute the EVPI do not
own (and therefore cannot directly evaluate) the
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model. The method has the particular advantage
that, even in the case of correlated inputs, only the
joint distribution of inputs is required. This is in con-
trast to the 2-level Monte Carlo approach in which we
are required to sample values from p(X ;| X; = x;), the
conditional distribution of the remaining parameters
given some sampled parameter vector of interest,
a process that an analyst could find challenging with-
out the necessary statistical training.

In terms of computational speed, the regression
methods are fast. We see 2 particular scenarios in
which this will be useful: when the analyst is faced
with a slow patient-level simulation model and in
the case in which the partial EVPI calculation would
require computationally demanding MCMC sam-
pling under the 2-level scheme.

For health economic decision analysts, the key
implication of the nonparametric regression
approach is that the computation of partial EVPI
has become tractable for any decision problem. We
hope that the computation of partial EVPI values
now becomes standard practice, and we urge those
who write guidance on good modeling practice to
promote the routine reporting of EVPI values.

Limitations

There are some limitations of the regression
approaches. In general, the GAM method will be
more straightforward to implement because of the
easy availability of software (e.g., the mgcv package
in R). However, if the set of input parameters for which
we wish to calculate partial EVPI is moderately large
(greater than 6 or so), and if it is expected that those
parameters will jointly interact (nonadditively) within
the economic model, then it is likely that the number
of GAM model parameters that need to be estimated
will exceed the number of data points, causing the
method to fail. In this case, we would recommend
using the Gaussian process approach.

Although the Gaussian process method is rela-
tively easy to implement in R using the functions
available at http://www.shef.ac.uk/scharr/sections/
ph/staff/profiles/mark, the estimation of the hyper-
parameters requires numerical optimization, which
will be slow if the number of parameters of interest
is large. This optimization is not a black box proce-
dure, and as with other numerical methods such as
MCMC, the onus is on the user to ensure that conver-
gence is achieved. Second, the Gaussian process
method incurs the computational cost of inverting
the N X N matrix 3", which increases in proportion
to N3, where N is the number of PSA samples. This
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Figure 5. Regression diagnostic plots for case study 2.

places a practical limit on the size of N (currently of
the order of tens of thousands), which in turn limits
the precision that can be achieved with the Gaussian
process method. Finally, the use of the Gaussian pro-
cess currently requires somewhat more work on the
part of the analyst than the GAM approach, even
with the functions that we have made available.

Using the Method in Patient-Level Models

In our introduction, we presented a typical sce-
nario in which obtaining partial EVPI via 2-level
Monte Carlo was likely to be computationally prohib-
itive due to the requirement to sample many thou-
sands of patients within each evaluation of the
inner loop.

ORIGINAL ARTICLE

Partial EVPI via the regression method is calcu-
lated for a patient-level model in the same manner
as it is for a cohort model (i.e., by regressing the
PSA sample net benefits on the parameters of inter-
est). We briefly recap here the computation of a PSA
for a patient-level model. This is a 2-level process
whereby samples are drawn from the PSA level
(i.e., population level) parameters in an outer loop,
and then, conditional on these samples, individual
patients are sampled in an inner loop. The purpose
of sampling individual patients is to average over het-
erogeneity (and/or uncertainty) at the patient level for
each sample of population-level input parameters.
Convergence is achieved when the patient-level sam-
ple size is large enough that, given some arbitrary
sample from the PSA (population)-level parameters,
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Figure 6. Gaussian process and Generalized Additive Model regression predictions versus those obtained via the gold standard 2-level

Monte Carlo method for case study 2.
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PARTIAL EVPI VIA NONPARAMETRIC REGRESSION

Table 3 Partial Expected Value of Perfect Information (EVPI) Values and Timings for Case Study 2

Sample Size

Partial EVPI (SE; upward bias), £

Inner Parameter Parameter Parameter
Outer Loop Loop Total Set 1 {X5,X14} Set 2 {X5,X6,X14,X15} Set 3 {X20 to X31} Mean Time
Two-level Monte Carlo®
10* 10* 108 67.95 (1.43; 0.22) 587.14 (9.38; 0.03) 416.80 (6.50; 0.05) 17.7h
Two-level Monte Carlo”
10" 10° 10* 5.77 (50.66; 2.01) 389.93 (296.6; 0.29) 178.93 (223.02; 0.39) 3.7s
10? 10? 10* 77.07 (21.96; 19.98) 661.75 (94.34; 2.40) 362.82 (71.78; 4.41) 2.9s
10° 10" 10* 228.32 (15.11; 148.24)  623.70 (31.43; 21.63)  467.61 (26.06; 42.32) 2.8s
Two-level Monte Carlo®
10* 10° 107 68.84 (4.47; 0.22) 595.14 (9.39; 0.13) 426.67 (6.51; 0.30) 1.8h
GP regression”
10* — 10* 62.36 (10.35; 0.64) 582.32 (8.85; 0.13) 408.17 (10.30; 2.01) 198 s
GAM regression”
10* — 10* 62.53 (9.98; 0.47) 582.03 (8.23; 0.49) 409.80 (10.37; 1.03) 0.9s

a. Reference gold standard.
b. Model runs restricted to 10*,

c. Jand K chosen to achieve SE and bias of the same order of magnitude as the regression estimates.

the estimated net benefit is stable. Nonconvergence
will introduce additional noise in the estimation of
the net benefit for each sample from the PSAlevel
parameters.

Now, recall that in our approach, we treat all vari-
ability in the net benefit that is not due to the param-
eters of interest as noise (Equation 8). Any residual
variability due to nonconvergence of the patient-level
simulation will be treated as noise in the regression
and averaged out. Because the regression estimation
occurs before the maximization step, the residual
first-order uncertainty will not cause an upward
bias in the partial EVPI estimate.

Other Uses of the Gaussian Process in Health
Economic Decision Modeling

In our method, we modeled the target conditional
net benefit as an unknown smooth function of the
parameters of interest. The observed net benefits in
the PSA sample were treated as noisy data from
which to learn about the unknown function. This
use of a nonparametric regression method to approx-
imate the (conditional) output of a health economic
decision model is subtly different from the use of
the Gaussian process in previous work by Stevenson
and others,'® Tappenden and others,"”” and Rojnik
and Naversnik.'® In these previous applications, the
Gaussian process was used to model the net benefit
itself as an unknown function of all the unknown
input parameters, rather than to model the

ORIGINAL ARTICLE

conditional net benefit as a function of the parameters
of interest only. The primary purpose for using the
Gaussian process was to construct a meta-model or
emulator for the health economic decision model to
allow a slow model to be replaced by a fast surrogate.
Although this approach reduces computation time,
the calculation of partial EVPI will typically still
require a nested 2-level Monte Carlo approach.
More importantly, this use of the Gaussian process
doesnot address the problem of sampling from poten-
tially difficult conditional distributions if input
parameters are correlated.

Further Research

Although partial EVPIis useful in highlighting the
sensitivity of the decision to any particular subset of
input parameters, it represents only an upper bound
on the expected value of undertaking research to
reduce decision uncertainty. More useful is the
expected value of sample information (EVSI), which
represents the expected value of undertaking a partic-
ular data collection exercise."' We are currently
working on extending the regression method
described above to the computation of EVSI.

Conclusion

In conclusion, the regression-based approach to
computing partial EVPI is likely to be of considerable
benefit over the traditional 2-level Monte Carlo
approach, except perhaps in models that are
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STRONG AND OTHERS

computationally very cheap to evaluate and in which
there are no correlations in the inputs. With the
increasing use of patient-level micro-simulation
models, we envisage that obtaining partial EVPI via
the traditional 2-level Monte Carlo approach will be
considered just too time-consuming (in fact, experi-
ence suggests that the 2-level Monte Carlo procedure
is considered too difficult for even moderately simple
cohort models). In contrast, the regression methods
we have presented provide a mechanism for rapidly
estimating partial EVPI for any set of parameters in
a model of any complexity.
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