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Abstract

In this paper, the determination of time-dependent leading and lower-order thermal co-
efficients is investigated. We consider the inverse and ill-posed nonlinear problems of
simultaneous identification of a couple of these coefficients in the one-dimensional heat
equation from Cauchy boundary data. Unique solvability theorems of these inverse prob-
lems are supplied and, in one new case where they were not previously provided, are
rigorously proved. However, since the problems are still ill-posed the solution needs to
be regularized. Therefore, in order to obtain a stable solution, a regularized nonlinear
least-squares objective function is minimized in order to retrieve the unknown coefficients.
The stability of numerical results is investigated for several test examples with respect to
different noise levels and for various regularization parameters. This study will be sig-
nificant to researchers working on computational and mathematical methods for solving
inverse coefficient identification problems with applications in heat transfer and porous
media.

Keywords: Inverse problems; Thermal properties; Nonlinear optimization.

1 Introduction

Simultaneous determination of several unknown coefficients in parabolic partial differen-
tial equations has been investigated in various studies in the past, see e.g. the monographs
of Prilepko et al. [27] and Ivanchov [17]. In heat conduction for example, attention was
paid to the unique solvability of one-dimensional inverse problems for the heat equation in
the case when the unknown thermal coefficients are constant [4], time-dependent [15, 16],
space-dependent [1], or temperature-dependent, [20, 23, 24]. In these papers, the authors
investigated the existence and uniqueness of solution of the inverse problem, though no
numerical method/solution was presented.

When solving an inverse problem the choice of additional information about the so-
lution is crucial since this information enables us to determine the unknown param-
eters of the process under consideration uniquely. Usually, this additional informa-
tion/observation is given by the boundary conditions or, the value of the solution on
a specific subdomain or, at a certain time, [19]. In [28], the authors proposed a new algo-
rithm based on space decomposition in a reproducing kernel space for solving the inverse
problem of finding the time-dependent thermal diffusivity. In [14, 18] the problem of find-
ing the time-dependent leading coefficient and temperature distribution with Dirichlet



boundary conditions and measured heat flux as overdetermination condition was consid-
ered. In [10], the author considered retrieving lower-order time-dependent coefficients
using the Trace Type Functional approach, [5], which assumes that the governing partial
differential equation is valid at the boundary. However, this approach does not seem so
stable [11], and it has never been applied to inverse coefficient identification problems in
which the unknown coefficients appear at the leading order in the heat operator.

In this paper, we investigate the inverse problems of simultaneous determination of
time-dependent leading and lower-order thermal coefficients. The paper is organized as
follows. In the next section, we give the mathematical formulations of three inverse
problems for which the unique solvability theorems of [14, 15] are stated and, it one case,
proved. The numerical finite-difference discretisation of the direct problem is described
in Section 3, whilst Section 4 introduces the regularized nonlinear minimization used for
solving in a stable manner the inverse problems under investigation. In Section 5, we
provide numerical results and discussion. Finally, conclusions are presented in Section 6.

2 Mathematical Formulations of the Inverse Prob-
lems

Consider the linear one-dimensional parabolic equation with time-dependent coefficients

2

cOWwt)= K0T+ QP t),  @wHeO)x 0= (1)
where, in heat conduction, u represents the temperature in a finite slab of length ¢ > 0
recorded over the time interval (0,7") with 7" > 0, C' and K represent the heat capacity
and thermal conductivity of the heat conductor, respectively, Q(t) = ¢(t)v(t) with ¢ and v
representing the heat capacity and velocity of a fluid flowing through the heat conducting
body, [2, 9]. The first term in the right-hand side of equation (1) represents the diffusion,
whilst the second term, if v(t) is positive, represents the convection. A similar situation
occurs in porous media, [7], where the properties are referred to as hydraulic rather than
thermal as in heat transfer. For example, in the contaminant transport in groundwater the
first term in the right-hand side of equation (1) represents the dispersion of contaminant as
it moves through the porous medium, whilst the second term with v(t) negative describes
the advection of contaminant which flows along with the bulk movement of groundwater.

The initial condition is

u(x,0) = o(x), e 0,0, (2)

and the boundary and over-determination conditions are
U’(Ovt) = Ml(t)a U(f,t) = MQ(O? te [OvT]a (3)
CK(u0,8) = (1), K(u(6,1) = (t), tel0, 7. ()

Conditions (3) and (4) represent the specification of the boundary temperature and heat
flux, respectively. Together they represent the Cauchy data for the inverse coefficient
identification problems (ICIP) which are described next.

We distinguish three ICIPs covering the simultaneous determination of a couple of
coefficients in (1). The case of identifying all three coefficients in (1) is deferred to a
future work.



2.1 Inverse Problem 1

Assuming that c(t)v(t) = 0, the inverse problem 1 (IP1) requires the simultaneous de-
termination of the time-dependent thermal conductivity K(t) > 0, the heat capacity
C(t) > 0 and the temperature u(z,t) satisfying the one-dimensional heat equation

P 1) = KOS 2wt),  (n1) €0 )

subject to the initial and boundary conditions (2)—(4).
For this IP1 we have the following existence and uniqueness of solution theorems, [15].

Theorem 1. (Existence)
Suppose that:

1. ¢ € C*0,4] and p;, v; € CH0,T] fori=1,2.

2. The consistency conditions are satisfied:
p1(0) = ¢(0),  12(0) = 6(€), =11 (0)¢'(£) = 2(0)¢'(0),  p11(0)6"(€) = 115(0)6"(0).
3. The following conditions are satisfied:
¢'(x) >0, ze€l0,0, ¢'()+¢"(l—2z)>0, xe]0,0/2),

vi(t) +v5(t) >0, py(t) — ( )20, (14 x(@) (1) + (1= x(t)) pa(t) > 0,
x(t) >0, X() =0, te[0,T],

(1 +x(t) ¢"(x) + (1 - ()) "(t—2)>0, z€l0,¢/2], t<[0,T),
¢"(x) = ¢"(t—x) 20, or ¢'(z)—¢"(—2) <0, =z€l0,(/2],

where x(t) = % Then, for a sufficiently small T > 0, the inverse problem (2)-
(5) has at least one solution {C(t), K(t),u(x,t)}, where the functions C(t) and K(t) are

continuous and positive on [0, T] and u(z,t) belongs to the class C*1(2) N CH(Q).

Theorem 2. (Uniqueness)
Suppose that the following conditions are satisfied:

1. ¢ € C?[0,4], p; € CH0,T) and v; € C[0,T] fori=1,2;
2. ¢"(x) >0 for x € [0,4], ¢"(0) >0, pi(t) >0, ph(t) > 0, v1(t) <0, 1a(t) > 0 for
0,].

If {C;(t), K;(t), uj(z,t)} for j = 1,2, are two solutions to the problem (2)-(5) such that
a;(t) = K;(t)/C ( ) are piecewise analytic functions on (0,T'), then these solutions must
coincide.



2.2 Inverse Problem 2

Assuming that K (t) > 0 is known, we now wish to determine the time-dependent heat ca-
pacity C(t) > 0, the convection/advection coefficient Q(¢) and the temperature u(z, t) sat-
isfying equations (1)—(4). By dividing (1) with C(¢) and denoting with a(t) := K(t)/C(t)
the thermal diffusivity and b(¢) := Q(t)/C(t), we obtain

ou 0*u ou
O et) = a2 2@ ) 00 e t). @D e )

For simplicity, since K (t) > 0 is known we can divide with it in (4) and denote the right
hand sides by

—ug(0,t) = v1(t)/K(t) = 71(t), wu.(l,t) =wa(t)/K(t) =Da(t), t€l0,T]. (7)

For this inverse problem 2 (IP2), we have the existence and uniqueness of solution The-
orems 3 and 4 below, [16]. These are actually given for the more general reaction-
convection-diffusion equation with a source term, namely,

ou 0%u

ou
E(z,t) = a(t )(9 5 (z,1) + b(t )ax(x,t) +d(x,t)yu+ f(x,t), (x,t) €, (8)

where d and f are some given functions representing the reaction rate and source term,
respectively. The triplet (a(t),b(t),u(z,t)) is called a solution to the IP2 given by equa-
tions (2), (3), (7) and (8) if it satisfies these equations and it belongs to the class
(HY2[0,T])? x H**1+7/2(Q) for some v € (0,1), and a(t) > 0 for all t € [0,7]. For
the definition of the Holder space, as well as other spaces of functions involved, see [21].

Theorem 3. (Existence)
Suppose that the following conditions are satisfied:

1. ¢ € H*(0.0), w, v € H20,T) fori=1,2, and d, f, d, fo € H"/(Q);

2. (3 () = f(0,8) = d(0, 1) r (1) )72(8) + (i () = (£, 8) = (L, ) o (2)) 71 (£) > 0,71 (2) 2 0,
Uo(t) >0, Ua(t) + 71(t) > 0, t € [0,T], and ¢"(x) > 0, x € [0,];

3. 1 (0) = ¢(0), p12(0) = ¢(¢), —71(0) = ¢/(0), and v5(0) = ¢'(¢).

Then the problem (2), (3), (7) and (8) has a (local) solution for x € [0,¢] and t € [0, 1],
where the time ty € (0,T], is determined by the input data of the problem.

Theorem 4. (Uniqueness)
Suppose that the following condition is satisfied:

(i (8) = f(0, 1) = d(0,£)pa (£))72(t) + (pa(t) — f (£ 1) — d(€, ) pa(t))7r(t) # 0, t €0, T).
Then a solution to (2), (3), (7) and (8) is unique.



2.3 Inverse Problem 3

For completeness, we consider the inverse problem 3 (IP3) which consists of determining
the thermal conductivity K(¢) > 0, the convection/advection coefficient Q(t) and the
temperature u(z,t) satisfying equations (1)—(4), when the heat capacity C(t) is known.
By dividing (1) with C(¢) we obtain equation (6). Also, dividing (4) by the known
C(t) > 0 we obtain

vi(t) va(t)

—a(t)u,(0,t) = oD =:0(t), a(t)u(,t) = 0 =:(t), tel0,T]. 9)

The following theorems give the unique solvability of solution of the IP3 given by equations
(2), (3), (8) and (9).
Theorem 5. (Existence)
Suppose that the following assumptions hold:

(A1) ¢ € C*(0,4], p; € CY0,T], 7; € C[0,T] fori=1,2, d, f € C"°(Q), forsome y €
0,1);

O 2 ) >0 s e 0a)
40, D () > 0, piy(t) — F(£,1)
(A3) ¢(0) = 11(0), ¢(€) =
0
t) €

(£) 20, (t) >0, »5(t) +n(t) > 0, i (t) = f(0,1) =

( d(L, t)pa(t) > 0, t € [0,T];

0) = 1a(0), ~21(0)'(6) = 72(0)6/(0).

,T| such that the problem (2), (3), (8) and (9) has a (local)
(C0,%0])* x C*([0, 4] x [0,o]) and a(t) > 0, € [0, o).

Proof. Put x = 0 and « = ¢ into equation (8) and use conditions (3) and (9) to obtain

2

Then there exzsts ty €
solution (a(t),b(t), u(z,

) = alt)ue0.0) = 08 (0. ) + 50.),

i (8) = altusa(l,1) + 2%“) A Opalt) + F(L.1)
From this we deduce
(1) = [(4(6) = £10.0) = d(0.a()7(0) + ((0) = £(0.) =t Dya( 1))
% (P (E)ta (0, 8) + i1 (aa (6, 8)) ", £ € [0,T), (10)
b(t) = alt) [(1(t) — F(E,t) — d(L, Daalt) tae (0, 8) — (s(8) — F(0,8) — d(O, Oyas (8)aze (€ )]
X (73 ()t (0, 8) + 71 ()aa (6, 8)) ", £ € [0,T). (11)

To find the solution of the direct problem (2), (3) and (8), we introduce a new unknown
function

v(z,t) == u(z,t) — (x) — pa(t) + 1 (0) — %(M(t) — p2(0) — pa(t) + 1 (0)). (12)

The function v(zx,t) satisfies the following problem:
x
~ 2wy t0) (1)

()" () +5(0) (¢ () + () — 12(0) — ia(t) + 12 (0)))

v = a(t)vee + b(t)ve + d(x, t)v + f(x,t) — py(t)

+d(x,t)( d(x) + pa(t) — 11 (0) + i(ﬁ@(t) — 112(0) — pa () + Ml(o))>a (z,t) € Q, (13)
v(z,0) =0, z€][0,/, (14)
v(0,t) =v(,t) =0, tel0,T]. (15)



The solution of problem (12)—(14) is given by the Green’s formula and using (12) we
obtain

u(e,t) = o) + pu(t) = p(0) + Z(a(t) = p1a(0) = us(£) + s (0))

+ [ [ ot sen]sen o - fodor - i + i

F0()(#(6) + 5 (m2(r) = a(0) — pa() + r(0)))
(e, 1) (6(6) + () — m(0) + S(a(r) — o(0) — pa() + i 0)) e, (2,1) €D
(16)

where G = G(x,t;&,7) is the Green function for the equation V; = a(t)V,, + b(t)V, +
d(x,t)V with Dirichlet boundary conditions.
Differentiating (16) twice with respect to x we obtain

tan(a.) / ar / el 667 [F67) — () = Shlr) — () + 0 ()
Fo(m)(#(6) + %wm — af0) — () + ul(O)) (6, (6(0) + mi(7) — (0
+ 5 (a(r) = wa(0) — (@) + m(0)]de, (1) €@ (1)

It is known, [12], that the estimate

const

= rn (18)

/’5 (2,16, 7)F(§, 7)dE| <

is true if the function F(z,t) is continuous in Q and verifies the Holder condition with
respect to x with the exponent 7.

As ¢"(z) > 0, z € [0,/], and ¢ € C*™[0,¢] we have that there exits My > 0 such
that ¢"(x) > My > 0, x € [0,¢]. Taking into account (18), we conclude that there exists
to € (0,T] such that the estimation

! / dr / Gl :6,7)[F(E,7) = (1) = S(5(r) = () + ()" (@)

+b(r)(6(6) + — 12(0) = a(7) +12(0))) + d(&,7)(6(6) + ua(7) = ua(0)
# S0lr) = 0) = ) +paO)) ]| < 00 )00 (19
holds. Then 1
Uz (T, 1) > §M0, (x,t) € 10,4] x [0, o] (20)



and the denominator in (10) and (11) may be estimated as follows:

Do ()t1an (0, £) + Py (D)1t (0, £) > %MO(Dg(t) b)) > M >0, tel0t)],  (21)

for some M; > 0. Applying this estimate to (10), we obtain
a<t) < Al < o0, te [O7t0]7 (22)

where the constant A; is defined by the input data.
Using the estimation (19) in (17), we obtain that

1
Uz (T, 1) < max " (x) + §MO =: My < oo, (x,t)€[0,¢] x[0,t]. (23)

Taking into account (21)-(23), we deduce from (10) and (11) that
a(t) > Ag >0, [b(t)] < B <oo, tel0t, (24)

where the constants Ay and B are defined by the input data.
Now we can apply the Schauder fixed-point theorem to the system of equations (10)
and (11). Let us rewrite this system in the form

w = Puw,

where w := (a(t),b(t)) and P := (P, P»). Here the operator P, is defined by the right-hand
side of the equation (10) after substituting into it the expression of wu,, from (17), and
the operator P, is defined by the right-hand side of the equation (11) after substituting
into it the expressions of u,, and a(t) from (17) and (10), respectively. It is clear that
the operator P maps the set N := {(a,u) : Ay < a(t) < Ay, [b(t)| < B} into itself. The
compactness of the operator P is established by the same way as in [16]. Consequently,
there exists at least one fixed point of the operator P in A, that means the existence
of solution (a(t),b(t)) to the system of equations (10) and (11). After this, the function
u(z,t) is determined by (16), and the proof is complete.

Theorem 6. (Uniqueness)
Suppose that the following assumptions hold:

(A4) d € C°(Q), forsome v € (0,1);

(A5) () =20, »a(t) =0, pa(t)+01(t) > 0, py(t) = f(0,) =d(0,0)pa(t) > 0, p5(t) —
fl,t) —d(e, t)us(t) >0, t €[0,T].

Then the problem (2), (3), (8) and (9) can have at most one solution (a(t),b(t), u(z,t)) €
(C[0,T))? x CH7L(Q) such that a(t) > 0,t € [0,T].

Proof. Suppose that the problem (2), (3), (8) and (9) has two different solutions

(a;(t),b;(t), u;(x,t)), i € {1,2}. Denote a := ay — ag,b := by — by, u 1= u; — uy. The
triplet of functions (a(t),b(t),u(z,t)) is a solution of the following problem:

U = a1 () gy + by (H)uy + d(z, t)u + a(t)uge, (2, t) + b(t)ugs(z,t), (z,t) €Q,
u(z,0) =0, z€]l0,/, (
u(0,t) =0, wu(l,t)=0, te][0,T], (27
ar(t)ug(0,t) = —a(t)uge(0,1), ar(t)us(l,t) = —a(t)us(f,t), te€[0,T]. (

— ~— ~— —



The solution of the problem (25)-(27) has the following form:

t L

u(z,t) = //G(l)(x,t; ) (a(T)ugee (&, 7) + b(T)uge (€, 7))dédr,  (2,t) € Q, (29)

0 0

where G (x,t;€,7) is the Green function for the equation V; = a;(t)V,, + bi(t)V, +
d(x,t)V with Dirichlet boundary conditions. After putting = 0 and = = ¢ into equation
(25) and using the conditions (28) we obtain the system of equations

e (0, 1) + 20D Ja(t) — Z2B0(t) = —ar(Hug(0,1), ¢ €[0,T],

a2 (t)b U
u?xm(& t) - afggalg((?) a(t) + Q(t)b<t) = —a (t)uxx(€> t)a le [07 T]

Solving this system we obtain

_ () @Dz (0, 1) + 01 (Dt (£, 1))

N = = D umea(0,6) + 71 iz (7). (30)
[ U (0, )t (£, 8) + U (€, )1t (0, 1) — #%(al(t)um(e, )
b (0)1s(0,0) | 2020 0.0)+ a0, € [0.7), 1)
Let us verify that
Do () U2z (0, ) + 71 (F)tgee (6, 1) # 0, € 1[0,T). (32)

As (as(t), ba(t), ua(x,t)) is a solution to the problem (2), (3), (8) and (9) we have from
(10) that

az(t) = [(11(t) = £(0,8) — d(0, ) (£))Da(t) + (s () — f(L8) — d(E, t)pa(t)) P (1))
X (g (1) U2e (0, 1) 4+ 71 () uee (0, 1)) Y, ¢ € [0,T).

Here a2(t) > 0,1 € [O7T] and (Mi(ﬂ - f(oat) - d(07t)/~bl(t))772(t) + (NIQ(t) - f(gu t) -
d(l,t)ua(t))m(t) > 0, as a consequence of the assumption (A5). Hence, the inequality
(32) is true. It means that we have a system of homogeneous Volterra integral equations
(30) and (31) whose kernels verify the estimate (18). It yields that a(t) = 0,b(t) =
0,t € [0, T]. Then, from (29) we also obtain that u(z,t) = 0, (x,t) € Q, and the proof is
complete.

3 Solution of Direct Problem

In this section, we consider the direct initial boundary value problem given by equations
(2), (3) and (8), where a(t), b(t), d(x,t), f(x,t), ¢(x) and u,(t), i = 1,2, are known
and the solution u(x,t) is to be determined. To achieve this, we use the Crank-Nicolson
finite-difference scheme [29], which is unconditionally stable and second-order accurate in
space and time.



The discrete form of our problem is as follows. We divide the domain © = (0, ¢) x
into M and N subintervals of equal step length h and k, where h = % and k = %,
respectively. So, the solution at the node (7, j) is w;; := u(z;,t;), where z; = ih, t; = jk,
fore=0,M, j=0,N.

Considering the general partial differential equation

up = F(x,t,u, Uy, Uy, (33)

the Crank-Nicolson method is based on central finite-difference approximations for space
and forward finite-difference approximations for time which gives second-order conver-
gence rate. This method is equivalent to take average of forward and backward Euler
schemes in time, hence equation (33) can approximated as:

Uijp1 — Uiy 1

2 9 (E,j+E,j+1)7 i=1,(M—-1),7=0,(N—-1), (34)
Uio = P(x;), i=0,M, (35)
uo; = pa(ty), j=0,N, (36)

UM, = ,uZ(tj)a J= Oa_N (37>

For our problem, equation (8) can be discretised in the form of (34) as
—Ajui g+ (1= Biji)uijpn — Cjitipj =

k
— Ajuiyj+ (14 Bijuij — Ciugj + B (fij+1+ fij) (38)

fori=1,(M —1), j =0,N, where f;; := f(z;,;)

k k k k k k

Aj = 2—,12(1(%‘) - Eb(tj)a Bij = —ﬁa(t]‘) + Ed(%t]‘)a C; = 2—,12(1(%‘) + Eb(tj)-

At each time step t;41, for j = 0, (N — 1), using the Dirichlet boundary conditions (3),
the above difference equation can be reformulated as a (M — 1) x (M — 1) linear system
of equations of the form,

Lu=Db
where
u= (U1,j+1, U2, 5y -+, UM—1,j+1)tT, b = (bh b, ..., bM—l)tr-
and
1-Byj1 —(A+Ciy) 0 -0 0 0
_Aj+1 1-— B17j+1 —Cj+1 e 0 0 0
L= : : Lo : :
0 0 0 -+ —=Ajn 1= Bujn —Cin
0 O 0 te 0 —(Aj+1 + Cj+1) 1 - BM*l,jJrl

k
by = (1+ Boj)uo; + (A + Cjury — 2h(Cjpapa(tjvr) + Ciua(ty)) + §(fo,j+1 + fo);
k o
bi = Ajui1;+ (14 Bij)uij + Ciugrj + §(fi,j+1 + fi), i=2,(M-2),
bar—1 = (A + Cj)unr—aj + (L + Baro1j)uoy + 2h(Ajapa(tjn) + Ajua(t;))

k
+ §(fM—1,j+1 + fru-1y)-



As an example, consider the direct problem (2), (3) and (8) with 7= ¢ = 1 and

at) =1+t blt)=1+2t, dz,t)=2"+t, o(x)=(1-32) mt) =¢e,
po(t) = 4e', f(x,t) = (1 — 3x)%e" — 18(1 + t)e' + (6 + 12t)(1 — 3x)e’
— (2 +1*)(1 — 3x)%€".

With this input data, the exact solution is given by u(z,t) = (1 — 3z)?%¢’, and the desired
heat fluxes (4), for K(t) = 1, are v1(t) = 6e* and v,(t) = 12¢'.

The numerical and exact solutions for u(z,t) are shown in Figure 1 and very good
agreement is obtained. Tables 1 and 2 give the numerical heat fluxes in comparison with
the exact ones. These have been calculated using the following O(h?) finite-difference
approximations:

duy j — ug; — 3ug

2h

dupr_1.; — Up—2i — UM . ——
ug(f ) = ML _A;h% MI j=1,N. (39)

'LLx(O, tj) =

From these tables it can be seen that the numerical results are in very good agreement
with the exact solution and that a rapid monotonic increasing convergence is achieved.

Table 1: The exact and the numerical heat flux —u,(0,t) for M = N € {10, 20,40, 100}, for the
direct problem.

13 0.1 0.2 0.8 0.9 1
M =N =10 | -6.6309 | -7.3282 | ... | -13.3529 | -14.7573 | -16.3093
M =N =20 | -6.6310 | -7.3284 | ... | -13.3532 | -14.7575 | -16.3096
M =N =40 | -6.6310 | -7.3284 | ... | -13.3532 | -14.7576 | -16.3097
M =N =100 | -6.6310 | -7.3284 | ... | -13.3532 | -14.7576 | -16.3097
exact -6.6310 | -7.3284 | ... | -13.3532 | -14.7576 | -16.3097

Table 2: The exact and the numerical heat flux u,(1,t) for M = N € {10, 20,40, 100}, for the
direct problem.

t 0.1 0.2 0.8 0.9 1
M =N =10 | 13.2614 | 14.6564 | ... | 26.7039 | 29.5145 | 23.6187
M =N =20 || 13.2620 | 14.6567 | ... | 26.7063 | 29.5151 | 23.6192
M =N =40 | 13.2620 | 14.6568 | ... | 26.7064 | 29.5152 | 23.6193
M =N =100 | 13.2620 | 14.6568 | ... | 26.7056 | 29.5152 | 23.6194
exact 13.2620 | 14.6568 | ... | 26.7065 | 29.5152 | 23.6194
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Figure 1: Exact and numerical solutions for u(x,t) and the absolute error for the direct problem
(2), (3) and (8) obtained with M = N = 40.

4 Solution of Inverse Problems

In our inverse problems we wish to obtain simultaneously stable reconstructions of two un-
known coefficients in equation (1), satisfying the initial and boundary conditions (2)—(4).
The most common Tikhonov-type regularization approach is to impose the measured in-
put data (4) in a penalised least-squares sense. This recasts into minimizing the following
regularised (penalised) nonlinear objective functions.

For the IP1 given by equations (2)—(5) we minimize the functional

Fi(K,a) = || = K(t)ua(0,) — va(t)|” + [ K (t)us (0, 1) — 12 (t)]]*
+B (KON + lla®)]?) . (40)
where 5 > 0 is a regularization parameter and the norm || - || is usually taken as the
L?[0,T] norm.
For the IP2 given by equations (2), (3), (7) and (8) we minimize the functional
Fy(a,b) = || = us(0,8) = 71 (t)|* + [[ua (£, ) — Do (1)
+ B (la@®)* + lI®)]%) - (41)
For the IP3 given by equations (2)—(4) and (8) we minimize the functional
Fy(K,b) = || = K(t)us(0,8) = i (t)|* + [ K (H)ua(l,) — va(t)]?
+ B (K@ + b)) - (42)

The case 8 = 0 yields the ordinary nonlinear least-squares method which is usually un-
stable. The physical constraints that the thermal conductivity and diffusivity are positive
recast as a simple lower bound on these variable and is imposed as K > 107! and
a > 1071% The velocity v of the fluid is allowed to be either positive (convection) or
negative (advection).
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The discretisations of (40)—(42) are:

F(K,a) = i[—K(tj)um(O, t;) —wn(t;)]” + ﬁ;[K(tj)um(& t;) — va(t;))”
+ 8 (ﬁ; K*(t;) + ia%@)) : (43)
Fy(a,b) = g[—ux((), t;) = 7u(t)]* + g[ux(& t;) — 7a(t)))?
+ (i a’(t;) + iﬂbQ(tj)> : (44)
F3(K,b) = jé[—[((tj)uz(o,tj) — ()] + jé[[((tj)uz(é, t;) — va(ty))?
+ (ﬁ;KQ(tj)JrébQ(tj)), (45)

respectively.

It is worth mentioning that at the first time step, i.e. 7 = 0, the above equations
(43)—(45) need to calculate the derivatives u,(0,0) and u,(¢,0) which are obtained from
the initial condition (2), using (39) as:

491 — g2 — 3o
2h ’

4op—1 — Pu—2 — 3¢um

ux(070) = “on )

uz(0,0) =

(46)

where ¢; = ¢(z;) for i =0, M.
If there is noise in the measured data (4), we replace v4(t;) and v»(t;) in (43) and (45)
by the noisy perturbations

I/fl(tj) = Vl(tj) + Elj, V§2(tj) = VQ(tj) + €2j, j = O, N, (47)

where €l; and €2; are random variables generated from a Gaussian normal distribution
with mean zero and standard deviations o; and o9, respectively, given by

ov=px max ()], o2 =px max [1a(0)], (48)

where p represents the percentage of noise. We use the MATLAB function normrnd to
generate the random variables el and €2 as follows:

el = normrnd(0,01, N + 1), €2 = normrnd(0,09, N + 1). (49)

Note that via (7) we replace 77 and 73 in (44) by the noisy perturbations

7y () = v () K (ty), 75 (t;) = v5'(t;)/K(t;), j=0,N. (50)
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4.1 Minimization Algorithms

Nevertheless, finding a global minimizer (even only approximately) to nonlinear (least-
squares) problems is not an easy task. Numerical experience shows that the objective
function which is, in general, non-convex has usually multiple local minima in which a
descent method tends to get stuck if the underlying problem is ill-posed. Furthermore,
the determination of an appropriate regularization parameter § requires additional com-
putational effort.

In this section, we give brief description of the routines fmincon and lsqnonlin from
the MATLAB Optimization Toolbox [25, 26] that we have employed for the constrained
nonlinear minimization of the functionals defined by equations (40)—(42). These routines
are based on interior trust region methods for nonlinear minimization, [3, 6].

The above routines attempt to find a minimum of a scalar objective function of several
variables, starting from a initial guess, subject to simple bounds on the variables. In all
examples of the next section, the initial guess was K° = 1, a® = 1, 1° = 1 and the
lower and upper bounds were taken as LB(K) = LB(a) = 107°, LB(b) = —103, and
UB(K) =UB(a) = UB(b) = 103.

Apart from the initial guess, and the upper and lower bounds the routines also require
the user to input some parameters such as:

e Number of variables M = N = 40.
e Maximum number of iterations = (10? <+ 10°) X (number of variables).

e Maximum number of objective function evaluations = (10% + 107) x (number of
variables).

x Tolerance (xTol) = 10717,

Function Tolerance (FunTol) = 1071,
e Nonlinear constraint tolerance = 1076.

It is also worth noting that the user does not need to supply the gradient of the objective
function which is minimized, as this is calculated internally within the routines using finite
differences. Further, the Broyden, Fletcher, Goldfarb and Shanno (BFGS) technique is
used to compute the Hessian matrix.

We finally mention that we have also used a combination between a generalized pattern
search algorithm for the poll method and a genetic algorithm for the search method, both
of them from the MATLAB Global Optimization Toolbox. In comparison with the previ-
ously described interior-point algorithms the results were not significantly improved, but
instead the computational time increased beyond purpose. For this reason, the numerical
results obtained using this latter combined method are omitted.

5 Numerical Results and Discussion

Numerical results are presented for several test examples for the inverse problems IP1-
IP3, and in each example we obtain the numerical solution of coefficient identification
problems for various noise levels p. In these examples we take, for simplicity, { =T = 1.
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We employ fmincon for IP1 and Isqnonlin for IP2 and IP3, for the minimization of
the functionals (40)—(42). The other computational details have already been given in
Subsection 4.1. We have also calculated the relative root mean square error (rrmse) to
analyse the error between the exact and estimated coefficients, defined as,

N

rrmse(K(t)) = N :— 1 Z (Kn“m”w;l((ez)ctaf)(emct(tj)> ) (51)

J=0

and similar expressions exist for a(t), b(t) and C(t).

One of the main difficulty when we solve inverse and ill-posed problems is how to choose
an appropriate regularization parameter § which must compromise between accuracy
and stability. Nevertheless, one can use techniques such as the L-curve method [13] or,
Morozov’s discrepancy principle [22] to find such a parameter, but in our work we have
used trial and error. As mentioned in [8], the regularization parameter § is selected
based on experience by first choosing a small value and gradually increasing it until any
numerical oscillations in the unknown coefficient are removed.

5.1 Example 1 for IP1

We first consider the problem IP1 given by equations (2)—(5), with unknown coefficients
C(t) and K (t), and we solve this inverse problem with the following input data:

o(x) =1 +2) mt)=t"+t+1, w)=1t"+t+4,
vi(t) = —(1+t)(1+2t), wlt) =2(1+t)(1+28),

for x € (0, =1) and t € (0,7 = 1). The exact solution is given by
1
u(z,t)=(1+z) +t2+t, Ct)=1+t, K(t)=(1+1) <t+ 5) : (52)

We also have that a(t) = t+ %, and one can easily check that the conditions of Theorems 1
and 2 are satisfied such that we know beforehand for sure that the solution to the IP1
exits and is unique.

Table 3 gives the numerical coefficients obtained using M = N € {10,20,40} in
comparison with the exact ones. Form this table it can be seen that the numerical results
are convergent to the exact values, as the FDM mesh size decreases. In the remaining
of this section, the FDM discretization with M = N = 40 is fixed in order to keep the
accuracy good with reasonable computational effort.

14



Table 3: The exact and the numerical coefficients for M = N € {10, 20,40}, for the IP1 of

Example 1 and without noise.

t 0.1 0.2 0.8 0.9 1

0.6600 | 0.8400 2.3400 | 2.6600 | 3.0000 | M =N =10

E(t) || 0.6600 | 0.8400 2.3400 | 2.6600 | 3.0000 | M =N =20
0.6600 | 0.8400 2.3400 | 2.6600 | 3.0000 | M = N = 40
0.6600 | 0.8400 2.3400 | 2.6600 | 3.0000 exact
0.5769 | 0.7231 1.3231 | 1.3769 | 1.5231 | M = N =10

a(t) || 0.6183 | 0.7183 1.3183 | 1.4183 | 1.5183 | M = N =20
0.6119 | 0.7119 1.3119 | 1.4119 | 1.5119 | M = N =40
0.6000 | 0.7000 1.3000 | 1.4000 | 1.5000 exact
1.1441 | 1.1616 1.7686 | 1.9319 | 1.9696 | M = N =10

C(t) || 1.0674 | 1.1694 1.7750 | 1.8755 | 1.9759 | M = N = 20
1.0787 | 1.1800 1.7837 | 1.8840 | 1.9843 | M = N =40
1.1000 | 1.2000 1.8000 | 1.9000 | 2.0000 exact

In Figure 2, we present the regularized objective function (40) for p = 0 (no noise) and
p = 1% noise included in input data vy (t) and v,(t) for several regularization parameters
B8 €4{0,1073,1072,107}. From this figure it can be seen that convergence is achieved in a
relatively small number of iterations. Also, it takes a slightly larger number of iterations
when p = 1% noise contaminates the input data than when this data is errorless, i.e.
p=0.

p=10"t

p=10"2

p=10"

=0

Regularised objective function

-15

10 | | | | |

100 150

Number of Iterations

200 250

Figure 2: Regularised objective function (40), for Example 1 without noise (-x-) and with
p = 1% noise (—).

In Figure 3 and Table 4, we present the identified coefficients and their rrmse values,
respectively, for no noise, and with and without regularization. From this figure and table

it can be seen that for exact data, when 3 decreases to zero we obtain numerical results for
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the identified coefficients K (t), a(t) and C(t) which are convergent to their exact values.
In the case 3 = 107! we observe that the graphs of the identified coefficients slightly
depart from the exact ones because we have added too much unwanted regularization to
the objective function (40). In Figure 4 and Table 4 we present the retrieved coefficients
and their rrmse values, respectively, when p = 1% noise is included in the input data vy (t)
and v5(t). It can be seen that the numerical retrieval of the thermal conductivity K (¢)
is accurate; however, unstable results are obtained for a(¢) and C(t) if no regularization,
i.e. B =0, is employed, or even if 3 is too small such as 1073. Clearly, one can observe
the effect of the regularization parameter 5 > 0 in decreasing the oscillatory unstable
behaviour of the retrieved coefficients. Overall, the numerical results obtained with g =
107! seem the most stable and accurate.

Table 4: The rrmse values for estimated coefficients in Example 1.

p= =102 |3=10"2| =10""
rrmse(K) =85F —9 | 85E -5 | 83E —4 | 0.0079
p=0 | rrmse(a) =0.0138 0.0284 0.0352 0.0781
rrmse(C) = 0.0138 0.0287 0.0385 0.1241
rrmse(K) = 0.0142 0.0143 0.0146 0.0172
p=1% || rrmse(a) = 0.2937 0.2941 0.1654 0.0917
rrmse(C') = 0.4059 0.6279 0.2080 0.1194

16



0.4"

02 Il Il Il Il Il Il Il Il Il J
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
t
(b)
exact
24F |- A-B=0
B . >
2.2F |~ - B=10

Figure 3: The identified coefficients: (a) Thermal conductivity, (b) Thermal diffusivity, and (c)
Heat capacity, for Example 1 with no noise.
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Figure 4: The identified coefficients: (a) Thermal conductivity, (b) Thermal diffusivity, and (c)
Heat capacity, for Example 1 with p = 1% noise.
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5.2 Example 2 for IP1

We next consider an example from [15] in which the input data satisfy the conditions of
existence of solution of Theorem 1,

: 23
P(x) = f2+2x—4, pr(t) = t* 4 26° + 12 — 4, MQ(t):t4+2t3+2t2+t_E,
7
vi(t) = =2t — 2, vo(t) = (t + 1) <2t2 + 2t + 5) ,

for x € (0, =1) and ¢t € (0,7 = 1). However, the conditions of uniqueness of solution
of Theorem 2 are all satisfied, but for the condition ¢ (0) > 0 which is not satisfied. One
can simply check by direct substitution that the solution

4
u(x,t):t4+2t3+t2(x2+1)+tx2+%+2x—4,
1+t
O)= ——" K{)=1+t. 53
M=l k=14 (53

satisfies the inverse problem (2)—(5). We also have that a(t) = 1 + 2t.

Figure 5 illustrates the objective function (40), as a function of the number of iterations
for p = 0 (no noise) and p = 1% noise included in the input data v;(t) and vo(t). It is
interesting to remark that for 3 small such as 0 to 1073 the convergence is non-monotonic
with respect to the number of iterations. Also, the unregularized (5 = 0) objective
function reduces rather non-smoothly to reach a stationary value of O(1077) for p = 0
and O(107%) for p = 1%, whilst the curves obtained for 3 > 0 reach rapidly a stationary
plateau.

10"
c p=10""
2 02
S B=10
2 -3
o B=10
=
°
2
o)
o
°
Ja}
2
8
3
=)
o}
ad
/ B=0
10’8 | | | | | | | J
0 50 100 150 200 250 300 350 400

Number of Iterations

Figure 5: Regularised objective function (40), for Example 2 without noise (-x-) and with
p = 1% noise (—).
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Figure 6: The identified coefficients: (a) Thermal conductivity, (b) Thermal diffusivity, and (c)
Heat capacity, for Example 2 with no noise.
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Figure 7: The identified coefficients: (a) Thermal conductivity, (b) Thermal diffusivity, and (c)
Heat capacity, for Example 2 with p = 1% noise.
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Figures 6, 7 and Table 5 for Example 2 represent the same quantities as Figures 3, 4
and Table 4 for Example 1, and the same conclusions can be drawn. We also mention
that the numerical results obtained with 8 = 1072 seem the most stable and accurate for
p = 1% noisy data.

Table 5: The rrmse values for estimated coefficients in Example 2.

B=0 f=10°%]p=102%]p=10"
rrmse(K) =5.6F —5| 6.8E —4 | 0.0039 0.0223
p=0 | rrmse(a) =0.0078 0.0449 0.1000 0.2239

rrmse(K) = 0.0123 0.0125 0.0146 0.0276
p=1% | rrmse(a) = 0.3066 0.2301 0.1441 0.2321
rrmse(C) = 0.4350 0.3677 0.2135 0.7993

(
(
rrmse(C) = 0.0078 0.0552 | 0.2095 | 0.7778
(
(
(

5.3 Example 3 for IP1

Finally, for IP1, we consider the case of a non-smooth coefficient and more complicated
input data given by

2+ 1
DI Sk B L I b nht BLAL U
A= e ifre 1 YT\ p1 e L)

yl(z):—% (1+’t—%D, uz(t)zg(l—l—‘t—%‘),

for x € (0, =1) and t € (0,7 = 1). One can remark that the conditions of Theorem 2
which ensure the uniqueness of solution are satisfied. The exact solution is given by

r+a? L1 i e,
u(z,t) = 5 —i—{# ifte[%,l]’ C(t) =1, K(t)—l—l—‘t ‘ (54)
We start first with the case of exact data, i.e. p = 0. Figure 8 shows the objective
function (40) without regularization, i.e. § = 0, as a function of the number of iterations.
It can be seen that the objective function decreases rapidly to a low level of O(107'*) in
166 iterations. The corresponding exact and numerical coefficients K (t), a(t) and C(t)
are presented in Figure 9. From this figure it can be seen that the recovered coefficients
are in very good agrement with their corresponding analytical solutions.
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Figure 8: Objective function (40), for Example 3 with no noise (-x-) and no regularization.
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Figure 9: The identified coefficients: (a) Thermal conductivity, (b) Thermal diffusivity, and (c)
Heat capacity, for Example 3 with no noise and no regularization.
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We next include noise p € {1%, 2%} in the input fluxes v;(¢) and v»(t), as in (47). In
Figure 10, we can see that the regularized objective function becomes a smooth decreasing
curve and the convergence is achieved in a relatively small number of iterations, as
increases from 1072 to 107!, The numerical results for K (t), a(t) and C(¢) when p = 1%
and p = 2% are presented in Figures 11 and 12, respectively. Further, numerical outputs
such as the number of iterations and function evaluations, as well as the final value
of the converged objective function and the rrmse values of the estimated coefficients
are provided in Table 6. From these figures and table it can be seen that stable and
reasonable accurate numerical results are obtained for 8 = 1072 when p = 1%, and
B = 1072 when p = 2% noise. The results for 3 = 10~! depart from the exact solution as
too much regularization has been imposed, whilst the results for § = 0 seem only slightly
unstable. In fact from all examples presented in this section, see Tables 4-6, it seems
that the retrieval of the thermal conductivity coefficient K(t) is stable even if we do not
use regularization and we may as well penalise only the thermal diffusivity §|a(t)]|* in
the last term of (40). Another reason for this stability of solution in the K (¢)-component
might be that K(t) appears explicitly in the nonlinear objective function (40). On the
other hand the retrieval of the thermal diffusivity a(¢) (and hence the heat capacity C(t))
does require some regularization to be enforced in order to ensure stability.

N p=10"

Regularized objective function

0 50 100 150 200 250 300
Number of Iterations

Figure 10: Regularized objective function (40), for Example 3 with p = 1% (—) and p = 2%
(- - -) noise.
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Table 6: Number of iterations, number of function evaluations, value of regularized objective
function (40) at final iteration and rrmse values for estimated coefficients, for Example 3.

Noise level =0 [B=1073|B3=10"2|38=10""

No. of iterations 181 205 190 93

No. of function evaluations 15035 17120 16105 7889

p—1% Function value 6.9F —7 | 0.1308 1.2778 11.03

rrmse(K) 0.0090 0.0094 0.0143 0.0842

rrmse(a) 0.0867 0.0619 0.0647 0.2232

rrmse(C') 0.0899 0.0668 0.0740 0.3045
No. of iterations 205 280 144 70

No. of function evaluations 17047 23563 12210 5919

= 2% Function value 27TE —6| 0.1316 1.2789 11.02

rrmse(K) 0.0181 0.0186 0.0221 0.0860

rrmse(a) 0.1710 0.1130 0.0794 0.2248

rrmse(C') 0.1861 0.1237 0.0952 0.3120
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Figure 11: The identified coefficients: (a) Thermal conductivity, (b) Thermal diffusivity, and
(c) Heat capacity, for Example 3 with p = 1% noise.
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Figure 12: The identified coefficients: (a) Thermal conductivity, (b) Thermal diffusivity, and
(c) Heat capacity, for Example 3 with p = 2% noise.
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5.4 Example 4 for IP2

Consider now the IP2 given by equations (2), (3), (7) and (8) with unknown coefficients
a(t) and b(t), and solve this inverse problem with the following input data:

p(x) =e "+ 2%, mt)=c¢€, p(t)= (et +1)e, 7(t)=¢", Ty(t)=(2—e")e,
flat)=e (1+t)e ™ +2°—2(1+t)—2z(1+2t)), d(z,t)=0,

for x € (0, =1) and t € (0,7 = 1). One can easily check that the condition of Theorem
4 which ensures the uniqueness of solution is satisfied. The exact solution to this inverse
problem is given by

a(t)y=1+t, b(t) =1+ 2t, u(z,t) = (e + 2°)e’. (55)

Consider first the case where there is no noise in the input data (7). The objective
function (41), as a function of the number of iterations, is shown in Figure 13. From this
figure it can be seen that the convergence is achieved rapidly in a few iterations. The
objective function (41) decreases rapidly and takes a stationary value of O(107®) in about
6 iterations. The numerical results for the corresponding coefficients a(t) and b(t) are
presented in Figure 14. From this figure it can be seen that the retrieved coefficients are
in very good agreement with the exact ones.

Next, we add p = 1% noise to the heat fluxes 7; and 7, as in equation (50) via
(47). The regularized objective function (41) is plotted, as a function of the number
of iterations, in Figure 15 and convergence is rapidly achieved. Figure 16 presents the
graphs of the recovered coefficients and further results are reported in Table 7. From this
figure one can observe, as expected, that when g = 0 we obtain unstable and inaccurate
solutions because the problem is ill-posed and sensitive to noise. So, regularization is
needed in order to stabilise the solution. From all regularization parameters that were
selected we deduce that 3 = 1072 gives a stable and reasonable accurate approximation
for the coefficients a(t) and b(t).

Objective function

10~ I I I I I |

Number of Iterations

Figure 13: Objective function (41), for Example 4 with no noise and no regularization.
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Figure 14: (a) Coefficient a(t), and (b) Coefficient b(t), for Example 4 with no noise
regularization.
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Figure 15: Regularized objective function (41), for Example 4 with p = 1% noise.
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Figure 16: (b) Coefficient a(t), and (b) Coefficient b(t), for Example 4 with p = 1% noise and
regularization.

5.5 Example 5 for IP2

In this example, we consider a more severe test case where the coefficients are non-smooth
functions. Consider the IP2 with unknown coefficients a(t) and b(t), and solve this inverse
problem with the following input data:

d(x)=e " +2%, ) =¢€, p(t)=('+1)e, 7i(t)=¢c", Ty(t)=(2—et)e,

flz,t) = (e + 2%)e’ — (‘t — %} + %) (e™® +2)e' —

1
t* — 5‘(—6_95 +2z)e',  d(z,t) =0,

for x € (0, =1) and t € (0,7 = 1). One can remark that the condition of Theorem 4
which ensure the uniqueness of solution is satisfied. The exact solution is given by

alt) = ‘t _ %' + @) = (e a?)et, (56)

The objective function (41), as a function of the number of iterations, with no noise
and no regularization is presented in Figure 17. From this figure it can be seen that the
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convergence is achieved in 11 iterations and it decreases rapidly to stationary value of
O(107%). When no noise is included in the input data we obtain stable and accurate
solutions for a(t) and b(¢) which are shown in Figure 18. In these plots, beginning with
the initial guess (-o-), one can observe that after 6 iterations the results are overlapping
until reaching the final iteration 11.

Objective function

o} 1 2 3 4 5 6 7 8 9 10 11
Number of Iterations

Figure 17: Objective function (41), for Example 5 with no noise and no regularization.
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Figure 18: (a) Coefficient a(t), and (b) Coefficient b(t), for Example 5 with no noise and no
regularization; (—) exact solution, (-o-) initial guess, (- - -) iterations 1, 2, ..., 10, and (-H-) the
final iteration 11.

When p = 1% noise is included, regularization is needed to achieve stability. Figure
19 presents the regularized objective function (41), as a function of number of iterations.
From this figure it can be seen that for no regularization the convergence is achieved
in a relatively larger number of iterations than when regularization is applied with £ €
{1073,1072,1071}.

Figure 20 shows the plots of the retrieved coefficients. From this figure and Table 7
it can be observed that we obtain stable and reasonable accurate solutions for a(t) and
b(t) when we choose 8 = 107! which has minimum rrmse values for a and absolute error
values for b. Note that b(¢) can vanish and therefore we have considered the absolute error
instead of the rrmse in Table 7 for Example 5.
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Table 7: The error values for the estimated coefficients for Examples 4 and 5 with p = 1% noise.

=0 =103 |B=10"72|3=10"
Example 4 rrmse(a) = 0.1267 | 0.0823 0.0713 0.0806
rrmse(b) = 0.3632 | 0.1435 0.1263 0.4500
rrmse(a) = 0.7493 | 0.0886 0.0791 0.0670
Example 5

abs(b) = 0.1917 0.1844 0.1003 0.1049

Regularized objective function

1 1 1 1 1 J
15 20 25 30 35 40
Number of Iterations

Figure 19: Regularized objective function (41), for Example 5 with p = 1% noise.
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Figure 20: (a) Coefficient a(t), and (b) Coefficient b(t), for Example 5 with p = 1% noise and
regularization.

5.6 Example 6 for IP3

We finally consider the IP3 given by equations (2)—(4) and (8) with unknown coefficients
K (t) and b(t), and solve this inverse problem with the following input data:

plx)=e " +2% ) =c¢, pt)=("+1e, v(t)=¢ <'t - %‘ + %) ,
ba(t) = (2 — e 1)e! (’t _ %‘ + %) @) =0, C@#) =1,
Fa ) = (e +22)e — (‘t - 1'

2

1
+ 5) (e +2)e" —

1
t* — 5‘(—6“ + 2z)e,

forx € (0, =1)and t € (0,7 = 1). One can easily check that the conditions of Theorem
6 which ensure the uniqueness of solution are satisfied. The exact solution is given by

K(t) = ‘t— %‘ + % b(t) =

t* — %', u(z,t) = (e + 2%)e’. (57)
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The objective function (42), as a function of the number of iterations, is shown in
Figure 21. From this figure it can be seen that the convergence is achieved in 50 iterations.
It can also be observed that the objective function (42) decreases rapidly in the first 5
iterations, after which it takes a slow decrease until iteration 41, and finally it decreases
rapidly to a stationary value of O(1078). When no noise is included in the input data we
obtain stable and accurate solutions for K(t) and b(t) which are shown in Figure 22. In
these plots, the numerically obtained coefficients show very good agrement with the exact
ones.

10"

I
N

R
o

Objective function
1
1

[
o
T

10°°1

1078 ! ! ! ! ! ! ! ! ! ]
[0} 5 10 15 20 25 30 35 40 45 50

Number of Iterations

Figure 21: Objective function (42), for Example 6 with no noise and no regularization.
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Figure 22: (a) Coefficient K(t), and (b) Coefficient b(t), for Example 6 with no noise and no
regularization.

Next we include p = 1% noise to the heat fluxes v; and 1, as in equation (47), and
regularization is needed to achieve stability. Figure 23 presents the regularized objective
function (42), as a function of number of iterations. From this figure it can be seen that
for 5 =0, i.e. no regularization, the convergence is achieved in a relatively larger number
of iterations than when regularization is applied with 8 € {1072,1072,1071}.

Figure 24 shows the plots of the retrieved coefficients. From this figure and it can be
observed that in the case of non-smooth coefficients we still obtain stable and reasonable
accurate solutions for K (t) and b(t).
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Figure 23: Regularized objective function (42), for Example 6 with p = 1% noise.
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Figure 24: (a) Coefficient K (t), and (b) Coefficient b(t), for Example 6 with p = 1% noise and
regularization.
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6 Conclusions

This paper has presented a numerical approach to identify simultaneously two time-
dependent coefficients in the one-dimensional parabolic heat equation. The three resulting
inverse problems have been reformulated as constrained regularized minimization prob-
lems which were solved using MATLAB optimization toolbox routines. The numerically
obtained results are shown to be stable and accurate.

Multi-dimensional problems can easily be analysed as our unknowns depend on the
temporal variable only. The determination of three or more coefficients in equations (6)
or (8) is deferred to a future work.
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