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BiFeO3–PbTiO3 exhibits both ferroelectric and antiferromagnetic order, depending on the

composition. Moderate hydrostatic pressures have been used at room temperature to transform the

crystallographic phase from P4mm to R3c for the compositions 0.7BiFeO3–0.3PbTiO3 and

0.65BiFeO3–0.35PbTiO3, as determined using in-situ neutron diffraction. Using Rietveld

refinements, the resultant data showed that, for both compositions, a transformation from para- to

G-type antiferromagnetic order accompanied the structural transition. The transformation occurred

over the range 0.4–0.77 and 0.67–0.88GPa for 0.7BiFeO3–0.3PbTiO3 and 0.65BiFeO3–0.35PbTiO3,

respectively; at intermediate pressures, a mixture of P4mm and R3c phases were evident. These

pressures are far lower than required to induce a phase transition in either the BiFeO3 or PbTiO3 end

members. The driving force for this pressure induced first order phase transition is a significant

difference in volume between the two phases, P4mm > R3c of 4%-5%, at ambient pressure. Upon

removal of the pressure, 0.65BiFeO3–0.35PbTiO3 returned to the paramagnetic tetragonal state,

whereas in 0.7BiFeO3–0.3PbTiO3 antiferromagnetic ordering persisted, and the structural phase

remained rhombohedral. Using conventional laboratory x-ray diffraction with a hot-stage, the phase

readily reverted back to a tetragonal phase, at temperatures between 100 and 310 �C for

0.7BiFeO3–0.3PbTiO3, far lower than the ferroelectric Curie point for this composition of 632 �C. To

our knowledge, the reported pressure induced para- to antiferromagnetic transition is unique in the

literature.VC 2013 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4804322]

I. INTRODUCTION

BiFeO3 is a multiferroic material, displaying both antifer-

romagnetic and ferroelectric ordering at room temperature.1–3

Such materials offer potential in a range of applications (i.e.,

memory devices and sensors), and the possibility of magneto-

electric coupling, that is control of magnetization with electri-

cal stimulus and vice versa. A solid solution may be formed

with the ferroelectric PbTiO3, to generate xBiFeO3–

(1-x)PbTiO3, which is also multiferroic for 0.3 � x � 1 at

room temperature.4 The system xBiFeO3–(1-x)PbTiO3 has

been shown to consist of a mixture of rhombohedral (R3c)

and tetragonal (P4mm) phases for 0.6 � x � 0.8.5 An

enhancement in both ferroelectric and piezoelectric properties

is observed for x¼ 0.7, compared to neighboring composi-

tions.6 Extremely high micro-strains are evident in these

mixed phase materials due to the radically different molar vol-

umes of each phase7 and the large spontaneous strain, (c-a)/a,8

for the P4mm symmetry, of 0.187. For hot-pressed pellets of

0.72BiFeO3–0.28PbTiO3, Smith7 observed the volume of the

tetragonal unit cell to be ca. 5% larger than that of the rhom-

bohedral cell (primitive volume ¼ R3c/6). We have recently

confirmed the same using neutron diffraction experiments for

the composition 0.7BiFeO3–0.3PbTiO3;
9 in addition, we have

shown that depending on the specific processing conditions,

the proportions of R3c and P4mm can be tailored, consisting

of predominantly R3c for a sintered ceramic and P4mm in

powder form. Recent work also suggests the possibility of

monoclinic rather than rhombohedral symmetry in the compo-

sition 0.73BiFeO3–0.27PbTiO3.
10

Studies of the composition 0.9BiFeO3–0.1PbTiO3 using

neutron diffraction as a function of temperature show corre-

lation between the N�eel temperature and the maximum in

spontaneous strain (tan(90 -a), for the primitive rhombohe-

dral phase, where a is the rhombohedral angle) in a signifi-

cant deviation from typical Landau behavior.11 This strongly

points to a coupling between the ferroic orders.

Pressure induced phase transitions have been observed

in a gamut of ferroelectric, antiferroelectric, and multiferroic

materials, using neutron/synchrotron diffraction, magnetic

and electrical measurements in addition to Raman and

M€ossbauer techniques.

The application of hydrostatic pressure on BiFeO3 has

been studied by a number of groups. Haumont12,13 and

Pashkin14 used Raman spectroscopy, far infrared and synchro-

tron diffraction measurements to show the presence of two

structural phase transitions (rhombohedral—orthorhombic(1)—

orthorhombic(2)) at ranges of between 2.5–3.5GPa and
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7.5–10GPa. Gavriliuk15 observed a transformation from anti-

ferromagnetic to a non-magnetic state at a far higher pressure

of 47GPa for BiFeO3 powders using M€ossbauer spectroscopy.

Belik16 observed phase transitions at 4 and 7GPa

(R3c–O(I)–O(II), as above), plus evidence of non-reversibility,

that is, persistence of a further orthorhombic phase O(III) after

decompression. An orthorhombic—cubic transition was

observed at 44.6GPa using Raman scattering.17

A study of PbTiO3 showed a number of structural phase

transitions above 11GPa.18 Ahart19 and Wu20 showed the

presence of a morphotropic phase boundary for PbTiO3 as a

function of pressure, with passage from tetragonal at low

pressure to rhombohedral at high pressure, with an interme-

diate monoclinic phase. A second order transition was

observed at 12.1GPa, using Raman scattering.21

In La-doped PZT, Pb(1-x)Lax(Zr0.90Ti0.10)1-x/4O3 a ferro-

electric to antiferroelectric phase transition occurred at ca.

100MPa for x¼ 0.03 and 300MPa for x¼ 0.02 at room tem-

perature.22 In Pb0.99(Zr0.95Ti0.05)0.98Nb0.02O3, a transforma-

tion from ferroelectric to antiferroelectric commenced at

210MPa at room temperature, with a volume difference of

0.8% between the two phases;23 this volume difference pro-

vided the impetus for the phase transition. After unloading,

the antiferroelectric structure persisted (74% by weight, as

determined using structural analysis), showing considerable

hysteresis; only after heating to 350K was the ferroelectric

phase fully restored.

Clearly, by comparing the ferroelectric–antiferroelectric

phase transition in Zr-rich PZT, as above, we can draw ana-

logues with the BiFeO3–PbTiO3 system reported here; both

materials display (a) close vicinity to a crystallographic

phase boundary and (b) a significant unit cell volume differ-

ence between the two crystallographic phases in each mate-

rial, that is ferroelectric (R3c) and antiferroelectric (Pbam) in

PZT and paramagnetic (P4mm) and antiferromagnetic (R3c)

in BiFeO3–PbTiO3.

The motivation for the experiments presented here was

to determine whether the application of moderate hydrostatic

pressures could be used to induce a P4mm to R3c transition

in BiFeO3–PbTiO3, the driving force being the volume dif-

ference between the two phases; this mechanism would dif-

fer significantly in nature from the pressure induced

transitions for pure BiFeO3 and PbTiO3, or the electric field

induced transition in relaxor ferroelectric single crystals.24

We have shown previously that, at room temperature, the

R3c phase displays antiferromagnetic ordering, whereas

P4mm is paramagnetic.9 One anticipates that a pressure

induced transformation from para- to antiferromagnetic

ordering would accompany the structural transition.

II. EXPERIMENTAL DETAILS

Single phase stoichiometric materials of

0.65BiFeO3–0.35PbTiO3 and 0.7BiFeO3–0.3PbTiO3 were

prepared by conventional mixed oxide synthesis. The com-

position was set such that in the ABO3 structure, A ¼ B ¼ 1.

These two tetragonal materials were chosen, due to their

proximity to the compositional phase boundary between

P4mm and R3c. The precursor metal oxide powders

(Aldrich, 99.9%) were milled in 2-propanol, dried, sieved,

and calcined at 800 �C for 4 h. The resultant single phase

was milled, dried, and sieved as before, this time with the

addition of binder (1 w/w % Glascol HA40, Ciba). Green

pellets were prepared 15mm diameter � 20mm high by

pressing uniaxially at 50MPa. The green pellets were subse-

quently isostatically pressed at 250 MPa, to further improve

compaction.

Disintegrated powders were made by rapidly cooling

these ceramic bodies from a temperature of 1100 �C, as

reported in previous work.9 The large stress induced by this

process lead to disintegration of the ceramic into a powder.

Neutron diffraction experiments revealed that magnetic

ordering in the P4mm phase was absent at room temperature,

in agreement with magnetic measurements by Zhu, which

showed paramagnetism for tetragonal compositions.5 The

weight loss of the powder was monitored before and after

sintering/disintegration and was found to be negligible

(<0.1% by weight), suggesting that Bi2O3 and PbO loss was

extremely low.

In-situ neutron diffraction measurements were con-

ducted on the Pearl beamline located at the ISIS Facility,

Rutherford Appleton Labs, UK. The Pearl time-of-flight neu-

tron powder diffractometer is a high-flux instrument opti-

mized for data collection from the Paris-Edinburgh (P-E)

pressure cell.25,26 In addition to the powder under study, a

small Pb sphere (ca. 0.8mm diameter) was included in the

standard null-scattering TiZr gasket27 for use as a pressure

marker, along with a few drops of a 4:1 by volume mixture

of perdeuterated methanol/ethanol pressure transmitting

medium.28

Using the conventional collection mode of Pearl, data

were collected using high resolution banks centred at 90�,

corresponding to a d-spacing range of 0.3 to 4.15 Å. In order

to allow for direct observation of the magnetic only peak

expected at ca. 4.6 Å, the sample cradle was rotated and

tilted at selected pressures, and the low angle detectors (cen-

tred at 30�) were employed. This configuration allowed for

collection over a range in d-spacing of ca. 1 to 8.5 Å, albeit

with poorer resolution and statistics, with significant contri-

butions from the sample environment. Fortunately, Bragg

peaks from the sample environment were absent above

2.85 Å, in the region of interest.

GSAS29 (General Structure Analysis System) was used

to refine the structural and magnetic model parameters using

the observed diffraction data. The findings of our previous

neutron diffraction measurements were used as a starting

point for the models, with a paramagnetic P4mm cell for the

tetragonal phase. In order to model the transformed magnetic

structure, a unit cell of P1 symmetry populated using Fe ions

with a B-site concentration of 0.7 or 0.65 was constrained to

the R3c nuclear model.

A series of diffraction patterns were collected with

increasing hydrostatic pressure. During the experiment, the

position of the (200) Pb Bragg reflection at ca 2.5 Å was

used as a guide to the pressure; upon refinement of the

model, a more precise value was obtained from the Pb lattice

parameter and equation of state.30–33 These values were used

as the abscissae in Figures 2–4.
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X-ray diffraction as a function of temperature and subse-

quent structural refinement, were conducted using a

P’Analytical X’Pert MPD (Almelo, the Netherlands) with

associated HIGHSCORE PLUS software.

III. RESULTS AND DISCUSSION

A. Effect of applied pressure on structure

Figure 1 shows the results of a structural refinement of

0.7BiFeO3–0.3PbTiO3 powder within the P-E cell at the ini-

tial sealing load of 7 ton, corresponding to a hydrostatic

pressure � 0. From Figure 1, it can be seen that the pattern

contains contributions from a total of four phases, the most

intense being from the P4mm tetragonal phase of

0.7BiFeO3–0.3PbTiO3 and the Pb pressure marker. Weaker

contributions are present due to tungsten carbide (WC) and

Ni which originate from the anvils of the P-E cell. The lattice

parameters (a¼ 3.813 and c¼ 4.534) are similar to reports in

the literature for 0.7BiFeO3–0.3PbTiO3 using x-ray diffrac-

tion8 (a¼ 3.816 and c¼ 4.528).

For the purposes of the structural refinement, a number

of constraints were imposed in order to prevent divergence.

For example, one overall isotropic temperature factor was

used universally across both ferroelectric models (Uov ¼ Uiso

(P4mm) ¼ Uiso (R3c)) for all atoms. Additionally, the large

A-site atoms were fixed at the origin. The atomic displace-

ments of the B-site atoms were constrained to each other,

within the same phase, and likewise the displacement of the

oxygen atoms in the tetragonal phase. At zero pressure,

zFe,Ti¼ 0.05(2), zO1,O2¼ 0.17(7) and UISO¼ 0.0179(2) Å2

for 0.7BiFeO3–0.3PbTiO3. The results of the refinement for

0.65 BiFeO3–0.35PbTiO3 are not shown here, but the same

procedure was used as for 0.7BiFeO3–0.3PbTiO3.

Figure 2 shows the effect of increasing hydrostatic pres-

sure on the ferroelectric phase concentration; for both mate-

rials, there was a modification of the structure from P4mm to

R3c. For 0.65BiFeO3–0.35PbTiO3, transformation started at

of 0.67GPa and was completed by 0.88GPa, whereas for

0.7BiFeO3–0.3PbTiO3, which is closer to the phase bound-

ary, transformation proceeded at 0.4GPa and was completed

by 0.77GPa. The transformation was not instantaneous, that

is, a mixed phase region persisted over a significant pressure

range. Note that the transformation proceeded through a

mixed phase region and not via an intermediate phase, such

as monoclinic or orthorhombic as observed in other systems.

The effect of pressure on the primitive unit cell volumes

(1/6 volume for the R3c phase, the primitive cell, was used

to allow for comparison) is plotted in Figure 3 for both

materials. As one would expect, the unit cell volume decreased

markedly as the pressure was increased. The P4mm phase

always presents a far higher cell volume (ca. 4.9% for and

0.7BiFeO3–0.3PbTiO3 and 3.9% for 0.65BiFeO3–0.35PbTiO3),

and therefore, a lower density than the R3c phase. It is this dif-

ference in volume that provides the driving force for the pres-

sure induced phase transition, and this mechanism differs

markedly from the BiFeO3 and PbTiO3 end members reported

earlier.

Figure 4 shows the variation in spontaneous strain for

both P4mm and R3c phases as a function of hydrostatic pres-

sure, calculated as (c-a)/a for the P4mm and tan(90-a), in

pseudocubic space,34 for the R3c phase. If the low pressure

FIG. 1. Structural refinement for 0.7BiFeO3–0.3PbTiO3 disintegrated pow-

der at zero hydrostatic pressure within the P-E pressure cell. A number of

data points have been removed to improve clarity. Collected data are shown

by crosses, with a solid line for the refined model. The lower solid line

shows the difference plot between the collected data and the model.

Rp¼ 0.057 and Rwp¼ 0.069. *The R3c phase is absent at zero pressure.

FIG. 2. Variation in weight fraction of R3c phase with increasing hydro-

static pressure for 0.65BiFeO3–0.35PbTiO3 and 0.7BiFeO3–0.3PbTiO3.

FIG. 3. Variation in unit cell volume for 0.65BiFeO3–0.35PbTiO3 and

0.7BiFeO3–0.3PbTiO3 as a function of applied hydrostatic pressure.
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data are ignored for the R3c phase (due to large error bars), a

clear relationship can be shown between a decrease in ferro-

electric spontaneous strain and increasing pressure in both

P4mm and R3c phases. An interpolation of this data would

suggest that eventually, with increasing pressure, the sponta-

neous strain may reach zero, and ferroelectricity would be

lost, as observed in other systems, such as BaTiO3
35 and

PZT.36,37 For the BiFeO3 and PbTiO3 end members, a

decrease in spontaneous strain is also observed as the pres-

sure is increased.

Figure 5 shows the outcome from the structural refine-

ment of the disintegrated 0.7BiFeO3–0.3PbTiO3 powder at a

pressure of 0.77GPa, which shows transformation to 100%

R3c phase. The 113 reflection, which results from both oxy-

gen octahedral tilting and antiferromagnetic ordering is

marked and discussed later.

Upon unloading the pressure cell, after completion of

the experiment, it was observed that the transformed R3c

phase persisted in the composition 0.7BiFeO3–0.3PbTiO3,

that is, the R3c did not revert to the initial P4mm. Data were

collected using Polaris (ISIS), for the same sample in a glass

capillary, 400 h after the Pearl experiment, which again

showed 100% R3c phase (discussed later in reference to

magnetic ordering). This strongly suggests that a potential

energy barrier exists, indicating a first order transition due to

the difference in density of the two phases. This energy bar-

rier must be overcome with pressure to affect a transforma-

tion and prevents reversal upon removal of the pressure,

even after a significant period of time had elapsed. This irre-

versibility has been observed in other systems, as highlighted

in the introduction. To the contrary, the composition

0.65BiFeO3–0.35PbTiO3 reverted back to the P4mm phase

on removal of the pressure.

B. Effect of hydrostatic pressure on magnetic
ordering

In order to study the magnetic only Bragg peak at ca.

4.6 Å, the configuration of Pearl was modified at selected

pressures. In order to further refine the magnetic moment on

the Fe3þ ions, the structural and magnetic models generated

in the previous section were used (and left unaltered) with

the data collected in this configuration; at this point, only

refinement to the Fe3þ moment was permitted. The outcome

of this procedure is shown graphically in Figure 6, using col-

lection times of 4 h per measurement, more than double that

required for collection using the 90� detectors. The peaks are

extremely broad, and below 3 Å, dominated by the pressure

cell gaskets.

Figure 6 shows a pressure induced transformation from

P4mm to R3c, and with it a transformation from para- to

antiferromagnetic ordering, for both materials. The position

of the P4mm (001) and the R3c magnetic (101) and (003)

peaks are in similar but significantly different positions of

FIG. 5. Structural refinement for the 0.7BiFeO3–0.3PbTiO3 disintegrated

powder after transformation to R3c phase at a pressure of 0.77GPa, cf.

Figure 1. The arrow at ca. 2.4 Å denotes the R3c 113 peak, which comprises

both nuclear and magnetic contributions. *: Once transformed, the P4mm

phase is absent.

FIG. 4. Effect of applied hydrostatic pressure on spontaneous strain for

0.65BiFeO3–0.35PbTiO3 and 0.7BiFeO3–0.3PbTiO3, calculated as (c-a)/a

for P4mm and tan(90 -a) for R3c, using a pseudo-cubic setting.

FIG. 6. Diffraction data of 0.7BiFeO3–0.3PbTiO3 (a)–(d) and

0.65BiFeO3–0.35PbTiO3 (e)–(f) collected using low-angle bank on Pearl.

The pressures and phase assemblage are labeled.
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4.535 and 4.587 Å, respectively, at zero pressure for

0.7BiFeO3–0.3PbTiO3, Figures 6(a) and 6(d). A large broad

peak can be observed at a pressure 0.51GPa for

0.7BiFeO3–0.3PbTiO3 (Figure 6(b)) for these positions, due

to coexistence of the P4mm structural and R3c magnetic

peaks, 54wt. % R3c phase. To recap, the peak at 4.535 Å in

the lower trace is nuclear, whereby in Figures 6(c) and 6(d)

at ca 4.6 Å (the position clearly changes as a function of

pressure), it is entirely magnetic.

As mentioned previously, the 0.7BiFeO3–0.3PbTiO3

sample was analyzed 400 h later in a glass capillary at ambi-

ent temperature and pressure using Polaris at ISIS. Polaris

can access an extremely wide d-spacing range, from 0.2 to

21 Å. A magnetic and structural refinement performed using

data from the low angle (A-bank, low resolution) and back-

scattered (C-bank, high resolution) detectors are shown in

Figure 7. Using this beamline, we can show unequivocally

that transformation from P4mm to R3c has occurred in

0.7BiFeO3–0.3PbTiO3, and with it a transformation from

para- to antiferromagnetic ordering; the Bragg peak at 4.6 Å

is due entirely to G-type antiferromagnetic ordering and has

no nuclear contributions. The transformed R3c structure at

ambient pressure provides strong supporting evidence, in

conjunction with Fig. 6, that the high pressure R3c phase is

also antiferromagnetic, with G-type ordering.

Due to the low amount of powder measured (ca. 50mg,

ideally > 5 g required) some residual peaks, with the strong-

est signals at 4.26, 2.93, and 1.91 Å. From a search of these

peaks in the ICDD database (International Centre for

Diffraction Data), we have been unable to identify the nature

of this material. These peaks were not observed using pow-

der x-ray diffraction.

The outcome of the refinement relating to Figure 7 is

shown in Table I. Using Polaris, without the contributions of

a pressure cell, it is possible to refine separate temperature

factors for the A-, B-, and O sites.

Table II shows a summary of the findings with respect

to the inclusion of the low angle bank on Pearl plus the data

collection ex-situ using Polaris for 0.7BiFeO3–0.3PbTiO3. It

can be seen that the once formed, the antiferromagnetic

ordering in the R3c phase persists, with a moment of

between 2.7 and 3 lB.

For the material 0.65BiFeO3–0.35PbTiO3, a slightly lower

magnetic moment of 2.3(8) lB was observed at 1.25GPa, as

anticipated; the introduction of more Ti dilutes and disrupts

the exchange between the antiferromagnetically ordered Fe.

C. X-ray diffraction of transformed powder

Six months after the experiments using Pearl and Polaris,

the same sample of 0.7BiFeO3–0.3PbTiO3 was analyzed using

conventional laboratory XRD. Rietveld analysis of the powder

showed the presence of a small quantity (7wt. %) of P4mm

phase. Diffraction patterns were collected with increasing

temperature in-situ using a hot stage, the results of which are

shown in Figure 8.

Upon heating, the concentration of the transformed R3c

phase rapidly diminished and reached a steady value of

between 6 and 7wt. % at 310 �C and above. As the tempera-

ture was increased further, transformation to cubic occurred

by 640 �C which is commensurate with the findings of previ-

ous groups.8 Interestingly, at 590 �C, a mixed phase region

consisting of the tetragonal P4mm and cubic (Pm-3m)

occurs, prior to total transformation, suggesting that the R3c

phase transformed to cubic more readily that P4mm. After

cooling back to room temperature, the R3c was only partially

restored and a small concentration of P4mm (5%) persisted.

The low temperatures required to initiate the transforma-

tion from predominantly R3c back to P4mm (100–200 �C)

FIG. 7. Diffraction data of 0.7BiFeO3–0.3PbTiO3 collected using Polaris, 400

h after pressure experiment on Pearl. Data are presented from the A-bank

(high d-spacing, low resolution) and C-bank (up to 3 Å d-spacing, high resolu-

tion). The tick-marks for R3c phase are shown at the top of the figure.

TABLE I. Structural and magnetic refinement for 0.7BiFeO3–0.3PbTiO3

collected on Polaris, 400 h after pressure experiment on Pearl. The residuals

are cumulative from the refinement of both A and C banks.

Parameter 0.7BiFeO3-0.3PbTiO3 R3c

a/Å 5.5898(6)

c/Å 13.858(5)

zBi,Pb 0

zFe,Ti 0.227(9)

xO 0.462(9)

yO 0.012(4)

zO 0.961(1)

UISO (Pb,Bi)/Å
2 0.018(2)

UISO (Fe,Ti)/Å
2 0.004(6)

UISO (O)/Å
2 0.013(6)

lFe/lB 2.9(5)

Rp 0.0828

Rwp 0.1439

TABLE II. Phase fraction and refined moment for 0.7BiFeO3–0.3PbTiO3

disintegrated powder prior to, during and after transformation.

Load/GPa Note

Wt. fraction,

R3c

Refined

moment/Fe (R3c), lB

0 Start of experiment 0 0

0.51 Partial transformation 0.54 2.(8)

0.77 Complete transformation to R3c 1 2.8(3)

0 Removal of pressure 1 2.7(1)

0 After 400 h 1 2.9(5)
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are far lower than either the antiferromagnetic N�eel tempera-

ture (287 �C)38 or ferroelectric Curie point (632 �C)8 for this

composition. Although we are unable to tell (using x-ray dif-

fraction), we assume that the transformation back to predom-

inantly tetragonal phase is associated with a loss of

antiferromagnetic order.

IV. DISCUSSION AND CONCLUSIONS

At ambient temperature and pressure, the compositions

0.7BiFeO3–0.3PbTiO3 and 0.65BiFeO3–0.35PbTiO3 possess

tetragonal symmetry, P4mm, with paramagnetic ordering.

With the application of moderate hydrostatic pressures

(<0.9GPa), P4mm phase readily transforms to rhombohe-

dral symmetry, R3c, at room temperature. We are able to

show that a transformation from para- to G-type antiferro-

magnetic ordering accompanies this structural transition for

both compositions. To our knowledge, a pressure induced

para- to antiferromagnetic transition is unique in the litera-

ture; many systems show the reverse, that is, loss of mag-

netic ordering under high pressure.

The pressures required to affect a phase transition are

clearly far lower than that of the BiFeO3 or PbTiO3 end

members; recall that BiFeO3 transforms from its ambient

R3c structure to orthorhombic at 2.5 GPa15 and PbTiO3 from

P4mm to monoclinic at 11GPa.19 The driving force for the

phase transition reported here is due to the large volume dif-

ference between R3c and P4mm phases of 4%-5%, plus the

locality of the two tetragonal compositions to the phase

boundary between tetragonal and rhombohedral phase. The

stimulus for the pressure induced transition is clearly the

same as that observed in Zr-rich PZT, as discussed previ-

ously, where transformation from R3c to Pbam occurs at

210MPa, as a result of the close vicinity of the antiferroelec-

tric–ferroelectric phase transition, and the ca. 0.8% volume

difference between the two phases.

The two materials studied here do behave differently to

each other, however; upon removal of external pressure, the

crystal structure reverts back from R3c to P4mm for

0.65BiFeO3–0.35PbTiO3 and magnetic ordering is lost. For

0.7BiFeO3–0.3PbTiO3, the R3c phase persists when the

pressure is removed, and antiferromagnetic ordering remains.

The transformed rhombohedral magnetic structure in

0.7BiFeO3–0.3PbTiO3 was stable over a significant period of

time; 400 h later, neutron diffraction of the same powder sam-

ple yielded identical results, with 100% R3c, antiferromagnetic

phase. Using conventional lab XRD after 6 months showed

partial reversal had occurred, with 7% P4mm. The original

P4mm phase was readily restored with moderate temperatures,

far below that of either the antiferromagnetic N�eel temperature

or the ferroelectric Curie point. Again, an analogy can be

drawn with Zr-rich PZT whereby, after decompression to am-

bient pressure, 74% of the antiferroelectric phase persisted,

and an increase in temperature to ca. 75 �C was required to

fully restore the ferroelectric phase. Hysteresis was observed in

a number of other materials, as discussed in the introduction.

There is also a distinction in (a) the pressure required to

affect the structural and magnetic phase change and (b) the

range in pressure across which the transformation occurs.

0.7BiFeO3–0.3PbTiO3 transforms far more readily and over

a larger pressure range than 0.65BiFeO3–0.35PbTiO3. One

assumes that a higher pressure is required to affect transfor-

mation in 0.65BiFeO3–0.35PbTiO3 as it is further removed

from the R3c-P4mm phase boundary, and the volume differ-

ence between the P4mm and R3c phase is lower.

There are a number of mechanisms which may result in

a mixed phase at intermediate pressures, such as small local

deviations in chemistry, or generation of hoop stresses,

where the core of a grain experiences a lower pressure than

encountered by the skin.
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