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Abstract Recent theoretical work has highlighted the importance of multi-scale
forcing of the flow for altering the nature of turbulence energy transfer and dissi-
pation. In particular, fractal types of forcing have been studied. This is potentially
of real significance in environmental fluid mechanics where multi-scale forcing is
perhaps more common than the excitation of a specific mode. In this paper we
report the first results studying the detail of the wake structure behind fences in a
boundary layer where, for a constant porosity, we vary the average spacing of the
struts and also introduce fractal fences. As expected, to first order, and in the far-
wake region, in particular, the response of the fences is governed by their porosity.
However, we show that there are some significant differences in the detail of the
turbulent structure between the fractal and non-fractal fences and that these over-
ride differences in porosity. In the near wake, the structure of the fence dominates
porosity effects and a modified wake interaction length seems to have potential for
collapsing the data. With regards to the intermittency of the velocities, the fractal
fences behave more similarly to homogeneous, isotropic turbulence. In addition,
there is a high amount of dissipation for the fractal fences over scales that, based
on the energy spectrum, should be dominated by inter-scale transfers. This latter
result is consistent with numerical simulations of flow forced at multiple scales and
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shows that what appears to be an “inertial regime” cannot be as production and
dissipation are both high.

Keywords turbulence - wakes - fractal forcing - intermittency - inter-scale energy
transfer

1 Introduction

Manipulating the characteristics of boundary-layer turbulence is an important area
of environmental fluid dynamics engineering as changes to turbulence structure can
be used to enhance the deposition of saltating (Nemoto and Nishimura 2004) or
drifting particles (Chaudhary and Mathur 2004; Dong et al 2004), clear runways
of drifting snow (Lang and Blaisdall 1998), or influence pollutant dispersal (Mec-
Coy et al 2007). Understanding how such engineering structures affect turbulence
is, consequently, of some importance and the most common type of design used
to control the drifting of saltating or suspended particles (usually snow or sand)
is a porous fence. The fences must extract suflicient energy {rom the mean flow
to promote deposition, while preventing the development of excessive turbulent
stresses that will cause remobilization. The specification for these fences is tra-
ditionally in terms of height and an optimal porosity (Tabler 1991), with 50%
porosity and a bottom gap of 10% the height of the fence considered optimal for
snow drifting (Tabler 1980; Iversen 1984). However, experimental results suggest
that 50% porosity is not optimal on steep terrain (Naaim-Bouvet et al 2002) and
the inclination of the fence with respect to the wind vector must also be consid-
ered (Takeuchi et al 2001). The aim of this paper is to explore a possible further
important consideration on the design of such fences: the manner in which the
porous elements are organized.

This is not simply a question of practical relevance, but is related directly to
recent discussions about the fundamental nature of turbulence, considered in the
next section. A turbulent flow forced at some length scale that is much greater
than the viscous length scales in the flow, will exhibit an average transfer of energy
to smaller scales that can be represented in the Fourier domain as a power-law
with a -5/3 exponent (Kolmogorov 1941), although the intermittent behaviour of
dissipation at small scales means that a multifractal description of turbulence is
more correct (Kolmogorov 1962; Frisch and Parisi 1985; Meneveau and Sreeni-
vasan 1987; Muzy et al 1991), and even this is not the full story given the range
of types of singularity that may occur in a turbulent flow (Vassilicos and Hunt
1991). However, if one manipulates turbulence by forcing it at multiple scales in
a controlled manner, what impact does this have on the way in which energy is
transferred between scales? It is the investigation of such questions that has re-
cently been of significant experimental and theoretical interest in fluid mechanics
and have led to the suggestion that such fractal-forced flows are a new kind of
turbulent flow (Stresing et al 2010). Hence, it follows that flow through porous
fences in boundary layers can potentially make use of such work in order to op-
timise the design of engineering structures. Thus, such a question merits further
experimental investigation.
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2 Theoretical context

In a key early analysis, von Karman and Howarth (1938) showed how, by assuming
a single length and velocity scale, the energy decay for isotropic turbulence would
follow a ¢! scaling, where ¢ is time. However, early experiments showed that
u? ~ t7;q < -1 (Comte-Bellot and Corrsin 1966) and it can be shown that ¢ = —1
is a limit state.

The dissipation in homogeneous turbulence is given by

clSV([%T)lE)VZ—j (1)

where A is the Taylor length scale of the flow by definition and according to von
Karman and Howarth (1938):

A2 = - (10/q)wt 2)

Defining the Taylor Reynolds number as Ry = u)/v, it follows from (2) and u? ~ ¢4
that
Ry ~ (lar /2 (3)

Hence, as turbulence decays in the absence of an energy input, an upper bound
on q is -1, which is attained at infinite Reynolds number where dissipation is zero.
Following George (1992) it follows that the shape of the spectrum characterising
energy decay is a function of ¢ and, thus, of the initial conditions generating the
flow. Furthermore, while von Karman and Howarth (1938); Batchelor (1953) make
the assumption that the non-linear spectral energy transfer, T is proportional to
u®, the more general result obtained by George (1992) is that

T. = v(u®/X) = Ry'u? (4)

where T'(k,t) is the spectral energy transfer, as a function of time, ¢, and wavenum-
ber, k, and this is separated into time and wavenumber dependent components as
T(k,t) = Ts(t)gr(kA, *), where * represents a dependence on initial conditions.
Note that the Reynolds number dependence in the spectral transfer of energy
in this theory means that there is agreement with Kolmogorov’ work at infinite
Reynolds number. Hence, Kolmogorov’s expression for the energy spectrum for
isotropic values

B(k) ="/ fre (kLic) (5)

where L is the Kolmogorov length scale, Lx = 113/4/61/47 needs to be re-expressed
in terms of Taylor scales:

VI fre(kLic) = u” M fr(kA, *) (6)
Frc(kLx) = 1574 RY2 fr.(kx, +) (7)

where fx is the Kolmogorov spectrum, which is believed to be universal, and fr is
the Taylor-based spectrum that admits a dependence on initial conditions (George
1992). From (3) it follows that if ¢ = -1, Ry is constant and then from (7) there is
a simple proportionality between the two cases. Clearly, at finite Reynolds number
this breaks down, which suggests a rescaling of the turbulence spectrum to reflect
this. Subsequent numerical calculations using direct numerical simulation (DNS) of
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the Navier-Stokes equations for decaying turbulence have confirmed these results
(Wang and George 2002).

George and Wang (2009) revisited these solutions with the additional assump-
tion that the length scale for the problem, A, maintained a constant value. In this
case, the whole spectrum and the energy were found to decay exponentially with
time with a constant integral and Taylor scale maintained (meaning that their
ratio defined the effective Reynolds number of the flow). Hence, the behaviour of
the whole spectrum is governed by the Taylor scale, which is a profound result
given the traditional emphasis placed on integral and Kolmogorov scales.

Until recently there were no experimental observations to support this ar-
gument for exponentially decaying turbulence. However, recent experiments by
Vassilicos and co-workers (Hurst and Vassilicos 2007; Seoud and Vassilicos 2007;
Mazellier and Vassilicos 2010) have shown that in the case of turbulence behind
fractal grids, very fast, comparable to exponential, decay is observed. Hurst and
Vassilicos (2007) studied 21 different [ractal grids of various configurations and
measured the flow along the centre-line of the wind tunnel. These grids generated
higher turbulence intensities and Reynolds numbers than could be achieved for
classical grids, even when the latter had lower porosities. It was found that the
fractal dimension of the grid, Dy, the effective mesh size of the grid and the ratio
of the thickness of the largest and smallest elements in the fence to all be im-
portant controls on the turbulence generated. Different types of iterated pattern
(I-shape or square grids) exhibited different scalings for the turbulence intensities
that were a function of the effective mesh size and thickness ratio. Despite the fact
that grids are passive structures, Hurst and Vassilicos suggested that by tuning
the properties of the grid, it may be possible to control turbulence intensity, which
has important implications for using fractal fences for engineering control.

The work of George and Wang (2009) was applied to fractal grids by Mazellier
and Vassilicos (2010) to explicitly link the observed fast decay to theory. The
thickest bars in the fractal grid were used to define a fractal grid Reynolds number,
Ry, and then the spectral energy equation

0

ot
was written in terms of the fractal grid dependencies on the spectral energy transfer
and energy spectrum:

E(kvt) = Es(t7U°°7RfT‘7*)f[k7l(t)7RfT‘7*] (9)
T(kvt) = Ts(tanmera*)g[kvl(t)aRfrv*] (10)
where [ is a length scale that in the George and Wang (2009) theory exhibits
a relation to A, the dependencies included in * are now those that result from
the properties of the fractal grid (dimensionless ratios of the bar lengths and

thicknesses that make up the fence), and f and g are dimensionless functions.
Criteria for using (9) and (10) to solve (8) were given as

E(k,t) =T(k,t) - 2vk>E(k,t) (8)

d 2u
2B, - -uLE, 11
di “P (11)
7. - vlE (12)
s — dt S
i dE,
g -t (13)
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where a, b, and c are functions of * and Rj,. The generalisation of the theory
of George and Wang (2009) by Mazellier and Vassilicos (2010) is a consequence
of the behaviour of ¢. When ¢ = 0, d\/dt = 0 and the George and Wang solution
results: ’

Es(t)~exp(- 2a1/—)

2 (14)

It follows from this making use of %U/Q = f0°° E(k,t)dk and Taylor’s hypothesis
that

u/? = u(/)2 exp (- 2al2VUm ) (15)

However, if ¢ < 0, Mazellier and Vassilicos (2010) showed that a steep power-law

applies instead:

2 _ 2Es(xo) [1+ 4valc|
3l(zo) 12(20)Uc

where the 0 subscript indicates a virtual origin. With this expression the Taylor

microscale is given by:

(z - m0)] 7% (16)

_Uzo, Ryr, %) 4valc| o 2y]M2
Nt T Plats ) ()

Note that as ¢ - 0 that the Taylor scale becomes independent of x —x¢ and that if
%(m —xo) is much less than 1, then (17) permits an increase in A in the far-
field as can be observed in the data of Mazellier and Vassilicos (2010). Irrespective
of whether or not the decay in this region is exponential or a steep power-law,
the nature of this turbulence is very different to classical flows with the assumed
Richardson-Kolmogorov cascade.

In addition to these experimental and theoretical analyses, numerical exper-
iments have been undertaken using Direct Numerical Simulation (DNS) where,
instead of forcing the flow at one large wavenumber, a fractal forcing has been
adopted, with a range of wavenumbers forced in a power-law fashion (Mazzi et al
2002; Mazzi and Vassilicos 2004; Kuczaj and Geurts 2006; Kuczaj et al 2006). As
this modelling progressed from the forcing of some discrete wavenumbers (Mazzi
et al 2002), to a continuous forcing it was found that the interscale energy transfer
was reduced by a fractal forcing compared to the predictions of Renormalization
Group theories. That is, in a region that looked qualitatively like an inertial regime
(although more shallow) from the velocity spectrum, significant dissipation (» 80%
of the total dissipation) was taking place. That is, a multi-scale forcing altered the
manner in which energy transfer took place within the flow (Mazzi and Vassili-
cos 2004). More recent numerical studies (Kuczaj and Geurts 2006; Kuczaj et al
2006) have confirmed these results and explored additional properties of the flow.
In particular, they have noted that the modulation of the energy extends beyond
the range of the forced scales and that smaller scale forcings enhance the non-local
transfer of energy to smaller scales. This idea is consistent with and help explains
the spectral short-cut seen in canopy flows (Finnigan 2000). To help explain these
numerical results further, Cheskidov et al (2007) extended previous work deriving
bounds on the energy dissipation for simpler forces to the case of broadband and
fractal forcings. They obtain a relation between dissipation and Reynolds number
consistent with that of Mazzi and Vassilicos (2004) and also found that the dissi-
pation for a Stokes flow driven by the same forcing provides the (laminar) upper
limit for the dissipation of these turbulent flows.
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Fig. 1 Side view of the wind tunnel at Shinjo.

3 Experimental design and methodology
3.1 Wind tunnel and anenometry

The experiments were performed in the Cryospheric Environment Simulator at
the Shinjo branch of the Nagaoka Institute for Snow and Ice Studies over a fixed
rough bed (ice coated snow grains) at —10°C. This is a wind tunnel with a square
cross section of 1 m? and a 14 m working section (Fig. 1). For more information
on this experimental facility, see Nemoto and Nishimura (2001) and Kosugi et al
(2004).

Measurements were recorded at 5 KHz using a Kanomax cross-wire, constant
temperature anenometer (model IFA 300 from TSI Inc.) with a 260 KHz response
frequency, a length of 1 mm and a width of 5 pm. Calibration of the output voltage
was undertaken by relating 3s of output voltage to an average velocity determined
from a sonic anenometer (model DA-650 from Kaijo Sonic in Japan). Signal gain
was employed to maximise the +5V output range of the instrument. At 5 KHz,
the input noise on the amplifier is ~ 120 nV.

3.2 Fractal fences

The fences were glued into the tunnel using water and measurements were taken
along the centre-line of thw wind tunnel (Fig. 2). The simplified fractal nature of
the fence is only iterated in the vertical plane, in contrast to a Sierpinski carpet or
the fully 2D grids of Hurst and Vassilicos (2007); Seoud and Vassilicos (2007), but
it does mean that a fractal iterated in this manner interacts with the strong du/9z
gradient in the flow. In addition, it was only possible to iterate our fractal template
three times, meaning that the potential range of scales over which we impose a
power-law forcing is reduced compared to previous experiments (e.g. Hurst and
Vassilicos (2007) used 6 iterations).

In addition to the porosity criterion, snow fences and other passive devices for
controlling suspended or saltating particles include a bottom gap of » 0.1H, where
H is the height of the fence, to prevent over-accumulation on the proximal side
of the fence (Iversen 1984; Tabler 1991; Naaim-Bouvet et al 2002). In this study
we focus on fences with 50% porosity, but also consider a fractal fence with 60%
porosity, where this porosity measure includes a 10 mm bottom gap in all cases but
the mean strut spacing does not. Details of the fence specifications are provided
in Table 1 and the fences are shown in Fig. 3. Note that our study considers three



Fractal fence wake structure 7

Fig. 2 Measurement of the wake velocity downstream of a fractal fence in the wind tunnel at
Shinjo using a hot wire anemometer.

Table 1 Attributes of the fences used in this study. The spacing calculation excludes the 10
mm bottom gap that is present for all fences.

Fence name  Porosity (%) No. of struts  Mean (standard deviation) of strut spacing Dy
5strutsb0 50 5 10.00 (0.0) mm 1.000
9struts50 50 9 5.00 (0.0) mm 1.000

Frac50 50 9 5.00 (4.4) mm 0.842
Frac60 60 9 6.25 (5.5) mm 0.774

fences that are indistinguishable based on the standard engineering design criteria
but differ significantly in terms of the length scales and range of scales at which
they force the flow. All of our fences were H = 100 mm high, 600 mm wide, 7 mm
thick and made from aluminum.

For the 60% fractal fence (Frac60) a reduction in the length scale of a ruler
placed vertically on the surface of the fence by a factor of 6 increases the number
of rulers covering the fence by a factor of 4 (the fractal is created by dividing a
line into 6 parts and deleting the second and fifth part). Hence the linear fractal
dimension (Dy) is log 4 / log 6 = 0.774. For the Frac50 fence, which is based on
a similar template modified to maintain a lower porosity, Dy = 0.84. the higher
value resulting from the need to maintain a lower porosity.

3.3 Data analysis methods

The data collected using the anemometer were denoised using a now well-known
wavelet method (Donoho and Johnstone 1994) with the exception that their cycli-
cal spinning method is replaced by the stationary or maximal overlap discrete
wavelet transform (Percival and Walden 2000), which has the same translation-
invariance properties as cyclically rotating the data and is undecimated (if there
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Fig. 3 The fences used in the experiments. From top to bottom these are 5struts50 (partially
in shot), 9struts50, Frac50 and Frac60.

are 27 = N values in a dataset, where j =1,...,J, there will be N detail wavelet
coeflicients at each scale, 7). Hence, it is also a useful tool for surrogate data gener-
ation Keylock (2006, 2010). It is assumed that noise is concentrated preferentially
in the highest frequencies (first wavelet scale). A threshold value, T, is then defined
based on the variance of the wavelet coeflicients and the length of the record as-
suming Gaussianity (which is not a strong constraint for wavelet coefficients even
if the underlying data are non Gaussian):

T =5+/2log N (18)

where a robust estimator of 6 can be found from the fact that the median absolute
value, M, of a set of independent zero-mean Gaussian random variables with
variance, 2 is M ~ 0.67455. In this paper we use a soft-thresholding algorithm,
where the original wavelet detail coefficients, w; ; for all j are modified as:

Wik — T if Wik 2 T
wy g =3wjk+T if wyp<T (19)
0if |wj7 kl <T
where for the remainder of this paper, denoising is presumed to have occurred and
the asterisk in (9) is lost. We preceded this denoising with a despiking step based
on similar principles but with a much higher value for T' (Goring and Nikora 2002).
In this paper we use a structure-function based approach for defining the “inertial

range” in our experiments and for characterizing the structure of the wake flow.
The structure function, S of a given order, n is:

Sn(r) = (jui(z +7) —ui(2)[") (20)
and the structure function exponent, &, is

S (1) ~ rSr (21)
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where we use a modified Taylor’s hypothesis (described below) to convert a mea-
sured time series into a spatial series.

Energy transfer is conceptualized by equating the third order structure function
with —%67", where r is the increment distance and ¢ is the mean dissipation rate
Kolmogorov (1941). For both higher (Anselmet et al 1984) and lower (Chen et al
2005) order structure functions the scaling relations depart from those predicted
by Kolmogorov (who found &, = %), owing to intermittency. For example, the
model of She and Leveque (1994) gives

gn:g+2[1—(§)%] (22)

for three-dimensional, homogeneous turbulence. More recently, it has been shown
that the values for the scaling exponents can vary spatially in wake flows (Gaudin
et al 1998).

We used the Extended Self-Similarity (ESS) of Benzi et al (1993) to obtain
an improved estimate of the velocity structure function scaling exponents than
is possible from the direct analysis of S, against r. This method extracts the
exponents (for all n except 3) from a plot of exponent S,(r) against S3(r) and
works because the ratio of two scaling exponents is constant over a greater range
of scales than is the case when each is examined individually. This scaling has
been found to hold to within an order of magnitude of n and not just within the
inertial regime (Benzi et al 1995) and the resulting relative scaling exponents also
hold for 2D flow (Babiano et al 1995).

Because the flow that we are studying is highly turbulent, a simple Taylor’s
hypothesis does not hold (Lumley 1965). However, this conversion can still be un-
dertaken with an appropriate definition of the local average velocity. The method
we adopted is due to Pinton and Labbé (1994) and uses an integral time scale, I,
defined as a function of the energy spectrum E(f):

;- JEGd
[TE(Dd

where f is frequency. Using I it is possible to obtain a local average velocity as a
function of time

(23)

_ 1o
Troe() = [t L i (24)

Thus, the point in space z for a measurement made at time t* is

*

= fo Too(1)dt (25)

which is then resampled onto regular increments. As well as applying this pro-
cedure before deriving spectra as a function of inverse space rather than inverse
time, we also adopted an alternative technique due to Gledzer (1997) who found
that the true spectrum F, e, could be obtained from the measured version Emeas
according to

Breat(k) = [1 - % (u_/)2 (2 LT (gkn)Q) Ermeas(k) (26)

U 9 3
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Fig. 4 Profiles of the mean longitudinal velocity, U1, as a function of distance from the wall,
z. The top panel is for data upstream of the fence and is plotted in wall units where z is
non-dimensionalised by the kinematic viscosity and the friction velocity. The other panels are
dimensional and show vertical profiles at /H = 2.5 (b), z/H = 5.0 (c), and z/H = 10.0 (d).
Symbols correspond to: * (5struts50), + (9struts50), A (Frac50), O (Frac60).

where k is wavenumber and U and u/ are the mean and fluctuating velocities from
a Reynolds decomposition. It was found by Saddoughi and Veeravali (1994) that
B ~ 5.3 and this is compatible with that measured for wakes from fractal objects
(Staicu et al 2003). In eq. 26, the Kolmogorov length scale  was evaluated as

7= (VS/E)%, where v is the kinematic viscosity and the dissipation, ¢, is given by

e=2u/k2E(k)dk (27)

4 Results
4.1 Mean flow properties

The results reported in this paper are for a mean flow velocity in the tunnel of 6
ms™ 1. With the 1 m height of the tunnel, this gives a flow Reynolds number of
Re ~ 467000. The median Taylor Reynolds number, Rey, 10H before the fence at
z/H = 0.55 over all experiments was 193, which was estimated from (1), with the
velocity derivative defined over the inertial range, which was, in turn, estimated
from the region of a log-log plot of S3 against r where the slope was 1.0.

The mean velocity profiles as a function of height above the boundary, U1(z),
upstream of the fence (at —10x/H) are shown in Fig. 4a, plotted in wall units.
Profiles downstream of the fence are shown in the other panels. There is a good
collapse of the data at —10z/H, particularly for z < 0.10m (the height of the
fence), which corresponds to 2™ ~ 600. Downstream of the fence, porosity dictates
behaviour, with similar profiles for the three fences with 50% porosity, particularly
at x/H = 10.0. By this point the profile is beginning to recover from the velocity
defect that is clearly in evidence closer to the fence. The higher velocities for the
Frac60 fence indicate that the 50% porosity is more effective at extracting energy
from the mean flow, as is well-known. Hence, in terms of mean flow, there would
appear to be no strong effect of multi-scale forcing.
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Fig. 5 The turbulence intensity, o(u1) for the longitudinal velocity component at z/H = 0.55.
Symbols correspond to: * (5struts50), + (9struts50), A (Frac50), O (Frac60). In 5a, o(u1) is
normalized by the mean, local longitudinal velocity Uj, while in 5b it is normalized by the
mean velocity at z/H = 0.55 upstream of the fence (U;®). In 5c, the data from 5a are scaled

by the eddy interaction length, x; as described in the text. The m symbol with a dotted line

shows the results for the Frac60 fence at a higher reference velocity of 8 ms™!.

4.2 Turbulence intensity

Figure 5a shows the values for the root-mean-square velocity, o(u1), at a height
of z/H = 0.55 along the centre-line of the wind tunnel for varying z/H normalized
by the mean velocity at each of these locations. The bottom gap of 10 mm and
total fence height of 100 mm means that z/H = 0.55 is at the centre of the region
of the fence occupied by horizontal struts. The high turbulence intensities close
to the fence and the rapid decay downstream are clearly visible in the fractal
case and are patterns that have been seen in previous work (Staicu et al 2003).
For z/H > 5.0, the three fences with 50% porosity exhibit very similar turbulence
intensities, while the more porous fractal fence exhibits a marked reduction. Figure
5b normalizes o(u1) by the mean velocity at z/H = 0.55 for a position upstream of
the fence (z/H = —10), which varied from 4.135 ms™" to 4.199 ms™' over the four
experiments. The totally different behaviour of the more porous, Frac60 fence is
clear here. The greater turbulence intensity of the fractal fence, Frac50, particularly
when compared to 9struts50, which has the same porosity and average scale of
forcing, is also evident. This indicates that there is an effect from multi-scale
forcing on the turbulence intensity near the fence.

Figure 6 supports the conclusion that the effect of a fractal configuration upon
turbulence intensity is predominantly within z/H < 5.0. In Fig. 5a the two fractal
fences have a vertical profile for o(u1) that is similar in form, with the values for
Frac60 approximately the same as for the non-fractal fences and the values for
Frac50 somewhat higher. The reduced turbulence intensity for the fractal fences
at the top of the fence is probably explained by weaker shearing due to locally
greater porosity. (For 5strutsb0 and 9struts50, the closest gap in the fence is 10
mm or 5.5 mm from the top, respectively, while this is 3 mm or 2.5 mm for the
fractal fences). For x/H > 5.0 all the profiles become relatively uniform and the
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Fig. 6 Vertical profiles of o(u1) at /H = 2.5 (Fig. 6a), /H = 5.0 (Fig. 6b), and z/H = 10.0
(Fig. 6¢). Symbols correspond to: * (5struts50), + (9struts50), A (Frac50), 0 (Frac60).

varying porosity between Frac60 and the other fences is the explanation of the
observed differences, with a convergence in behaviour for z = 0.12 m, where the
direct effect of the forcing is reduced.

Mazellier and Vassilicos (2010) introduced an eddy-interaction length scale,
x, on the basis that typical wake widths will scale with the size of the generating
strut in the fence, and that wakes from smaller bars will merge and interact closer
to the fence, such that the largest strut in the fence controls the wake-merger
distance. It was observed that the distance downstream to the peak in streamwise
turbulence intensity was 0.45x;. Figure 6 indicates that x; < 5H for all our fences
because at this distance, porosity effects dominate behaviour and the vertical
profiles have homogenised. Hence, such a scaling should only be of use for the
first three measurements, at most. Because our arrangement of struts was denser
than that used by Mazellier and Vassilicos (2010), we found that we obtained
better results based on the maximum spacing between struts rather than the size
of the strut. Hence, our definition of the wake interaction length, x7, is x1 = 22/2m,
where zq4 is the vertical separation between the largest gaps in the fence and z,, is
the maximum size of spacing between struts. Figure 5c applies such a scaling to
the data in 5a and would appear to have some relevance for scaling the turbulence
intensity near the fence. In order to add some additional confidence to this result,
Fig. 5c also shows results for the Frac60 fence with a mean flow velocity in the
wind tunnel of 8 ms™' rather than 6 ms™', and it follows a similar collapse in
the near-wake region. In conclusion, it would appear that while porosity is the
dominant control on far-wake turbulence intensity, in the near-wake the fractal
nature of the fence exerts an important effect. A modified wake interaction length
scale seems to have some potential for collapsing these data.
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Fig. 7 Profiles of the turbulence anisotropy at locations z/H = 2.5 (Fig. 7a), «/H = 5.0 (Fig.
7b), and z/H = 10.0 (Fig. 7c). The symbols are the same as in Fig. 5.
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Fig. 8 Longitudinal velocity increment distributions at z/H = 0.55 at various locations down-
stream of the fences and for two values of r/n. The grey dotted line is Frac60, the grey solid
line Frac50, the black dotted line is 9struts50 and the solid black line is 5struts50.

4.3 Isotropy and increment distributions

In order for statements about velocity component u; to generalise to describing
the flow at a point, the flow should be approximately isotropic. A simple measure
of anisotropy is the ratio o(u1)/o(us), which is given in Fig. 7. While shearing
along the bottom gap is enough to result in significant anisotropy close to the bed,
higher into the flow, the isotropy is not unreasonable, particularly at z/H = 0.55
where most of our analysed data are from.

Figure 8 shows the velocity increment distributions u, = ui(x +7) — u1(z) at
various z/H for z/H = 0.55. Results are shown for r/n = 20 (left panels) and
r/n = 200 (right). The fractal fences have the heavier tailed distributions close
to the fence and they are difficult to distinguish from one another despite their
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Fig. 9 Longitudinal velocity increment distributions at z/H = 0.10 at various locations down-
stream of the fences and for two values of r/n. The fences are distinguished using the same
line types as in Fig. 8.

difference in porosity. However, for z/H > 3.75 the four fences are practically
indistinguishable. The difference between the fractal and non-fractal fences also
occurs close to the fence at z/H = 0.10 (Fig. 9) and is very clear, with the black
and grey lines clearly distinct (although the 2 lines of the same colour are virtually
indistinguishable from one another). Although Fig. 7 shows that results from z/H =
0.1 need to be interpreted with caution, Fig. 8 and Fig. 9 in combination suggest
that there is a genuine difference between the fractal and non-fractal fences close
to the fence. The higher kurtosis of the wake for the non-fractal fences indicates
differences in the intermittency of the turbulence between the two types of fence,
which is a result that is examined in greater detail in the subsequent sections of
this paper.

4.4 Roughness of the velocity signals

Further analysis was undertaken to see if the nature of the forcing did leave a
more subtle imprint on the flow for #/H > 5.0. Thus, with reference to Fig. 5, we
are sufficiently far from the fence that porosity effects dominate the turbulence
intensity and it might be considered that the nature of the forcing from the fence
is no longer important. A qualitative assessment of 3.277 s of the wake time series
(about 50 integral times) from 9struts50 and Frac50 is given in Fig. 10 and 11
at (z/H =5.0,z/H = 0.55). These plots use the visualization routines of Keylock
(2007) and show the flow quadrant events exceeding a hole size threshold, Hp =1,
given by:

juyeis] > Hro (uf)o (uf) (28)

where the subscripts 1 and 3 refer to the longitudinal and vertical velocity com-
ponents and the prime indicates a fluctuating velocity. The time series for the
ué are shown in Fig. 10d and 11d, normalized by their standard deviations. The
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Fig. 11 Qualitative analysis of quadrant flow structures for 3.28 s of data at (x/H =5.0,z/H =
0.55) for the Frac50 fence.

threshold exceedances are given in 10c and 1lc, with black indicating a sweep
(u{ > O,ué < 0), white an ejection (u{ < O,ué > 0), dark grey an outward inter-
action (u{ > O,ué > 0) and light grey and inward interaction (u{ < O,ué < 0).
The remaining two plots in each figure show a stationary wavelet decomposition
of each velocity component with shading proportional to the value of the wavelet
coefficients wj g, if the coeffients are contributing to the highlighted event (i.e.
they have the same sign as the flow feature at tha point in time). The shading
is normalized on a scale-by-scale basis over both velocity components so that the

wavelet energy at a given scale, k may be compared between velocity components.

Something that is readily apparent from these plots is that threshold ex-
ceedances for 9strutsb0 occur in clusters, while for Frac50 there is a tendency
to produce more and shorter exceedances. This suggests that the mean roughness
of the Frac50 signal is greater but that the standard deviation of the roughness is
higher for 9struts50 (periods of relative quiescence and times when the threshold
is exceeded). To test this hypothesis we calculated the pointwise Holder regularity
(ap) of the signals in Fig. 10 and 11 using an oscillation-based method imple-
mented in the FracLab toolbox (http://www2.irccyn.ec-nantes.fr/FracLab/). This
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Fig. 12 Time-series of estimated o, values for the 9struts50 (a) and Frac50 (b) fences studied
in Fig. 10 and 11.

measure is discussed in some detail by Kolwankar and Lévy Véhel (2002) and has
been applied to the analysis of turbulence signals by (Keylock 2008, 2009). The
value for oy, at some position along the signal, to, is given by the supremum for
s occurring in the set Cp(to), where a particular segment of stationary velocity
data u(t) is a member of this set if there is a polynomial P of degree less than s
(where s > 0) and a constant, C, such that the following inequality holds:

[u(t) = P(t —to)| < Clt - to|* (29)

Hence, the actual signal is compared to its smoothness in terms of its order of
differentiability and the exponent «j, can therefore be thought of as a fractal
dimension local to a particular point in the time series. Our hypotheses about the
signals are borne out in Fig. 12 where @, for 9struts50 is 0.515 and for Frac50
is 0.444 (a lower value is less differentiable and consequently indicates a rougher
signal). However, both the largest and smallest values for «, occur for 9struts50,
where o(ayp) is 0.059 as opposed to 0.037 for Frac50. Results for the fences at
(z/H =5.0,z/H = 0.55) and (z/H = 10.0,2/H = 0.55) are given in Table 2. The
greater average roughness in the fractal-forced cases is in agreement with the DNS
results of Mazzi and Vassilicos (2004) (see their Fig. 7). Thus, while our earlier
analyses suggest that from z/H = 5.0 there are no differences in the wake structure
of fences with a similar porosity, an analysis using Holder exponents demonstrates
that the wake flow is experiencing a different forcing at such locations, although
this is not evident from the velocity and turbulence intensity data.

The reduced intermittency for the fractal-forced flows at z/H > 5 as seen in
Table 2 and the figures in this section has implications for sediment transport and
deposition. For larger particles, where the small-scale structures seen in Fig. 11
have a negligible effect on entrainment or distrainment, deposition behind fractal
fences should be more efficient than for non-fractal fences where fluctuations are
more prolonged and may impart greater inertia. Conversely, for smaller particles,
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Table 2 Mean and standard deviations for ap(t) at (z/H = 5,2/H = 0.55) indicated by a !
superscript and (z/H = 10, z/H = 0.55) indicated by a 2 superscript

Fence name a; o(ap)t &f, a(ap)?

5struts50 0.496 0.053 0.626 0.083
9struts50 0.515 0.059 0.512 0.055

Frac50 0.444 0.037 0.504 0.047
Frac60 60 0.392 0.033 0.426 0.036

10° »
k(m )

Fig. 13 Energy spectra for the longitudinal velocity component at (z/H =3.75,z/H = 0.55).
The spectra are presented in dimensional form, with coloured lines for the fractal fences (Frac50
= red; Frac60 = blue) and black lines for the other fences (9struts50 = solid; 5struts50 =
dotted). The green lines indicate a -5/3 slope.

fractal fences are expected to be less efficient as the high frequency variations that
these wakes exhibit will promote remobilisation and suspension.

4.5 Energy spectra of the velocity signals

Figure 13 shows example energy spectra for uq in the wake of the different fences
at (z/H =3.75,z/H = 0.55) produced using the multi-taper method and corrected
using eq. (26). The range of values on the x-axis covers a wavenumber that corre-
sponds to the height of the fence, k = 10m™", and all the length scales forced by
the gaps in the fences down to k ~ 5 x 10?m™!, from where the spectra drop away
rapidly due to high dissipation. There is a power-law decay region that initiates
from the fence height wave number and, from a comparison to the green lines, it is
evident that the fractal fences exhibit an energy decay in this region that is closer
to -5/3 than for the non-fractal fences. Energy decay then appears to be more
rapid for the non-fractal fences as indicated by their steeper gradients, although
the wavenumber at which this final decay is initiated is dictated by porosity.

A comparison of these experimental results to recent direct numerical simu-
lations of flow from fractal grids (Laizet and Vassilicos Accepted) is interesting,
although the energy spectra studied by these authors were obtained upstream of
the peak in turbulence intensity and, thus, in the production region. In our case,
Fig. 5b shows that for the fractal grids we are downstream of the peak, while for
the regular grids, /H = 3.75 is a minimum for the turbulence intensity. The data
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from Laizet and Vassilicos (Accepted) show that at the furthest distance down-
stream, a -5/3 slope is developed over a greater range of scales for fractal-forced
flows than for those generated by regular grids, which is in agreement with the
results in Fig. 13, although no firm conclusions can be drawn from this comparison
given the difference between the two experiments.

In order to study this result in greater detail, the energy spectrum generated
at each location for each fence was normalized by its energy peak, Fp.. and
a threshold of 0.55F(k)/Emaes was used to define a low wavenumber location
kthresn that was within the energy decay region for all sites. A straight line was
then fitted to the log-log plot of E(k)/Emaz and k for kinresh < k < 20Kthresh,
where the upper threshold was determined as an appropriate lower limit of the
scaling region over all spectra. The slopes for the fractal fences are generally more
shallow than for the non-fractal fences, with those for Frac50 lying closest to -5/3
(mean of -1.673), while the Frac60 slopes are the least steep (mean of -1.424). The
mean values for 9struts50 and 5struts50 are closer together at -2.005 and -1.949,
respectively. The results for the fractal fences are also less variabe, with standard
deviations of 0.085 and 0.094 for Frac50 and Frac60, respectively, as opposed to
0.200 for 5strutsb0 and 0.261 for 9strutsb0. Hence, the spectra for Frac50 are closest
to what would be expected for homogeneous, isotropic turbulence, although this
spectrum is developed over a range of scales that are forced by the fence (rather
than representing the decay from a large scale forced mode) and we might expect
it to consequently, exhibit rather different properties Mazzi and Vassilicos (2004).

4.6 Dissipation analysis

The flow is forced by the fence at scales between the fence height (k » 10'm™") and
the diameter of the smallest strut within the fence. Clearly, the fractal fences will
force the flow over a greater range of scales (as they have the smallest strut sizes).
However, for 9struts50 and Frac50, the average scale of the forcing is the same.
Denoting the fence scale wave number by k*, the wavenumber corresponding to
the average forced scale as k*2, and the minimum forced scale by k*, then using
eq. (27), the fraction of dissipation occurring over the forced scales is

[ KPE(k)dk

[ k2 E(k)dk (30)

6fra.c(iaj) =

This term is similar to that used by Mazzi and Vassilicos (2004) to analyse
the amount of dissipation taking place over the forced scales in their numerical
simulations. Values for €fac(7,7) at z/H = 0.55 are plotted in Fig. 14. Over the
range of forced scales there is higher dissipation for the fractal fences and this
is particularly the case when the full range of scales forced by the fractal fences
is accounted for (Fig. 14b). Note that the wavenumber of the average forcing for
9strutsh0 is twice that of 5strutsb0, but efrac(1,2) is very similar at each location.
The value for k*? is the same for Frac50 and 9struts50, yet there is a clear difference
in their behaviour. It is quite remarkable how the two fractal fences have a very
similar behaviour in Fig. 14a despite their difference in porosity, while the two non-
fractal fences exhibit much reduced, but virtually identical dissipation too. This
suggests that the fractal fences have a genuinely different behaviour in terms of
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Fig. 14 Values for €g,.(1,2) (14a) and €g,5c(1,3) (14b) at a height of z/H = 0.55 and varying
z/H. The symbols used are the same as in Fig. 5.
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Fig. 15 Values for €fac(1,2) as a function of z/H at z/H = 2.5 (a), z/H = 5.0 (b) and
z/H =10.0 (c). The triangles are Frac50 and the crosses are 9struts50.

dissipation, although we assume that the wavenumbers derived from the geometry
have the same physical control on the local properties of the wake such that there
is no additional k dependence behind these results.

Vertical profiles of €frac(1,2) for 9struts50 and Frac50 are shown in Fig. 15. The
fractal fence has the higher dissipation in all cases, although there is convergence
as /H and z/H increase. The degree of difference between these two fences is
much greater than that for ocu1/U; in Fig. 5. Hence, the enhanced dissipation at
all positions is largely due to the fractal nature of the object and is not an artefact
of higher values for turbulence intensity. This is consistent with the work of Mazzi
and Vassilicos (2004), who explained the effects of fractal forcing with reference
to the energy transfer relation:

d(k) + 1(k) = 2vk*E(k) (31)
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Fig. 16 Box and whisker plots indicating the median (centre line), interquartile range (box)
and Q3 + 1.5 (Q3 - Q1), Q1 - 1.5 (Q3 - Q1) (whiskers) for the values of {33 determined over
the sampled region, where Q1 and Q3 are the first and third quartiles, respectively.

where ®(k) is the energy input spectrum and I(k) is the inter-scale energy trans-
fer. In the fractal-forcing range it was found that I(k) was small, which is the
case for very high Reynolds number, equilibrium turbulence. Hence, what seems
to be an inertial range for the spectra of the fractal fences in Fig. 13 appears to
be a realization of the high dissipation, low I(k) phenomenon described by Mazzi
and Vassilicos (2004), although the actual amount of dissipation that occurs over
this region of the spectrum in the numerical experiments was much higher than
observed here. The reduced rate of decay of energy in the spectra for the fractal
fences, coupled to the higher dissipation means that significant turbulent produc-
tion is occurring over the region of log-log energy decay, again indicating that the
“inertial regime” label is inappropriate for these wakes. The implication of this
is that a more detailed consideration of the factors affecting the relaxation time
(usually a settling velocity-based expression) and, thus, the deposition of particles
in the wake of fences is needed. A -5/3 slope but significant dissipation implies
a different turbulence environment where particles may be distrained by strong
local dissipation. This raises the possibility of optimising the depositional state by
careful control of the nature of the forcing.

4.7 Structure function analysis

When evaluating the exponents using ESS we adopted a lower limit of 207 and an
upper limit of 0.757, where the integral length scale, I is derived by applying the
Pinton and Labbé (1994) modified Taylor’s hypothesis to eq. (13) as described in
section 3.3. Eq. (20) was used to calculate the structure functions with exponents
for n = 2,4 using ESS denoted by &3 and y3, respectively, in this study.
Because the integral length scale is reduced for fractal-forced turbulence due to
the smaller scale roughness of the signal (Fig. 12), there were three locations where
the difference between 20r/n and 0.751 was insufficient to produce enough samples
for £33 and 43 to be evaluated with confidence. Figures 16 and 17 show box and
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Fig. 17 Box and whisker plots indicating the median (centre line), interquartile range (box)
and Q3 + 1.5 (Q3 - Q1), Q1 - 1.5 (Q3 - Q1) (whiskers) for the values of {43 determined over
the sampled region, where Q1 and Q3 are the first and third quartiles, respectively

whisker plots for the range of values of {33 and €43 found in the wake of each fence
excluding these three sites. Non-parametric statistical tests for the difference in
medians found no significant difference between Platel0 (a solid plate with a 10
mm bottom gap), 5struts50 and 9struts50 for either &3 or &3 despite their large
differences in porosity. However, statistically significant differences at the 5% level
existed between these fences and the two fractal fences, which were in turn different
to one another. Figure 18 shows the mean values for &,,3,n € {2,4,6} in the wake
region for the five fences compared to values expected from Kolmogorov (1941)
and She and Leveque (1994). There is a clear tendency for the exponents from the
fractal fences to be closer to those predicted for homogeneous turbulence, which
suggests that the lower degree of intermittency seen in Fig. 12 for the fractal fences
is more akin to that expected for homogenoues flow, and is consistent with the
slopes of the spectra for Frac50 in particular. Usually, exponents that are closer to
those predicted from Kolmogorov theory would arise at higher Reynolds number.
From Fig. 4 the Reynolds number (based on external scales) is greater than for
the other fences and this may explain the result for this fence, although it does
not account for the fact that Frac50 exhibits a significantly different response to
the other fences with the same porosity and Reynolds number. This implies that
not all of the departure of the Frac60 exponents from those for the regular fences
can be due to Reynolds number.

In summary, although the turbulence intensities are similar for the wakes of
fractal and non-fractal forced fences when normalized by their own local mean
velocities for z/H > 5 (Fig. 5a), the detailed nature of the turbulence structure
is quite different between these cases. Thus, a multi-scale fractal forcing leads
to differences in the detailed turbulence structure compared to fences with the
same porosity but uniform spacing of fence elements. That fractal fences appear
to have a multifractal structure and, thus, intermittency that is more akin to
homogeneous, isotropic turbulence is potentially useful for developing models for
fence behaviour as it implies that theories derived for the homogeenous case (such
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Fig. 18 Mean values for &3 in the wakes for the five fences. The Kolmogorov (1941) theory
is shown by a solid line and that due to She and Leveque (1994) is indicated by a dotted line.

Symbols correspond to: * (5struts50), + (9struts50), A (Frac50), O (Frac60).

as the log-Poisson model of She and Leveque (1994) plotted in Fig. 18) are more
applicable to fractal-wake flows than traditional forcings.

5 Conclusion

Previous work reported that fractal objects introduce high turbulence intensities
in the near-wake that decay rapidly downstream, and this property is also evident
with our relatively simple fractal fences, although differences in porosity dominate
over the fractal or non-fractal nature of the fence for xz/H > 5.0. However, in the
near-wake clear differences exist in the longitudinal turbulence intensity, o (u1)/Us.
and it was found that a modified version of the Mazellier and Vassilicos (2010)
wake interaction length could collapse the behaviour of the fractal fences with
some success in this region.

In general, when more subtle properties of the flow field are studied, there are
significant differences that are clearly expressed throughout the domain. The frac-
tal fences induce a flow with a lower average (but more constant) Hoélder exponent,
meaning that intermittency is reduced but that the turbulence signal fluctuates
to a greater extent. This reduction in intermittency seen in the Holder exponents
is also evident in the structure functions, which are closer to those predicted for
isotropic turbulence. Indeed, we also find energy spectra that are closer to those
for isotropic flow. Thus, a fractal forcing, because it promotes eddy interaction at
a range of scales, reduces the coherence of large-scale structures for z/H > 5.0.
This reduced intermittency has implications for sedimentation behind such fences.
If the inertial scale of the particles is such that the small-scale structures seen in
Fig. 11 are irrelevant for sedimentation, then deposition should be more efficient
than for non-fractal fences where large-scale fluctuations (Fig. 10) mean that the
inertia of individual flow structures is large enough to overcome particle scales.
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Conversely, for smaller particles with shorter inertial times, fractal fences are ex-
pected to be less efficient as the high frequency variations that these wakes exhibit
will affect particle deposition.

The enhanced dissipation that we see in Fig. 14 and Fig. 15 is consistent with
work using numerical fractal forcings, studied in the fluid mechanics literature,
although the proportion of dissipation observed here in what notionally looks to
be the “inertial regime” is less (although still double that for non-fractal fences).
The manner in which energy transfer takes place in the wakes of fractal and non-
fractal forced flows is clearly different and is currently the focus of significant
research efforts in fluid mechanics (Stresing et al 2010). It would seem that the term
“inertial regime” may be inappropriate to describe the region of power-law spectral
decay in fractal-forced wakes, even though the structure functions for fractal-forced
flow appear to be more similar to isotropic turbulence. This is because significant
dissipation is taking place within this scaling region compared to the wakes from
fences that are forced in a more traditional manner. Enhanced dissipation (Fig.
14) coupled to a reduced rate of energy decay over wavenumbers corresponding to
the forced scales (Fig. 13) implies that turbulence production must be higher for
the multi-scale forced flow and hints at the potential for optimising fence design
to control for production or dissipation depending on the application.

The immediate conclusion from our work is that specifying a height, porosity
and bottom gap size for a fence is not sufficient to determine the wake structure
of turbulence: the arrangement of the fence struts also has an effect, although
porosity effects clearly dominate the primary turbulence variables such as the
mean flow and turbulence intensity. More generally, the high dissipation that was
seen to occur in a realm that looked like an inertial regime may be a property of
many other types of environmental boundary-layer flows owing to the complexity
of the forcing that often occurs, such as flows through a forest forced at scales from
leaf to trunk Finnigan (2000). This property of environmentally forced turbulence
means that it is debateable if an “inertial regime” sensu strictu exists in multi-
scale forced flows, and this and other conclusions from the emerging literature on
fractal and broadband forcing are deserving of greater attention.

Acknowledgements We are grateful to the workshop at the Institute of Low Temperature
Science, University of Hokkaido who constructed the fences used in these experiments. This
research was undertaken while CK was in receipt of a short-term fellowship from the Japan
Society for the Promotion of Science (PE 04511) hosted by the Nagaoka Institute for Snow
and Ice Studies.

References

Anselmet F, Gagne Y, Hopfinger E, Antonia RA (1984) High-order velocity structure functions
in turbulent shear flow. J Fluid Mech 140:63—-89

Babiano A, Dubrulle B, Frick P (1995) Scaling properties of numerical 2-dimensional turbu-
lence. Phys Rev E 52:3719-3729

Batchelor GK (1953) The Theory of Homogeneous Turbulence. Cambridge University Press,
Cambridge, England

Benzi R, Ciliberto S, Tripiccione R (1993) Extended self-similariy in turbulent flows. Phys Rev
E 48:R29-R32

Benzi R, Ciliberto S, Baudet C, Chavarria GR (1995) On the scaling of 3-dimensional homo-
geneous and isotropic turbulence. Physica D 80:385-398



24 C.J. Keylock et al.

Chaudhary V, Mathur P (2004) Composite avalanche control scheme developed for the lower
himalayan zone: a case history. Cold Reg Sci Tech 39:243-255

Chen SY, Dhruva B, et al SK (2005) Anomalous scaling of low-order structure functions of
turbulent velocity. J Fluid Mech 533:183-192

Cheskidov A, Doering CR, Petrov N (2007) Energy dissipation in fractal-forced flow. J Math
Phys 48:065,208

Comte-Bellot G, Corrsin S (1966) The use of a contraction to improve the isotropy of grid-
generated turbulence. J Fluid Mech 25:657

Dong ZB, Chen GT, He XD (2004) Controlling blown sand along the highway crossing the
taklimakan desert. J Arid Env 57:329-344

Donoho DL, Johnstone I (1994) Ideal spatial adaptation by wavelet shrinkage. Biometrika
81:425-455

Finnigan J (2000) Turbulence in plant canopies. Ann Rev Fluid Mech 32:519-571

Frisch U, Parisi G (1985) The singularity structure of fully developed turbulence. In: Ghil M,
Benzi R, Parisi G (eds) Turbulence and Predictability in Geophysical Fluid Dynamics and
Climate Dynamics, pp 84-88

Gaudin E, Protas B, Goujon-Durand S, Wojciechowski J, Wesfriedl JE (1998) Spatial proper-
ties of velocity structure functions in turbulent wake flows. Phys Rev E 57:R9-R12

George WK (1992) The decay of homogeneous isotropic turbulence. Phys Fluids A 4:1492

George WK, Wang H (2009) The exponential decay of homogeneous isotropic turbulence. Phys
Fluids 21:art. no. 025,108

Gledzer E (1997) On the Taylor hypothesis corrections for measured energy spectra of turbu-
lence. Physica D 104:163-183

Goring DG, Nikora VI (2002) Despiking acoustic doppler velocimeter records. ASCE J Hydraul
Eng 128:117-126

Hurst D, Vassilicos JC (2007) Scalings and decay of fractal-generated turbulence. Phys Fluids
19:art. no. 035,103

Iversen JD (1984) Comparison of snowdrift modeling criteria — commentary on application of
anno modeling conditions to outdoor modeling of snowdrifts. Cold Reg Sci Tech 9:259-265

Keylock CJ (2006) Constrained surrogate time series with preservation of the mean and vari-
ance structure. Phys Rev E 73:036,707

Keylock CJ (2007) The visualisation of turbulence data using a wavelet-based method. Earth
Surf Proc Land 32:637-647

Keylock CJ (2008) A criterion for delimiting active periods within turbulent flows. Geophys
Res Lett 35:L11,804

Keylock CJ (2009) Evaluating the dimensionality and significance of “active periods” in tur-
bulent environmental flows defined using Lipshitz / Holder regularity. Environ Fluid Mech
9:509-523

Keylock CJ (2010) Characterizing the structure of nonlinear systems using gradual wavelet
reconstruction. Nonlin Proc Geophys 17:615-632

Kolmogorov AN (1941) The local structure of turbulence in incompressible viscous fluid for
very large Reynolds numbers. Dokl Akad Nauk SSSR 30:299-303

Kolmogorov AN (1962) A refinement of previous hypotheses concerning the local structure
of turbulence in a viscous, incompressible fluid at high Reynolds number. J Fluid Mech
13:82-85

Kolwankar KM, Lévy Véhel J (2002) A time domain characterisation of the fine local regularity
of functions. J Fourier Anal Appl 8:319-334

Kosugi K, Sato T, Sato A (2004) Dependence of drifting snow saltation lengths on snow surface
hardness. Cold Reg Sci Tech 39:133-139

Kuczaj AK, Geurts BJ (2006) Mixing in manipulated turbulence. J Turbul 7:1-28

Kuczaj AK, Geurts BJ, McComb WD (2006) Nonlocal modulation of the energy cascade in
broadband-forced turbulence. Phys Rev E 74:016,306

Laizet S, Vassilicos JC (Accepted) Dns of fractal-generated turbulence. Flow Turbulence Com-
bust DOT 10.1007/s10494-011-9351-2

Lang RM, Blaisdall GL (1998) Passive snow removal with a vortex generator at the pegasus
runway, antarctica. Ann Glaciol 26:231-236

Lumley JL (1965) Interpretation of time spectra measured in high intensity shear flows. Phys
Fluids 8:1056-1062

Mazellier N, Vassilicos JC (2010) Turbulence without richardson-kolmogorov cascade. Phys
Fluids 22:075,101



Fractal fence wake structure 25

Mazzi B, Vassilicos JC (2004) Fractal-generated turbulence. J Fluid Mech 502:65-87

Mazzi B, Okkels F, Vassilicos JC (2002) A shell-model approach to fractal-induced turbulence.
Eur Phys J B 28:243-251

McCoy A, Constantinescu G, Weber L (2007) A numerical investigation of coherent structures
and mass exchange processes in channel flow with two lateral submerged groynes. Water
Resour Res 43:W05,445, DOI 10.1029/2006WR005267

Meneveau C, Sreenivasan KR (1987) Simple multifractal cascade model for fully developed
turbulence. Phys Rev Lett 59:1424-1427

Muzy JF, Bacry E. Arnéodo A (1991) Wavelets and multifractal formalism for singular signals:
Application to turbulence data. Phys Rev Lett 67:3515-3518

Naaim-Bouvet F, Naaim M, Michaux JL (2002) Snow fences on slopes at high wind speed:
physical modelling in the cstb cold wind tunnel. Nat Hazard Earth Sys 2:137-145

Nemoto M, Nishimura K (2001) Direct measurement of shear stress during snow saltation.
Boundary-Layer Meteorol 100:149-170

Nemoto M, Nishimura K (2004) Numerical simulation of snow saltation and suspension in a
turbulent boundary layer. J Geophys Res 109, DOI 10.1029/2004JD004657

Percival DB, Walden AT (2000) Wavelet Methods for Times Series Analysis. Cambridge Uni-
versity Press, Cambridge, U.K.

Pinton JF, Labbé R (1994) Correction to the Taylor hypothesis in swirling flows. J Phys 11
4:1461-1468

Saddoughi SG, Veeravali SV (1994) Local isotropy in turbulent boundary-layers at high
Reynolds number. J Fluid Mech 268:333-372

Seoud RE, Vassilicos JC (2007) Dissipation and decay of fractal generated turbulence. Phys
Fluids 19:art. no. 105,108

She ZS, Leveque E (1994) Universal scaling laws in fully developed turbulence. Phys Rev Lett
72:336-339

Staicu A, Mazzi B, Vassilicos JC, van de Water W (2003) Turbulent wakes of fractal objects.
Phys Rev E 67:066,306

Stresing R, Peinke J, Seoud S, Vassilicos JC (2010) Defining a new class of turbulent flows.
Phys Rev Lett 104:194,501

Tabler RD (1980) Geometry and density of drifts formed by snow fences. J Glaciol 26:405-419

Tabler RD (1991) Snow fence guide. Strategic Highway Research Program SHRP-H-320, Na-
tional Research Council, Washington D.C.

Takeuchi Y, Kobayashi S, Sato T (2001) The effect of wind direction on drift control by snow
fences. Ann Glaciol 32:159-162

Vassilicos JC, Hunt JCR (1991) Fractal dimensions and spectra of interfaces with application
to turbulence. Proc R Soc Lond A 435:505-534

von Karman T, Howarth L (1938) On the statistical theory of turbulence. Proc R Soc London,
Ser A 164:192

Wang H, George WK (2002) The integral scale in homogeneous, isotropic turbulence. J Fluid
Mech 459:429



	author_version_front_page.pdf
	EFM_Keylock et al_revised.pdf

