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Abstract

Correlation based model validity tests are introduced to monitor the opera-
tion of nonlinear adaptive noise cancellation filters and to detect if the filters
are operating correctly or incorrectly. The tests are derived for a NARMAX
(Nonlinear Auto Regressive Moving Average model with eXogenous inputs) fil-
ter design basedion a SubOptimal Least Squares (SOLS) estimation algorithm.

Simulation studies are included to illustrate the performance of the new tests.

1 Introduction

.The recent developments in microchip technology have increased the interest in
signal processing methods. One of the most important fields of signal processing
is adaptive noise cancellation in which a signal is reconstructed from noisy
measurements. The basic idea of noise cancellation is to use the noise corrupted
signal with the aid of a reference input to regenerate the signal of interest [21].
This approach is computationally cheap compared with the so-called Kalman
filter design. The adaptive noise cancellation approach has been widely used
in many applications such as speech processing, echo cancellation and antenna

side-lobe interference etc. [21][16][14][15].

The early work in adaptive noise cancellation was developed by Howells and

Applebaum in 1957. In 1959, Widrow and Hoff developed the LMS algorithm,
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which has been extensively studied by many authors [22].

In applications where the nonlinear effect is mild linear filters provide an
acceptable performance, but in general, linear filters are not adequate when
applied to systems where nonlinear terms dominate. To overcome this problem
some authors have considered nonlinear designs and a popular approach has
been to use the Volterra series and the LMS algorithm [9]{19]. The disadvan-
tage of this approach is that it is computationally expensive since it requires a
large parameter set and an alternative method based on the NARMAX model
coupled with a suboptimal least squares (SOLS) algorithm was introduced in an
attempt to alleviate this problem [6]. The NARMAX model provides a concise
description for a wide class of nonlinear systems with a relatively small number
of parameters and the new suboptimal least squares (SOLS) algorithm has an
excellent convergence rate compared with the LMS algorithm. Irrespective of
which particular algorithm is used there is a need to monitor the performance
of the noise cancellation mechanism. This is easy to achieve in simulation where
the true filter parameters and signal statistics are known but in practice this in-
formation will not be available to the experimenter. There are many situations
which can cause the filter to operate suboptimally including, underspecifica-
tion of the filter order, poor convergence, incorrect software implementation,
a sudden change in the system structure, the use of a linear filter when the
system is nonlinear etc. Ideally we require a metric of filter performance which
is relatively easy to compute, simple to interpret and which will detect most of

these fault conditions. The present study addresses this problem and introduces



correlation validation tests to provide one method of performance monitoring

for both linear and nonlinear noise cancellation.

2 Adaptive noise cancellation and system iden-

tification

The general structure of an adaptive noise canceller is illustrated in Figure(1)
where d(t) represents the measured signal which is composed of the signal of
interest s(t) and noise n(t). It is assumed that 8(t) and n{t) are uncorrelated
and that the noise n(t) passes through an unknown path designated by the
transfer function T'(.) to produce the reference input 2(¢). The concept is to fit
a filter F'(.) operating on z(t) to generate y(t) which is an estimate of n(t). The
design incorporates on-line estimation of the filter parameters by minimizing
the mean square error E[e*(t)]. To ensure the causality of the filter F'(.) a delay

tq is inserted in the primary channel.

FIR (Finite Impulse Response) filters have been widely used in signal
processing applications often in association with the LMS algorithm. Some
authors have considered the design of FIR filters using the RLS (Recurstve
Least Squares) algorithm and demonstrated the superior convergence rate of
this algorithm compared with LMS [7][10]. IIR (Infinite Impulse Response) fil-

ters have recently been interpreted in terms of a system identification problem



(11](6}{13][17] which has been studied extensively in the last two decades [17].
The main advantage of IIR filters is that they can be used to model a wide class

of linear systems with a smaller parameter set compared with FIR filters.

The noise cancellation problem can be viewed as a system identification
problem by reorganizing the formulation in Figure(1l). From Figure(l), the
optimal filter F'(.) will be the inverse of T'(.), assuming that T!(.) exists and

is stable, such that
y(t) =n(t = ta) = T7'(2(t)) = F(=()) (2..1)

But since d(t — ts) = n(t — tg) + 8(t — t,) then
d(t — ta) = T~ (=(0)) + a(t — L) (2.2)

Now T~ !(z(t)) can be considered as the system to be identified with input =(t)
and output d(t — t4) where s{t — ¢;) is interpreted as coloured noise as depicted
in Figure(2). The model structure adopted for the filter F'(.) and the estimation

algorithm used in the current investigation are described in the next section.

3 Nomnlinear Filter Representation

The model that represents the filter F'(.) plays a key rule in the noise can-
cellation method. It is desirable that the model is linear-in-the-parameters to
simplify the implmentation of the estimation algorithms and to reduce the com-

putational load. Ideally the model should also be general enough to represent



a wide range of nonlinear systems but should reduce to a linear filter if this is
appropriate. There is no point in using a nonlinear filter if a linear filter design

is adequate.

Although the finite Volterra series model has been widely used in both
nonlinear system identification and noise cancellation the main disadvantage
of this representation is that it requires a very large number of parameters
to characterize even simple nonlinear systems. The problem arises because
in the Volterra model the output is expressed in terms of past inputs only.
The NARMAX representation avoids these problems by expanding the present
output in terms of past inputs and outputs and can therefore be considered as

a nonlinear IIR filter.

4 The NARMAX Model

The NARMAX model was initially introduced by Billings and Leontaritis in
1981 and studied further in (1985). A NARMAX description for the nonlinear
noise cancellation problem can be derived by considering input-output maps

based on conditional probability density function to yield

dit —ty) = de+ f{dlt —ta—1)..... d{t —tg—ng),z{t),...,x{t — n,),

Expanding Equation(4..3) as a polynomial NARMAX and regrouping terms



gives

d(t —ty) = de+G¥[d(t —ty—1),...,d(t —t4— ng),z(t),...,z(t — n,)]
+Gd'"[d(t —tq— 1), ¥ .,d(l —tg — nd),x(t)
oo @{t —ng) 8(t —tg—1),...,8(t — ty — ny)]

+Go[a(t —tg—1),...,8(t —tg —ny)] + 8(t — tg) (4..4)

where G[.] is a polynomial function. Equation(4..4) can be rewritten as

d(t—ty) = 3T ()0 +a(t —t,) (4..5)
gd’a'

= [8L0) L) 9T(M)]| g, |+elt—t) (4.6)
ga

where

G = &7 (¢)0u
G = @7, (t)04zs

drxs

Gl = 8T,

The SOLS (Sub-Optimal Least Squares) algorithm introduced in [4] for
nonlinear systems gives unbiased estimates of the parameter vector #. The
number of parameters to be estimated would be reduced if y(t) could be moni-

tored such that Equation(4..3) could be expressed as

d(t —tq) = de+ fly{t—1),....9(t = na).x(t),..., x(t — ne)}+8(t —t4) (4..7)



to eliminate all cross-product noise terms. In practice y(f) can not be measured
directly and y(t) in Equation(4..7) is therefore replaced by the predicted values

y(t)to define a SOLS algorithm for adaptive nonlinear noise cancellation.

The algorithm is computationally simple and can be presented in the fol-

lowing unified algorithm [20][6]:

B(t) = 6(t—1)+ K(t)e(t) (4..8)
T Pt — 1)zz(t)
) = S0+ Pi = D=0 (4-9)
_ P(t — 1)zz(¢)®T (¢)P(t — 1) )
P(t) - [P(t_ 1) - a\(t)-f'@T(t)P(t _ l)zz(t) ]/’\(t) (4‘10)
eft) = d(t—ts)— 0T ()8t — 1) (4..11)
where
®(t) = Bylt) (4..12)
() = B4.(t) (4..13)
zz(t) = @) (4..14)
A = AA(E— 1)+ (1= 2p) (4..15)

The structure of the model is determined by n4, n, and the degree of f
in Equation(4..7) and an appropriate assignment of these terms should give
optimum filter pt_é;_.rforxzf_lance. However the structure of the system is unknown
apriori and whilst vari();s trial values can be used for ny, n, and the degree of f

a method of detecting correct filter operation is needed to aid the experimenter

in selecting values for these parameters.



5 Performance Monitoring

There are many situations in noise cancellation applications where performance
monitoring would be valuable. If, for example, there is a noticeable nonlinear-
ity in the system then there might be a danger of ignoring the nonlinear terms
and using an inappropriate linear design. Alternatively there may be situations
where the filter parameters do not converge to the optimal values leading to
poor filter performance. Or the filter parameter set may not include all the
necessary terms required to effectively characterize the system. In each case
some sort of monitoring scheme which ideally can both detect and discriminate
between these effects and which is independent of the precise filter structure
would be invaluable. Most of the performance monitoring measures used in
‘signal processing are a function of €(f) such as the mean squared error, the
expected signal-to-noise ratio or measures such as E(y*)/E(e?) [22][12]. These
methods can not be readily applied on-line since they depend on an apriori
knowledge of the signal s(t) or on a comparison of different filter realizations
which can only be done in simulation. In general these methods can not dis-
tinguish between linear and nonlinear effects. Correlation functions which may

offer a solution to these problems are considered in the next section.



5.1 Correlation Tests

The linear cross-correlation between the input and the error signal was sug-
gested in (18] as an automatic gain control for FIR filters. Correlation func-
tions were also used in 8] to monitor the operation of linear self-tuners. In the
present study this concept is applied to noise cancellation and extended to work

for both linear and nonlinear cases.

The problem of detecting a deficiency in the filter operation can initially

be studied by considering the minimization of the cost function. Hence

minE(e?) = minE([d(t) — y(t)]") (5.1.1)
= minE([n(t) + s(t) — y(t)]*) (5.1.2)
= minE(n(t) + 2n(t)s(t) — 2n(t)y(t) (5.1.3)

+9(t) — 2s(t)y () + ¥°(¢))
Since n(t) and s(t) are uncorrelated, E[n(t)s(t)] =0 and E[s(t)y(t)] = 0, then

minE(e?) = minE(n®(t) — 2n(t)y(t) + 8*(t) + ¥*(1)) (5.1.4)
= minE([n(t) — y(¢)]* + $*(¢)) (5.1.5)

The minimum occurs when y(¢) — n(t) and consequently ¢(t) — &(f) in the

mean squared sense. This is the condition for the canceller to perform optimally.

When €(t) fails to converge to s(t), then in general for any linear-in-the-

parameters model including the linear (FIR or IIR), Volterra or NARMAX



models the cause may be one of or a combination of one of the following condi-

tions:

1) the parameter estimates have not converged to the proper values, that is
p g

A

6" = 62 + AG* AB* £ 0
Then ¢(¢) will take the form
e(t) = a(t) + BT (¢)AG”

(i1) the fitted model has erroneous structure, that is, some linear or nonlinear

terms are missing. For example if
n(t) = ar1x(t) + axz(t — 1) + asz(t)z(t — 1)
and the model
y(t) = O1z(t) + 22t — 1)
is fitted then e(t) will be
e(t) = 8(t) + asx(t)x(t — 1) + Abyz(t) + Abaz(t — 1)

where Af; and Afl; may or may not equal zero.

In all cases if the filter is operating correctly then the residuals will be
unpredictable from all linear and nonlinear combination of input and output
terms. The validity of this statement can be established by using previous
results by the authors [3][5] derived for system identification and adapting these

to the filter monitoring situation.
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It is well known that for linear systems [17], the estimated system param-

eters will be unbiased if
E(e(t)e(t — 7)) = Poe(7) = 8(7) (5.1.6)
E(z(t)e(t — 7)) = Dze(7) =0 (5.1.7)
If the system is nonlinear however these tests are inadequate [3][5]. In the
system identification case where a process and noise model are estimated, it has

been proved [3][5], that the residuals €(t) will be unpredictable from all linear

and nonlinear combinations of past inputs z(t) and outputs iff

3.(r) = §(r) Vr (5.1.8)
3,.(7) = 0 Vr (5.1.9)
Beer) = 0 20 (5.1.10)
&y (1) = 0 Vr | (5.1.11)
®y.(r) = 0 Vr (5.1.12)

Whenever the noise is purely additive at the output alternative algorithms
such as SOLS and IV can be used. This latter case corresponds to the noise

cancellation problem and is appropriate for models of the form
d(t) = G7[x(t)] + G**[z(t), s(t)] + G°[s(t)]

where G®[s(t)] represents the additive noise which may be coloured. Notice that
if only the first term were present in the above equation then the model would

be a Volterra series.

11



If either a SOLS or IV algorithm is used then the presence of any term of
GT[x{t)] or G™[x(t), 5(t)], but not G°[s(t)], in the residuals would induce biased
estimates. Only a subset of the tests in Equations(5.1.8-5.1.12) are therefore

required in this case and it can be shown that [5] unbiased estimates will be

obtained iff
. (r) = Elz{t)e(t +7)] =0 (5.1.13)
8, (r) = B{[z*(t) - PO)e(t + )} = 0 (5,114
S ,.(r) = B{[=*(t) - 2([)]&(t+ 7))} =0 (5.1.15)

where (.)' indicates that the mean value has been removed.

Although these tests were derived for the system identification case [5],
the equivalence of this problem and noise cancellation established in section (2)
shows that they are appropriate in the present application. The correlation tests
of Equations(5.1.13-5.1.15) can therefore be used in performance monitoring
for noise cancellation. A summary of the interpretation of the tests is given in

Table(1) subject to the conditions defined in [5).

Notice that the tests of Equations{5.1.13-5.1.15) are standard linear corre-

lations of nonlinear functions of « and e. They can therefore be computed using

standard correlation algorithms or correlators.
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| Tara(7) | 8.x.(7) | ®ae(7) | Comments ]

= = =0 | Filter model unbiased ‘!
£ 0 =1 # 0 | Wrong filter model structure
=0 =0 =0 | Even power of z(t) omitted from the model
if odd order moment of z(t) is zero
#£:0 =0 # 0 | Odd power of z(t) omitted from the model
if odd order moment of z(t) is zero
=0 =10 # 0 | No nonlinearities. Linear term missing

Table 1: Interpretation of the Correlation tests subject to the conditions speci-
fied in (Billings and Voon 1986).

6 Performance tests for Nonlinear Adaptive Noise

Cancellation

The discussion in the previous section demonstrated that the correlation funec-
tions of Equations(5.1.13-5.1.15) are appropriate tests for linear and nonlinear
noise cancellation. The only problem that remains is that in the identification
application these tests were used off-line whereas in noise cancellation an on-line
implementation would be preferable. One solution to this problem is to mea-
sure the values of ¢(t) and z(t) on-line for a reasonable number of iterations.
Equations(5.1.13-5.1.15) can then be calculated over this window of iterations
parallel with cancellation. This can easily be accomplished using parallel pro-
cessing techniques. Although the correlation tests work well in the standard
parameter estimation case [5], it is likely that the sensitivity of detection will
be reduced when used on-line and very small windows will clearly increase the

probability of false alarms.

13



Ideally the tests should provide an indication of filter operation and should
indicate if some modification either to the structure of the filter ( i.e., include

nonlinear terms) or to other factors such as increasing the gain of the algorithm

is required in order to achieve satisfactory filter performance.

6.1 On-line Performance tests

One way of implementing the performance tests on-line 1s to recursively esti-
mate the correlation functions of Equations(5.1.13-5.1.15). Define the cross-
correlation function of the discrete-valued vectors a and b as

N

Pas (7) = ;‘

F T2 olt=7e(r). (6.1.1)

Equation(6.1.1) can be updated recursively using the expression
Pab(7,8) = nas(7,t — 1) + (1 = n)a(t — 7)b(t) (6.1.2)

where n = N/(N+ 1) All the tests of Equations(5.1.13-5.1.15) can be expressed
in the forn% of Equation(P.1.2) with appropriate definition of a and b. The range
of 7 is related to the expected lags in the model which should be small for IIR
filters. A good initial range for 7 would be 0 < 7 < 5 but this value can readily

be increased if appropriate.

Alternatively, consider the function

pas () = npas(t — 1) + (1 — p)ayb, (6.1.3)

14



where

e

a =1/m> a(t—1)

]
—

and 7 in these equations can be considered as a forgetting factor. So for example
for n = .995, a data length of N = .995/(1 — .995) = 199 will be remembered.
A forgetting factor will be helpful in the transient period where the error ¢(t)
1s nonstationary. The choice of 7 is often a compromise between slow detection
when n is large (or less sensitive for large windows) and an increase in the

possibility of false alarms when % is small.

It can be shown that 4 of Equation(6.1.3) is related to ¢qs of Equation(6.1.1)
by

Bilt) = Lim S duslrs ) (6.1.4)

Clearly Equations 5.1.14 and 5.1.15 for @ _.

I €

(r) and @,y .(7), can also be ap-

proximated as

et (8) = pew (t = 1) + (1 = m) i (6.1.5)
et 2 (t) = Mgy (t — 1) + (1 = n)éeed (6.1.6)

where
m -
& =1/m> (2*(t —i) —x?,,)
=1
and x2,, is the estimated mean value of z*(t) which can be calculated recursively.
Any drift of the mean of p(t) away from zero or any sudden increase in plt)
should be interpreted as an increase in the corresponding correlation function

implying poor filter performance. Although it is difficult to choose the threshold

values in this case, the computations are kept to a minimum. Alternatively

15



Equations(5.1.13-5.1.15) can be computed over a window of data and used to

interpret why the filter is performing suboptimally.

7 Computational Aspects

In all simulation studies the Suboptimal Least Square (SOLS) algorithm is im-
plemented using the numerically stable factorisation method of Bieman (1977)
[1]. Also the correlation functions described above are calculated according to

the formula

‘iz,(k) — %Zfi‘l"’(z( ) = j)(?l(t + k) — 7)

t
V 222(0) 244(0)

Confidence intervals plotted on the graphs indicate if the correlation between
variables is significant or not. If IV is large the standard deviation of the cor-
relation estimate is 1/ VN and the 95% confidence limits are therefore approx-

imately +1.96/v/N.
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8 Simulation Results

8.1 Simulation S1

The system S1

x(t) = n(t) — .5z(t — 1) — 82*(t — 1)

was simulated with a uniformly distributed random noise n{t) between -0.5 and
+0.5 and a triangular wave signal for #(t) of magnitude 0.5 and a period 52.

Initially, the noise canceller was operated with a filter defined by the structure
y(t) = a12(t) + asz(t — 1)

for 500 iterations. The cross correlation functions were calculated to examine
t\he performance of the filter and these are illustrated in Figure(3). In all cases
the correlation functions have been calculated using Equations(5.1.13-5.1.15)
over a window of length 500. Since the values of the linear cross correlation
function ®.(7) are within the 95% confidence intervals, a purely linear analysis
would suggest that there is no more information in the residuals. The missing
nonlinear term would therefore not be detected and a poor filter performance
would be incorrectly attributed to a poor signal to noise ratio or some other false
effect. Measurements of E(¢?(t)) can not detect that terms have been omitted
because the actual minimum value is not known apriori. The sum of the errors
may converge but this will be a biased value and it is impossible to know if

this corresponds to the optimum filter design without an exhaustive search

17



over all possible filter structures. However calculating the nonlinear functions
® v, (7) shows a high correlation value at lag one as shown in Figure(3a). This
suggests that the model is inadequate and a nonlinear term of lag one maybe
missing from the filter model. Running the canceller for another 500 iterations,
Figure(3b), confirmed this suggestion. It is always prefereable to apply the cor-

relation monitor after the transient period since the initial stationarity as the

parameters adjust may provide false results.

When the nonlinear term z?(¢ — 1) is inserted in the model so the filter has

the exact inverse of S1
y(t) = a,z(t) + azx(t — 1) + apz®(t — 1)

and the simulation is repeated, the values of all the correlation functions, Fig-
ure(3d), are inside the 95% confidence intervals indicating that the filter is

performing correctly.

The on-line approximation of the correlation functions were tested on this
example for the detection of sudden changes with = .995 and m = 10 in
Equations{6.1.3-6.1.6). The canceller was started with the correct filter struc-
ture and run for 1000 iterations. The filter was then replaced by the reduced
order structure to simulate a sudden change in the system structure. The on-
line tests which are illustrated in Figure(4) show that after the initial transient
period (0-500) the values of p(t) settle down to small magnitudes around zero.
But within just a few iterations following iteration 1000 the magnitudes rise

significantly correctly indicating the change.
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8.2 Simulation S2

A second nonlinear system S2 defined by
z(t) =n(t) — 2z(t — 1) —=(t = n(t — 1) + .In(t — 1) + .42(t — 2)

was simulated with a uniformly distributed random noise n(t) with values be-
tween -0.5 and +0.5 and a triangular wave signal for s(t) of magnitude 0.25 and

period 52.
A linear filter of the structure

y(t) = a12(t) + aaz(t — 1) + asy(t — 1)

was initially used for the model. The correlation functions are again calculated
for two successive windows. The values of the linear and nonlinear correlation
functions dipicted in Figure(5a) and (5b) are outside the confidence intervals
for some lags mainly lag two in ®,.(7) and lag one in ® v (r) and ¢ 2 .(7).

This indicates that some terms have been ommited from the model.

When a linear term at lag two and a nonlinear term at lag one are added

to give the exact inverse of s2
y(t) = a1 x(t) + asz(t — 1) + agy(t — 1) + agx(t — 2) + asx(t — 1)y(t — 1)

all the corrrelation functions are satisfied, Figure(5d), suggesting that the can-
celler is performing adequately and a very high noise suppression is obtained as

demonstrated in Figure(6).

19



Again, the simple on-line tests were repeated in this case. For the first 1000

iterations the filter structure was the exact inverse of the system. At iteration
1000, the two terms z(t — 2) and z(t — 1)y(¢t — 1) were removed from the filter
structure. The on-line plots of j(t) in Figure(7) correctly show a considerable

increase following this rapid change.

8.3 Simulation S3

A third system S3 defined by
z(t) = 3z(t — 1) + 1z{t — 2) +n(t — 1) + .4n*(t — 2) + .1n(t — 2)2(t — 1)

was simulated with a uniformly distributed random noise n(t) with values be-
tween -1 and +1. The signal s(t) was a triangular wave with magnitude of 0.2

and a period of 52, and {; was set to be t; = 1.

Initially a filter structure of the form
y(t) = ayz(t) + asz(t — 1) + asgx(t — 2) + agy(t — 1)az(t — 1)

was used. The correlation functions are plotted in Figure(8b). Clearly the
values of the correlation functions are outside the permitted intervals indicating
that the is not operating correctly. Adding one more nonlinear term to the filter

gave a filter structure of the form

y(t) = qyx(t) + age(t — 1) + asz(t —2) +agy’®(t — 1) + azz(t — Vy(t — 1)

20



which is the exact inverse of S3. The filter performance is improved but some
values of the correlations are still slightly high in Figure(8c). This is probably
due to the transient effects which occur as the filter parameters are tuned.
Computing over the next 500 samples, calculated between iteration 500 and
iteration 1000, Figure(8d), shows that the correlation values are now well inside

the confidence intervals.

These tests will also be valid for the case of model overfitting providing the
true model is a subset of the fitted model. In simulations the tests were shown
to work for a window length of 500, however it can work for much less than this

value and maybe down to 100.

9 Conclusions

In this article three simple correlation tests have been proposed to monitor the
performance of linear and nonlinear adaptive noise cancellers. Although the
canceller design was based on the NARMAX representation and the SOLS al-
gorithm, the results are not restricted to these cases and apply to all linear and
analytic nonlinear systems using either LMS or RLS based estimators. The
tests perform well for simulated systems and were shown to detect and distin-
guish between missing linear and nonlinear terms in the model. Simple on-line
measures have also been designed to monitor filter performance. These compu-

tationally simple tests were shown to be useful especially for detecting sudden
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structural changes in the system, but the derivation of confidence intervals for

these tests requires further study.
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Figure (3 ) Correlation Functions for S1 and
a: Reduced Order (iterations 0-500)
b: Reduced Order (iterations 500-1000)
c: Full Order (iterations 0-500)
d: Full Order (iterations 500-1000)
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Figure (8) Correlation Functions for $3 and
a: Reduced Order (iterations 0-500)
b: Reduced Order (iterations 500-1000)
c: Full Order (iterations 0-500)
d: Full Order (iterations 500-1000)



