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The Qualitative Analysis of Nonlinear Parameterised Systems

Part I - Nonlinear Systems Representation and Dynamical Systems Theory

Abstract

The analysis of parameterised nonlinear models is considered and a new approach is introduced which provides a
framework for the global analysis of both continuous and discrete time nonlinear systems.

The paper is divided into two parts. Part I provides an overview of nonlinear system representations and dynamical
systems theory. This forms the basis for the resiilts in the second part. Part II introduces a numerically based analysis
tool and demonstrates that this provides a flexible framework for the analysis of a diverse range of nonlinear model
types. It is shown, by extending the numerical algorithm, that the approach provides a global perspective to the results
that is difficult to obtain using analytical methods alone. Simple examples are used to illustrate how the method detects
typical bifurcation phenomena. A nonlinear feedback system is analysed in order to show how the new approach
provides both qualitative information and a global perspective over a defined region of the systems parameter space.
The method proves to be a powerful tool when used to probe the nonlinear characteristic of a system.

Introduction

Nonlinear models arise in so many scientific and engineering disciplines that it would be
impossible to list even a fraction of the applications. From an engineéring viewpoint, the prime
reason for wishing to model a system is to understand its behaviour. Such behaviour can be
surprisingly rich and varied. The nonlinear nature of a system may show itself through
performance degradation, limit cycle behaviour, harmonic distortion, hysteresis, bifurcation and

chaos.

On the other hand, linear models have one very attractive property, they are easy to handle. One
possible way to deal with a nonlinear system is to linearise about some known operating point.
Once this is done, a host of classical linear techniques may be applied. Powerful theories abound
both in the time domain and frequency domain. Unfortunately in doing this the very behaviour

we wish to replicate may be lost.

A nonlinear system will not obey the laws of superposition and may loose stability for certain
input values. A linear system is either stable or unstable and this applies equally for all inputs
whatever their magnitude. However the stability of a nonlinear system is in general, intimately
related to the input excitation and stability properties are by no means as easy to define as in the

linear case. In particular both local and global aspects need to be distinguished.

In Section I of this paper we review the representation of a variety of nonlinear model types. In

general the method of analysis for such models depends primarily on the model structure. One
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approach, which can be placed under the broad heading of dynamical systems theory, is
particularly attractive, for two reasons. Firstly, it is applicable to a wide variety of continuous and
discrete models. This is most useful when considering nonlinear sampled data systems
representing continuous plant. Secondly, the theory, being essentially qualitative in nature, begins
to be of use exactly were traditional linear theory breaks down, that is, when one or more
eigenvalues of the linearised system become degenerate. In Section II we review the basis of this

theory and the main results.

Unfortunately, the analytical based methods rely on detailed a priori knowledge of the nonlinear
models solution structure, before they can be applied. In essence they require the analyst to know
where the interesting behaviour lies in the product of the problems state space and parameter
space, before he can analyse what type of behaviour is occurring. In practice, this means being
able to characterise the solution structure of the nonlinear equations, describing the system over

some region of the state space for a given range of parameters.

In Part II of this paper we get around this problem by adopting a particularly attractive
numerically based method, the cell map algorithm. This algorithm is first extended to allow the
analysis of the type of parameterised nonlinear problems discussed in Part I. This simple
approach eliminates the problems mentioned above and is applicable to a diverse range of model
structures. In addition it provides a global aspect to the analysis which is very difficult to achieve

using previous analytical or numerical approaches.

A number of simple examples are used to illustrate how typical bifurcation phenomena can be
detected, both in continuous and discrete systems. As a by-product of the analysis almost

complete characterisation of the local and global stability over a predefined region is provided.
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Nonlinear System Representations

1.0. Introduction

Modern methods of analysis of dynamical systems of equations have their roots in the work by
Poincare, 1890, Birkhoff, 1927 and Lyapunov, 1949. The behaviour of solutions of nonlinear
systems was studied extensively by Rayleigh, 1896, Duffing, 1918, and Van der Pol, 1927. The
study of nonlinear systems over the last few decades has been driven to a large extent by r.hé type
of rnc_Jdel sﬁuchnes adopted. Systems of ordinary differential equations, ODE’s, are commonly

expressed in the form

x(t) = F(x(@)t) Xx€ER” ; x(0) =xy (1.1)
If u (¢) is defined explicitly, then an alternative notation is

x(t) = F(x@),u()t) x€R” ; ueR™ ; x(0) =x (12)

If the differential equation is to have a unique solution, x(¢), for every initial condition x; and input
vector u(t), it is necessary to impose some constraints on F and uw. For a solution to exist it is
sufficient that F be continuous in its arguments. To ensure uniqueness a Lipschizt condition must

be satisfied within some region M €R”
| F(ut) -F(v¢) | < L(u-v) FuveM (1.3)

where L is a constant and | x| the Euclidean norm. A more recent notation used by dynamical
systems theorists is that of the flow. If (x) is a point in R” at time ¢, starting from x, at time
t =0, resulting from following the vector field F, then the map ¥, describes the flow &, of the ODE

in R” such that
d: R"xR—R" B(x) =x P(P(x) = B 4,(x) (1.4)

and represents the totality of the solution generated by F [Hirsh and Smale, 1974, Mees, 1981].
The ideas and methods of bifurcation theory can be used to provide qualitative information on
nonlinear systems of equations exhibiting typical nonlinear phenomena, limit cycles and the like.
The theory also provides local stability information on the resulting bifurcated solutions. Consider

a system of differential equations depending on the k dimensional parameter vector u

x(t) = F(x(t),n) x€R" uER

-1-1-



Q, 2 RHXRk — R”? f= (fl(xl:"rxn)r‘:fn(xl:“"rrl) )T (15)

The word bifircate means to split into two. In its most general form bifurcation theory is the
study of the splitting of the solution structure of nonlinear systems. Its main aim is to describe the
qualitative changes which take place in the solution structure of a differential equation or map,

depending on a distinguishing parameter u.

The ability to select different system parameters lends itself to further possibilities. In particular

the problem of parameter sensitivity and structural stability may be addressed.
The discrete equivalent of (1.5) is
X1 = F(Xep) x€R" peR” (1.6)

The representations (1.5) and (1.6) can be used to represent a very wide range of systems. As a
starting point the various representations which are often used in the study of nonlinear systems

are briefly reviewed and then these are related back to the general parameterised problem above.

1.1. State Space Models

A large proportion of modern control theory is based upon the state variable model

(1)
y(©)

f(x@®),u(®),t) xeR” ; x(0) = xg

g (x(t)ue),t) ueR” ; yeR' (1.7)
Lyapunov, 1949, considered the stability of the class of autonomous nonlinear systems

x(t) = F(tx(t)) xeR” ; x(0) = xg

f: R, xR" = R Ft>0; teR, (1.8)

where f is sufficiently smooth to ensure a unique solution and has an equilibrium point at the
origin. Lyapunov’s direct or second method briefly states that the system (1.8) is asymptotically
stable on some domain M about the origin if there exists a scalar function V" which is positive
definitive and whose time derivative along the trajectory of the system is negative definitive within
the same domain. The great advantage of his theory lies in the fact that stability of an equilibrium
point of a dynamical system may be evaluated without having to solve the differential equation
(1.8). The search for Lyapunov functions has occupied a considerable amount of effort by system
theorists in recent years. The focus of attention being the estimation of the size of this domain

[Genesio and Vicino, 1984).
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It is convenient here to introduce the concept of an invariant set, which is defined as any set of
points in the state space, R", such that each trajectory starting within it, remains there for all
subsequent time. The domain of attraction, or DOA, of an asymptotically stable equilibrium point,
is an open invariant set containing the equilibrium point, with the property that every trajectory
starting within it approaches the equilibrium point as t—oco. An equilibrium point is said to be
globally asymptotically stable if the DOA encompasses the entire state space, R”. The DOA defines

a basin about the attractor in which all solutions are captured.

1.2. Functional Series Representations

Functional expansions have been applied to virtually every branch of nonlinear system theory.

The Volterra series [Volterra, 1930], is characterised by the input ouzpur relationship
y©) = T 50 - 9
where the response y,(¢) due to the n” order kernel A,(ry,..,7,) is given by
Wt) = [ [ ) T1 w(e-r) dr (110)
0 " - i=1

The original application and early work was carried out by Weiner, 1958. Brilliant, 1958, George,
1959, and Barrett, 1963. Sufficient conditions for the existence of a Volterra series expansion, for
a very general class of nonlinear systems, are given in Gilbert, 1977. Early application of the
functional series approach are due to Narayanan, 1967, 1969, 1970, Bedrosian and Rice, 1971,
Chua and Ng, 1979a, 1979b, Weiner and Spina, 1980, Marmarelis and Marmarelis, 1978, Billings,
1980, Schetzen, 1980 and Rugh, 1981.

The Fourier transform of the n* order kernel A,(ry,...,r,,) is given by

o o

H,(Wy,,Wy,) = f --f Bn(TyyTn) € 21T M dpy e dr, (1.11)

and is called the n” order transfer function for the system. The importance of such higher order
spectra was realised by Rosenblatt and Van Ness, 1965 and Brillinger, 1965, 1967a, 1967b and
1970. Recently there has been renewed interest in the estimation of higher order spectra [Billings

and Tsang, 1987, and Billings, Tsang and Tomlinson, 1988].
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1.3. Multidimensional Systems

The representation of systems using the Volterra series leads naturally to the consideration of the
multidimensional Laplace transform. Since the output in (1.9) is given by the superposition of the
response due to each kernel A,(ry,...,7,) it is sufficient to consider only the response y,(¢) due to
the n® order kernel. The multidimensional Laplace transformation LEFn(51,.-,8,) of a function

fa(t1,22.,t,) is given by [George, 1959]
(=2} oo n i
LFisirats) = [ =] filrueira) Hle % dr; (L12)
-0 -o0 i=

and the inverse transform by

1 e ks Syly+=+s,
P [ =]  Floyss) & gy <ar, (1.13)
a-joo " a,-joo

Ja@tpts) =

A multidimensional kernel input output expression can then be constructed using

LYn(S105n) = LHn(S 1,es8n) li[l LUi(s) (1.14)
giving
-1
Yaltiets) = L [LYn(Sb-wsn)] (1.15)

The advantage of this approach arises when considering block structured systems, which consist of
interconnected linear and zero memory nonlinear subsystems [George, 1959, and Schetzen, 1980].
The n* order kernel response y,(t) may be found directly by applying the inverse transformation
(1.13) sequentially . Alternatively, by realising that for the output time function y, (¢1,¢2,..,t,) only

the special case

g(t) = yn(tr,stn) L =ty===t, (1.16)

is of interest, then there must exist a G (s) such that

G@) =L [g(f)] (1.17)
The process of reducing ; F,(51,52.,5,) to G(s) is known as association of variables [George,

1959, Chen and Chie, 1973], and may be carried out using the iterative formulae [Barker and
Ambati, 1972]

ay +jeo

1 11
LFn1(r1,5208,) = P ) LFn(51080) €7 85y (1.18)

oy = joo

Trw

- -
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where 5, 53,..,5, are taken to be constant.

This approach has been extended to the analysis of discrete systems by Jury, 1958 and to
nonlinear sampled data systems by Alper, 1964, Lavi and Narayanan, 1968, Barker and Ambati,
1972, Jagen and Reddy, 1972 and Farison and Fu, 1973. Most usefully Barker and Ambati define

a sequential n-stage process for obtaining the multidimensional Z-transform from ; F,(51,..,5,)

i F ( ) 1 G +ieo éFn;:;l(zb"!zr-lssn'usn)
B=NZ1y-9ZnSr+1e8n) = . f as‘r

Z r Zﬂ'}n Cr-jm (1 - e:r:rzr— 1)

r=12..n Zasalp ety ol CODStAnt (1.19)

When F (.) has no branch points this may be calculated as

E %F"r‘ffl(zb-uzr-lrsnwsn)

é ' "r"(z DLesZrSr +1:-‘7Sn) = (1'20)

Residues ‘ (1 - e:'Tz; 1)

Furthermore, a generalisation of the well known relationship for combining a continuous system

described by a rational Laplace transform in cascade with the zero order hold, ZOH, is given as

z-1 F(s) z-1 LFa(Sp8a) &+ 1
. Z[ . ] becomes = Z[ . ;[;Il P (121)

Stability definitions for the general k-dimensional causal discrete transfer function can be found in
Huang, 1972, Justice and Shanks, 1973, Anderson and Jury, 1974 and Strintzis, 1977. This
essentially multidimensional filtering approach, has found wide application, see Bose 1977a,1977b
and 1982, Jury, 1980.

1.4. Bilinear Systems

Algebraic theory for the representation, realisation and analysis of nonlinear systems has
developed into a flourishing area. The fundamental results were obtained by Sandberg, 1964,
1965a, 1965b, and Zames, 1963, 1964. Without exception the above call upon advanced concepts
in algebra, analysis and geometry, see Brockett, 1981, Rugh, 1981, Fliess et al, 1983, Isidori, 1985.
and Vidyasagar, 1986, for introductory material.

In this work bilinear systems play an important role, taking the form

x(t)
y(t)

Ax(t) + Bu(t) + u(t) Cx(t)

C x(t) (1.22)
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It is possible to write down the Volterra series for a bilinear system, D’Alessandro et al, 1974,
Furthermore, a set of necessary and sufficient conditions for a Volterra series to have a bilinear

realisation may also be constructed.

1.5. Linear Analytic Systems

A more general class of nonlinear systems known as the linear analytic system, Brockett, 1972,
1976, takes the form

x(1)
y(®)

f&x@)t) + u@)g (x(t)) + u()

h (x(t),?) (1.23)

Differential geometric results on existence of and uniqueness of (1.24) are provided by Sussmann,
1977, and Crouch, 1981. Notice how (1.23) imposes a linearity constraint on the form of the input

vector u (.).

Realisation theory for these systems is provided by Fliess, 1982 and Jakubczyk, 1987. Concrete
examples of bilinear systems are provided by Mohler, 1970, 1977, and Mayne and Brockett, 1973,

An algebraic approach to the input output description of nonlinear discrete time systems is
provided by Normand-Cyrot and Monaco, 1984a, 1984b, Realisation theory for nonlinear discrete
time systems can be found in the work by Clancy and Rugh, 1978, Sontag, 1979a and 1979b, and
Schwartz and Dickinson, 1986a, 1986b.

The emphasis in this work has been on control issues such as decoupling [Claude, 1982, Isidori et
al, 1981, Isidori, 1985, Nijmeijer 1982, Nijmeijer et al 1985, Grizzle, 1985a, 1985b and 1986, and
D’Andrea and Levin, 1986]; disturbance decoupling, [Hirschorn, 1981, and Isidori, 1985]
disturbance rejection, [Desoer and Lin, 1985, and Anartharam and Desoer, 1985]; and feedback
linearisation [Isidori, 1983, Monaco and Normand-Cyrot, 1983, Isidori and Ruberti, 1984, Cheng
et al, 1985, Jakubczyk, 1987, and Calvet and Arkun, 1988]. Additionally, coverage of extensions to
the familiar results found in linear theory is provided by Hermann and Krener, 1977, Vidyasagar,
1986, and Crouch and Byrnes, 1986.
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1.6. Discrete Dynamical Systems

Discrete systems or recwrences have been studied in themselves as dynamical systems by
Bernussou, 1977, and Gumowski and Mira, 1980. Extensive effort has gone into the explaining the

recurrent behaviour of iterates of the form

Xee1 = B(Xe, ) x€R" ; peR (124)

where u is a parameter and g(.) is a single valued smooth function. Defining

g (x,n) =g(~g()~) (1.25)

as the iterated recurrence, the isolated point singularities of (1.25) are given by the roots of
g(x,p)-x=0 k =123,. . (1.26)

Asetofk points forms a P-K cycle and is an invariant with respect to (1.24). For k =1 we have a
fixed point of the recurrence, for k>2 a P-K cycle which describes a subharmonic, frequency
division or period doubling phenomena.

1.7. Nonlinear Recursive Systems

Recursive systems are discussed by Hammer, 1984a, 1984b, 1985, and 1986a. In qualitative terms,
a discrete system is said to be recursive when its output sequence can be computed from its input
output sequence in a recursive manner. A system is recursive if a pair of integers, n,, n,>0, exist
such that any output sequence {yq,yy,...} can be computed from the input sequence {ug,%1,...}
using

ylerny+1) = f(y(R)y(k+ny), u(k).u(k+n,)) (127)

Necessary and sufficient conditions are derived for the existence of a fractional representation of
the system (1.27), such that, the numerator and denominator are stable recursive systems. The
concept of rationality plays an important and key role in this theory and stabilisation conditions
are then derived for the construction of feedback and feed forward compensators. [Hammer,

1986b, 1987 and 1988].

=17 -



1.8. Time-Series

Although generally considered in their own right, there are strong links between the model
structures used in time series analysis and those studied as nonlinear dynamical systems. The
representation of nonlinear systems from the time series viewpoint has lead to the adaptation of a
number of interesting model structures in addition to the widely used Autoregressive AR(K),
Moving Average MA(]) and the mixed ARMA(k,]) process [Akaike, 1974, and Priestley, 1978]. A

general linear model of a time series {x (¢)} may be written as
x(t) = X gne(t-n) | (1.28)

where {e(¢)} denotes a purely random white noise process. The time index here is used to denote
a discrete sampling. Generally the sequence {e(t)} is assumed stationary such that E [e(¢)] = u, -
Var [e(t)] = ¢* and Cov [e(t1),e(t;)] = Ofor all £, #¢, '

The Autoregressive, AR(k), model is represented by

x()+ax(@-1)+=+ax(t-k) = &(t) (1.29)
the Moving Average, MA(l), by

x(t) = e®) + fre(t=1) + =+ B e(t-]) (1.30)
and the mixed Autoregressive Moving Average, ARMA(k,1), model by

x(t) +aqx(t-1)+=+qx(t-k) = et) + Bre(t-1) + =+ g et-1) (1.31)

A state space representation for time series, the Markovian form, also exists

x(t)
y()

Fx(t) + Ge(r+1) x(t) = (x1(t)n(t -n)T

H x(t) (1.32)

F, G and H are suitably defined matrices. A number of canonical forms exist for this

representation, see Priestley, 1981, Cox, 1981, and Newbold, 1981.

1.9. Nonlinear Time Series

The first systematic study of nonlinear time series models was carried out by Weiner, 1958, who
considered Volterra expansions of the form
oo ‘- 7 . “"-. ’{ oo oo
x(t) = X gae(t-n) + X T gun, c(t-n1)e(t-nz) + - (1.33)
n =0 0

ny=0n,=
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Considerable literature exists on the theoretical properties of such models, see for instance the
review by Brillinger, 1970. However the estimation of such models is extremely unwieldily due to

the excess of parameters involved [Billings, 1980].

Bilinear, BL(k,1), models are considered from the time series modelling point of view by Granger,
1978, and Granger and Anderson, 1978a, 1978b. The general Bilinear model is given by

x(t) = ap + é a;x(t-i) + é be(t-i) + 'é,zk] cije(t =i)x(k =j) + &(t) (1.34)
i=1 i=1 i=1j=1

It may be shown that with suitable choices of a;, b; and ¢;; (1.35) may approximate any reasonable
model of the form (1.34) [Brockett, 1976]. Re-writing (1.34) in state space form gives

x(t+1) = Ax(t) +Be(t+1) + ):t} G x(t) e(t =i)
i=1

y(t) = Hx(t) . x(t) = (x(O)rx (t = )T (135)

Stationarity, invertability and parameter estimation for such models are covered in Granger and

Anderson, 1978b, and Subba-Rao, 1981.

Other forms of nonlinear time series models have been introduced by various researchers, these

include the Nonlinear Autoregressive, NAR(k), model [Jones, 1976, 1978].

x(t) = f(x(t-1)) + (1) (1.36)
Nonlinear Moving Average, NMA(k), models [Robinson, 1977], of the form

x(t) - e(t) + ae(t-1) + fe(t)e(t-1) (1.37)

Threshold Autoregressive models, TAR(k), as introduced by Tong and Lim, 1980 and Tong, 1983,

have been used to study naturally occurring limit cycle behaviour
x(t) + o x(t-1) + =+ o x(t-k) = £ i =9 (1.38)

where R€"D<x(t -d)<R®, ~00=R©® <RM <+«<RU-D<R@ = +c0, d is some lag 1<d<k and

R are some given regions within R*.

Exponential Autoregressive, EAR(k), models [Ozaki, 1980, Haggan and Ozaki, 1981] as a class,
exhibit nonlinear amplitude dependence and jump resonance [Ozaki, 1981, 1982, 19835].

x(t) = i [a,- + ﬁ,-e-x’(f-n] x(t -i) + e(t) (1.39)
i=1

A more general form is the EARMA (k1) model

i



k s ! P
x@) =% (a+Be -+ T (3 +me™ ™ e =) + () (140)
i=1 i=1
The State Dependent, SDM(k.]), models developed by Priestley, 1980, provide a more general
form of nonlinear model. Given the extended state vector

x = (&t =1 +1)..(t), x(t —k+1)..x(t) )T | (1.41)

the SDM (k1) model may be written as
k !
x(t) = p(x(t-1)) + g}ﬁ (x(t=1))x(t-i) + ');1 o (x(t=1)) e(t =) + &(t) (1.42)

It can be clearly seen that, excluding the threshold models, the previous time series
representations may be taken as special cases of (1.42). Identification of the functional form and

the parameters involved in (1.42) is considered by Haggan, Heravi and Priestley, 1984.
Finally, the Nonlinear Autoregressive Moving ‘ Average, NARMA(k]I), completes this
generalisation by adopting the general polynomial model structure [Chen and Billings, 1989]

x(t) = F(x(t-1).x(t=k),e(t-1).et-1)) +et) (1.43)

where {x(f)} is a time series, {¢(f)} a strictly white noise process and F (.) some non-linear
function. The model (1.43) is about as far as one can go in terms of specifying a general finite-

dimensional non-linear relationship.

1.10. Nonlinear Discrete Input Output Models

The bilinear time series model (1.34) may be rewritten as the input output model

Iy ) Ny My
y(k) = ag + Ela,-y(k—i) + _Elb,-u(k—i) + _El}_'} ciy(k-i)u(k-j) (144)
i= i= i=lj=1

The noise sequence &(¢) has been replaced by the observable input u(t). This model structure can
be used to represent a wide variety of systems. For example, the bilinear state space model can

easily be written as an input output model, such that

x(k+1) = Ax(k) + Bu(k) +u(k) Cx(k)

y(k) = Dx(k) (1.45)
becomes

y(k+1) = DA(D™D) DTy (k) + DB u(k) + u(k)DC(DTD) DTyk)  (146)

z -1-10 -



It is known that a continuous time system represented by a Volterra series may be realised by a
bilinear system [Brockett, 1976]. Moreover many continuous time processes are naturally bilinear
[Mohler, 1970, 1977]. However, sampling the continuous time bilinear system does not result in a
discrete time bilinear input output map. Assuming that a zero-order-hold, ZOH, device is used,
that is, u (¢) = u(t), for #,<t <t ,;, with a fixed sampling interval, A. Then for t€[t,% ,1), the
SISO system (1.23) becomes

x(t)
y(t)

[4 +u(k) Clx(t) + Bu(k)

Dx(t) ' (1.47)

where u (k) replaces u (f;) and x (k) replaces x (#,). Letting t—# ,; and substituting s = #; ;1 —t;
yields

h
£(e+1) = M PHECR x (i) 5 [ oM ruKI0 =) B dr -l

!

y(k+1) = Dx(k+1) (1.48)

The system (1.48) obviously is no longer a bilinear system.

1.11. Nonlinear Autoregressive Moving Average Model with eXogenous Inputs

Input output descriptions that expand the current output y (¢) in terms of past take the form

y() = F(y(k=1).yk-n),ulk-1).,u(k-n,)) | (1.49)
This model is referred to as the NARMAX due to its resemblance to the linear ARMA models
discussed earlier. Realisation conditions for the NARMAX model have been derived by Billings
and Leontaritis, 1981, Leontaritis and Billings, 1985a and 1985b, and Chen and Billings, 1989.
The derivation of the (1.49) is based on zero-initial-state response function £, |,. If the system is
initially at a zero equilibrium x, at time k =1 the response function for an input sequence

v = {u(k),u(k - 1),..,u(1)} of length &, is given by

y(k) = £ | x(u(k),uk -1),.,u(1) ) = £ (v*) f, : U—>Y (1.50)
The NARMAX model provides a natural representation for sampled nonlinear continuous-time
systems and may also represent a wide class of discrete-time nonlinear systems. The response

function £ |, of a system is said to be a polynomial response function if for each k, f |« is a

polynomial of finite degree in all variables.

-1-11-



1.12. The Output-Affine and Rational Models

It is known that a polynomial response function f is finitely realisable if and only if it satisfies the
rational difference equation [Sontag, 1979b].

y(k) = b(y(k-1),.,y(k-r)u(k-1),..uk=-r))

a(y (k= 1)y (k =r)u(k=1).,u(k -r) ) (1.51)

where r is the order of the system and a(.) and b(.) are polynomials of finite degree. Sontag
further showed that f is a finitely realisable and bounded polynomial response function, if and only

if it satisfies an output affine difference equation

ag(u(k-1),.,utk-r))yk) = éla,-(u (k=1),u(k=r))yk =i) + a, .1 (u(k =1).,u(k -r)) (1.52)

or

. Loagi(u(k=1).,utk=-r))
Y®) = & D)

@ 4 (u(k—1).,u(k-r))
ag(u(k=1),..,uk-r))

y (ki) + (1.53)

where g;(.), i =0,1,..,r +1 are polynomials of finite degree. Such a response function admits a stare

affine representation of the form
x(k+1) = A4 (u(k))x(k) + B (u(k))
y(k) = CuE)xk) (1.54)

where 4 (.), B(.) and C(.) are matrix and vector valued polynomials of finite degree. Fliess and
Normand-Cyrot, 1982, showed that on a finite time interval and with bounded inputs a discrete-
time input output system can be arbitrarily well approximated within the set of state affine

systems.

As an example, consider the approximation of the sampled continuous-time bilinear system
(1.48) by a state affine system. This involves the approximation of e * “®*)C1 ysing matrix and

vector valued polynomials in u (k).

State affine models can be used to represent nonlinear systems, particularly systems which appear
naturally affine-in-the-states. For example, the exact sampled model (1.47) of the continuous-time

bilinear state space system is affine-in-the-states.

A system admits an output affine model (1.52-53) if and only if, it is a finite state affine system
[Sontag, 1979a]. Output affine models can therefore be employed to represent nonlinear input

_ output systems, see Billings, Korenberg and Chen, 1987, and Chen and Billings, 1988a and 1938b.
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1.13. Discussion

Because there is no one unique representation for all nonlinear systems a wide variety of
nonlinear model structures have evolved. Along with each specific model class comes one or
more methods of ahalysis that has grown up in response to that particular model form. In an
attempt to avoid being dependent on any one model structure we adopt an approach based upon
the general parameterised system in (1.5) and (1.6). It is usually a trivial problem to recast the
different model type, discussed above, into this form. In order to justify this decision we review in

section 2 of this paper the powerful theories at our disposal by adopting such model structures.
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Dynamical Systems Theory

2.0. Introduction

The study of smooth or differentiable dynamical systems has seen a reemergence in recent years
prompted by the work of Smale, 1963, 1967, Andronov et al, 1937, 1966, 1971, 1973, Abraham,
1979, Abraham and Shaw, 1985, Hellman, 1980, and Gurel and Rossler, 1979. The work by Smale
covers the construction and use of Poincare Maps as a tool to explain the complex behaviour of
nonlinear systems. This work was probably the first to utilise diffeomorphisms or smooth
invertible mappings in the study of limit cycles dynamical systems.

It was not until the work by Lorenz, 1963, in Meteorology, and by Hayashi, 1964, on electric
circuits, did concrete practical examples of the use of the qualitative geometric techniques appear.

Most of the work in this area focused on explaining the phenomena of chaos [Smale, 1967].

The theory is relatively complete for systems of one and two dimensions, see for instance Hirsh
and Smale, 1974, Palis and Melo, 1977, and Guckenheimer and Holmes, 1983. Extensive
bibliographies exist for the subject by Shiraiwa, 1981, and Zeeman, 1981. An excellent
introduction to the topological ideas is to be found in the book by Abraham and Shaw, 1985.
Chow and Hale, 1982 also provide a systematic presentation of this work. Sattinger, 1973, and
Iooss and Joseph, 1981, treat the subject from the analytical viewpoint. Arnold, 1982, provides a

taste of the extensive Soviet contribution.

The probabilistic approach to studying dynamical systems has been pursued mostly by the physics
community, see for example Cornfield et al, 1982. Here the interaction between noisy and
predictable deterministic behaviour is the focus of attention. In this the introduction of universal
properties and scaling methods, originated by Fiegenbaum 1978, 1979, 1982 and 1983, brought a
new perspective to the field. Complex behaviour of these apparently simple discrete mappings is
considered by Collet and Eckmann, 1980a, 1980b, 1981, Lanford, 1982, and Rand et al, 1981, 1982.
The use of reduction methods play an important role in the study of dynamical systems. They
provide a method by which to reduce systematically the dimension of a problem. The center
manifold theorem represents perhaps the easiest and most general approach to this problem, see
Kelly, 1967, Marsden and MaCracken, 1976, Carr, 1981, Guckenheimer and Holmes, 1983. Other

approaches include the elimination of passive coordinates, see for instance Thompson and Hunt,

-2-1-



1973, the Fredholm alternative, see Iooss and Joseph, 1981, and the Lyapunov-Schmidt reduction
process , see Chow and Hale, 1982.

Throughout the development of dynamical systems theory as a subject, the focus of attention has
often been the moré interesting dynamic phenomena found in chaotic systems. In this paper we
concentrate on the more simple deterministic, but just as important, topological structures that
are commonly found in engineering systems. In such systems the infinitesimal structures

associated with fractals and chaotic dynamics are in general of less importance.

In this section the basic theory is reviewed. This is necessary in order to set the background for
what will be called the qualitative analysis of nonlinear systems. The motivation behind this is
- twofold. Firstly, as will become evident later, the theory places few restrictions on the form of the
nonlinear system. Secondly, the analysis begins where traditional linear theory breaks down. That
is, when one or more of the linearised system eigenvalues becomes degenerate such that the
linearised system is ﬁo longer valid. The theory then focuses on describing the changes to be
expected in the solution structure of the system. As part of this process local stability information
is provided.

This is in no way an attempt to review all the theory and mathematical concepts used in the study
of dynamical systems. Only the basic building blocks used in the theory are outlined. The
approach adopted here focuses on the geometric aspects of the theory. For a more analytic

discussion of local bifurcation see Iooss and Joseph, 1981, Chow and Hale, 1982, or Golubitsky
and Schaeffer, 1985, Golubitsky, Stewart and Schaeffer, 1988.

2.1. Linearisation and Bifurcation in ODE’s

The word bifurcate means to split into two. In its most general form bifurcation theory is the
study of the splitting of the solution structure of nonlinear systems. Its main aim is to describe the
qualitative changes which take place in the solution structure of a differential equation or map

depending on a distinguishing parameter u.

One of the fundamental results used in bifurcation theory is the implicit function theorem.
Consider a system of differential equations depending on the k dimensional parameter vector u

describing the flow &, of an ODE in R"
x(t) = F(x(t),p) xeR” p € R
P, : R"xR* - R" P { Bl Youoleistn) 3T (2.1)
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The equilibrium solutions of (2.1) are given by the solutions to
f(xp) =0 (2.2)

The equilibrium solutions of (2.1) are equivalent to the singular points of (2.2). As the parameter
u varies the Implicit Function theorem states that the equilibria of (2.1) are described by a smooth

functionx() if the Jacobian derivative of f evaluated at X has non-zero eigenvalues.

The graph of the functionx{u) forms a branch of equilibria of (2.1), referred to as the zeros, fixed
points or stationary solutions of f. Enumeration of the fixed points of a general nonlinear system
(2.1) is by no means a trivial task [Brindley et al, 1989].

Linearisation of (2.1) about a fixed point X, gives
¢ = DA(TH) ¢ £ER”
& =x-x; |E, I <1l i=1.n ) ) (23)

where the Jacobian matrix D, f (), given by

91 Of]
&, "7 ax,
Df(xp) =|: : (24)
O .
L&H " ax,
T x=%n=m

If the eigenvalues of the Jacobian all have nonzero real part then the fixed point X, Wis said to be
hyperbolic or nondegenerate. The asymptotic behaviour of solutions in a neighbourhood about X0
is then determined by the linearisation (2.3). This is a consequence of Hartman’s theorem and

the Stable Manifold theorem [Arnold, 1973].

At a hyperbolic fixed point the Stable Manifold theorem tells us that a local stable, W3, and
unstable, Wi,., manifolds exists such that [Carr, 1981]

Wi (x) = {Ye U | &(x)—Xas t— coand &,(x) €U, ¥t > 0} (2.5)

Wi, (x) = {Ye U | &(x) ~Xas to—-coand &,(x) €U, V't < o} (2.6)

The stable subspace E’, of dimension 7, is characterised by contracting or exponentially decaying
solutions such that ; <0, i =1,..n;. The unstable subspace E¥, of dimension 7, by expanding or

exponentially growing solutions, ; >0, i =1,..n,.
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If any of the eigenvalues ); have zero real part, then the asymptotic stability of (2.1) cannot be
determined by the linearisation (2.3). At a nonkyperbolic, or degenerate fixed point one or more
of the linearised eigenvalues is zero. The center manifold, E°, of dimension n,, is defined as the
subspace spanned b)-,r the eigenvectors corresponding to the eigenvalues X; =0, i =1,..n.. At such
a point branches of equilibrium solutions may come together. These points are termed bifurcation

points.

2.2. Linearisation and Bifurcation in Maps

The theory for Maps or Discrete dynamical systems parallels that for flows. Consider the mapping
Xoe1 = 8( %, 1) XER" ; peR @7
g: R xRE o R £ = (Fi@1ortn) s Folrtn)) 28)

rThe stationary solutions x of (2.8) are given by
g(xp) -x=0 k=123,.. 2.9)

However, the solution to (2.8) may prove even more troublesome than for the continuous system

(2.1) [Bernussou, 1977, Gumowski and Mira, 1980].
Linearisation of (2.7) about the fixed point X,z gives
€ni1 = Dig (X, 1) &, £€R”
£ =x;-%; |& | <1 ;i=1.,n (2.10)

The stable subspace E°, of dimension n;, is characterised by contracting solutions,
N <1,i=1,.n,. The unstable subspace E“, of dimension n,, by expanding solutions,

A >1,i=1,.n, The center manifold, E°, of dimension n,, is the subspace spanned by the

eigenvectors corresponding to the eigenvalues | X | = 1, i=1,..n, such that
Wise (x) = {YE U | ¢g"(x) =X as n—ocoandg” (x)eU, Vn> 0} (2.11)
Wise (x) = {?e U | g™ (x)=Xas n—ocandg™ (x) €U, Fn> 0} (2.12)

For a k-periodic cycle of the form

pj = & (po) j=0.k-1 po = £ (po) (2.13)
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the stability is dependent upon the linearised map

D.g (po) or D.g(p;) j=1lor2or—ork (2.14)

2.3. Local Codimension One Bifurcation

It is possible to list the simplest bifurcations found in families of ODE’s depending upon one
parameter [Guckeﬁheimer and Holmes, 1983]. These elementary bifurcations are generic, that is,
they appear in all the typical problems. Sometimes alone, but more often as elements in a more
complex overall picture, as part of a global bifurcation. Given the one parameter system of
ODE’s described by

x(t) = f(x(t),p) x€R ; peR ; f:RxR—R o (2.15)
If the equilibriumx, z has a simple zero eigenvalue A=0 and

Em=0;fu® B #0; fa @, B) #0 (2.16)

then a smooth curve of equilibrium of quadratic tangency exists which is qualitatively equivalent to
the generic Saddle Node, Fig. (1), and is described by the normal form

i(t) = p-x2 (2.17)

The great importance of the Saddle Node or Fold bifurcation lies in its structural stability. Indeed
all bifurcations in one parameter families with a single degenerate eigenvalue can be perturbed to

a Saddle Node.

If the form of the ODE is constrained such that the trivial equilibrium solution x =0 exists for all g

then the Saddle Node is no longer possible and

fO,p)=0 FpeR (2.18)
If the equilibriumX, 4 has a simple zero eigenvalue A=0 and

FEW=0 fu@B fE&E=0 (2.19)
then the resulting structurally stable bifurcation is Transcritical, Fig. (2), and is described by

x(t) = px -x? (2.20)

An exchange of stability occurs at the bifurcation point X, 4, the stable origin becoming unstable in

the supercritical case and the nontrivial equilibrium gains stability.
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If the ODE represents a system with symmetry then the function fis odd and

f(=x,p) = -f(x,p) (2.21)

The system cannot satisfy the condition f,,(x,z) =0, however if

FED=0 @D fu@ B0 22)
then the resulting structurally stable bifurcation is the Pitchfork, Fig. (3), and is described by
x(t) = px -x3 (2.23)
Here the sink at the origin looses stability and two stable symmetrically placed sinks are produced
in the supercritical case.

If the ODE is such that the linearisation has a simple pair of purely imaginary eigenvalues A= *iw
and no other eigenvalues with zero real part then the center manifold system will be such that

center manifold E€ is of dimension n, =2.
x(t) = f(x(t),n) xeR? pER (2.24)

As f.(x,p) is invertible the implicit function theorem guarantees a smooth curve of equilibrium
x(p) near x,pu. However the dimensions of the stable and unstable manifolds change if the
eigenvalues A(u) cross the imaginary axis. Thus a qualitative change not involving equilibria must

occur. Iff, (X;%) in (2.24) has a simple pair of pure imaginary eigenvalues and

Ma(w) = #iw  Real[ig.M] < 0 Ea;Real P e #0229
then a unique center manifold exists passing throughx, z with nor-mal form

i(t) = (duta(x®+y*) ;o = (wrep+b(x®+y?)

y(t) = (wHcp+b(x?+y?) ) + (du+a(x?+y?) a#0

A Hopf bifurcation occurs by which a surface of periodic solutions exists in the center manifold. If

a >0 the periodic solutions are attracting, see Fig. (4).

Following on from the study of degenerate equilibrium points one should next consider the
recurrent behaviour found in periodic cycles. Two main types of phenomena appear. Firstly the
Cyclic Fold which is similar to the Saddle Node bifurcation for equilibria. In this two limit cycles
coexist over a small parameter region and at the bifurcation point they collide. The Cyclic Fold is

often associated with jump resonance or hysteresis.
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Next there is the periodic Flip bifurcation in which a stable limit cycle losses stability while

another closed orbit whose period is twice that of the original cycle is born.

The classification of bifurcating solutions based upon transversality becomes more difficult as one
continues. Primarily because the behaviour sought, along with the degenerate eigenvalue
combinations, become less typical, indeed less generic. This is particularly so if one attempts the

classification of codimension two families, see for example Aronson et al, 1982.

2.4. Local Codimension One Bifurcations in Maps

There are a number of similarities between the local bifurcational behaviour found in maps or

discrete dynamical systems and those that occur in ODE’s or flows. Consider the Map

Xer1 = g (X, p) xeR pueR g:RxR—-R (2.26)
The fixed points x{u) of (2.26) then satisfy the relation

g &), u) - T(p) = 0 (227)

and are hyperbolic if the linearisation of (2.23) has no eigenvalue |A] =1. Again a set of
elementary bifurcations exist which may be classified according to a set of fransversality conditions
applied to their normal forms. The bifurcation theory for fixed points with eigenvalue A=1 is

exactly analogous to that for equilibria with eigenvalue A=0
If the fixed pointX,u of (2.26) is non-hyperbolic, A(z) =1, and
&E 1) =M1 GE DA g H) 20 (228)

then there is a Saddle Node bifurcation in the vicinity of ¥, Fig. (1). The generic one parameter

family has a center manifold topologically equivalent to the normal form
Xns1 = Xy + p — X2 [2259)

The signs of the inequalities in the above determine the exchange of stability that occurs at the

bifurcation point [Whitley, 1982].

If the form of the Map is restricted such that the trivial fixed point 0,4 exists for all u then
g0,p)=0 VueR (2.30)

If the equilibriumX, 4 has a simple eigenvalue A(g) = 0 and

&OB =X =g O DF0 ge(0,) =0 (231)
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then there is a Transcritical bifurcation as in Fig. (2), described by the normal form
fnar = (u=1)%, (1-%,) (232)

If the map represents a system with symmetry then the function g is odd such that
g(-x,u) = —g(x,u) and additionally if \(#) = 1and

g (X, 1) = Alw) g—:=gzp(im¢0 8o @, ) £ 0 (2.33)

then a Pitchfork bifurcation is present in the vicinity of x, s, Fig. (3), the corresponding normal

form for which is given by
Xpe1 = (1-p)x, _Ig (2.34)

If the mapping possesses a fixed point, s at which the eigenvalue A= -1 then the implicit function
~ theorem guarantees a smooth curve x(u) of fixed points passing throughx,u. Furthermore if the
composite mapping g2(x,#) has an eigenvalue A= +1 then there may be fixed points of g2(x, )

which do not appear in g(x, ). Such points are period two, or P-2, cycles.
The transversality conditions for this Flip bifurcation are are summarised as, given A(z) = —1and

G0 =MW g @D g @0 (235)

The Flip is shown in Fig. (5), the corresponding normal form for which is given by

Xpep = =(l+p)x, + 23 ' (2.36)
If the mapping g is a one parameter family with a fixed point X, such that

g:R"xR—R" (2.37)

and a single eigenvalue passes through A= *1 then any of the above bifurcational phenomena may
occur. Construction of the appropriate center manifold reduced order system, and checking the

transversality conditions above, will then indicate which of the above occurs.

Alternatively a Hopf type bifurcation, similar to that which occurs in ODE’s, may occur if a

complex conjugate pair of eigenvalues exists, A= +wf, having non-zero real parts.

If g(x,u) is a smooth mapping having a fixed point x5 at which a complex pair of eigenvalues

exist such that

D@ =1 |X@]| #1 n=1234 el F0 (238)
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then a smooth change of coordinates exists such that g (x, ) may be written in polar form
rws1=r(l+d(u-p) +ar®+ HOT’s
041 =0+c +br*+ HOT’s a@)#0 (2.39)

and a 2-D surface 3] exists in R®xR which is invariant for g. If the intersection of
Y N(R%*x {&} ) forms a simple closed curve then cyclic behaviour will be evident. The stability
of which is determined by the coefficient a [Lanford, 1973, or Marsden and MaCracken, 1976).
Stability formulae for the above have also been derived by Hassard and Wan, 1978, Iooss and
Joseph, 1981 and Guckenheimer and Holmes, 1983.

To understand the dynamics of a family of Maps after the Hopf bifurcation see Takens, 1974,
Arnold, 1977, Tooss, 1979, or Whitley, 1982.

2.5, Structural Stability

The idea of a robust or structurally stable system as one which retains its qualitative properties
under small perturbations, originates in the work of Andronov and Pontryagin, 1937. Consider a
map f€C’ (R") and a perturbation of this map g. Defining how close g is to f requires
consideration of the functional spaces and topology [Hirsh, 1976]. Here we make use of the
following [Golubitsky and Schaeffer, 1985].

If feC'(R") and r, k€Z*, k<r and €>0 then g is a C* perturbation of size ¢ if there is a
compact set K C R” such that f=g on the set R” -K and
3

axi...ax (f-g)

<e Vi, i +=ti, =i<k (2.40)

The functions f and g may be either vector fields or mappings. The closeness of the two vector

fields, or maps, is then defined in terms of a topological equivalence.
Two C" maps fand g are C* conjugate if there exists a C* homeomorphism h such that

hof =goh (2.41)
C® equivalence is called topological equivalence. The definition implies that h maps an orbit
within { f* (x) } into an orbit of { g* (x) }. This property is defined as orbit equivalence.

Two C" maps f and g are C* equivalent if there exists a C* diffeomorphism A which takes orbits
®{(x), of f, to orbits ®$(x), of g, preserving the sense of the flows.

-2.9.



If h also preserves the parameterisation with time then we have a conjugate equivalence.
h(2,(x) = ,(hx)) (2.42)

A map fe C'(R"), or a C" vector field is structurally stable if there is an € > 0 such that all C, ¢
perturbations of f are topologically equivalent to f. Hence vector field or map which possesses
nonhyperbolic fixed points cannot be structurally stable. Bifurcation of equilibria usually produce
changes in the topological type of a flow or mapping. A value i for which the flow or mapping is
not structurally stable is a bifurcation value of u. If the linearised Jacobian has a degenerate
eigenvalue a small perturbation may remove the fixed point. Purely imaginary eigenvalues may
perturb to yield a hyperbolic sink, saddle or source. Similar effects are produced for degenerate

periodic orbits or cycles.

Structural stability thus requires all fixed points and cycles to be hyperbolic, such that any
sufficiently close system has the same qualitative behaviour. Generic properties of dynamical
systems are discussed further in Peixoto, 1962, and Hirsh and Smale, 1974. In this work we do not
concern ourselves with measuring this closeness but content ourselves with observing qualitative

similar behaviour experimentally.

2.6. Classification of Bifurcation

Bifurcation of equilibria generally produces a qualitative change in the topological type of a flow
or map. Attempts to construct a systematic bifurcation theory based upon the above lead however
to complications as the fine detail of the function must be considered. A number of distinct lines

of attack have been developed.

The simplest approach is that based upon studying the degeneracy of eigenvalues. The
classification of bifurcation behaviour has been formulated based around the qualitative features
that persist under perturbation. A number of normal forms are then constructed to represent this

behaviour along with the different arrangements of degenerate eigenvalues.

A second approach is that based upon the Singularity Theory. The use of singularity methods
[Golubitsky and Schaeffer, 1985] provides a comprehensive approach to the classification for
problems up to codimension three. Where the codimension of a system is defined as the smallest
dimension of parameter space which contains all the qualitative bifurcation behaviour in a
persistent manner. The classification again comprises of a set of normal forms, Table (2.1), along

with the corresponding unperturbed bifurcation diagréms, Fig. (6), for each normal form
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h(x,p) =0 x€R  peR (2.43)

Normal Form Codim Nomenclature
1. ex?+6) 0 Limit Point
2. a’-8 1 Simple Bifurcation
3. e(x®+60) 1 Isola Center
4. &’ +6\ 1 Hysteresis
5. ex?+6) 2 Asymmetric Cusp
6. e + 6 2 Pitchfork
7. ea*+8) 2 Quartic Fold
8. ex?+8\ 3
9. &3+ 6\ 3 Winged Cusp
10.  ex* +6x 3
1. & + 8 3

NBe=#*landé=*1

Table 2.1

Normal Forms for Singularities of codimension < 3
Golubitsky and Schaeffer make extensive use of the following definition.
Define- an Unfolding of a bifurcation as a family which contains that bifurcation in a persistent
way.

The key to the above definition is the term persistent, which can be taken to imply qualitatively
similar dynamics. A classification in terms of the type or number of degenerate eigenvalues is not
sufficient however, as it does not take into account the natural unfolding found in the families of

bifurcation problems.

For each normal forms A4 (x,u) a universal unfolding H (x,u,c) exists which characterises all

possible perturbations introduced by the parameter vector a up to codimension k < 3, see Table

2.2).
H(x,p,e) =0 xR ; peR ; acR* (2.44)

Fig. (7) illustrates the family of perturbations to be expected within the unfolding for two of the
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more common families known as the hysteresis and pitchfork varieties. The attraction of this
theory lies in the fact that beyond the perturbations listed no further qualitative behaviour is to be
expected. Note how each universal unfolding reduces to the corresponding normal form when

a=0.

~ Universal Unfolding Codim Nomenclature
L e?+é8 0 Limit Point
2. e(x? -2 +a) 1 Simple Bifurcation
3. e(x?+ 82 +a) 1 Isola Center
4. e+ + o 1 Hysteresis
5. a?+83 +a + ) 2 Asymmetric Cusp’
6. ex® + 6 + o + apx? 2 Pitchfork
7. e+ 8+ ax + ax? 2 Quartic Fold
8.  a?+8X +ag + )+ okl 3
9.  &®+ 6 + oy +aox + a3k 3 Winged Cusp
10. 5x4+6,\x+a1+azA+a3.x2 3 |
11, &5 + 6\ + agx + apx? + agx3 3

NBe=+1landé==*1

Table 2.2
Universal Unfoldings for Elementary Bifurcations of Codimension < 3

The mechanism for this classification of behaviour is split into two distinct steps. First the so

called recognifion problem for the normal form 4 (x, ) is stated as follows. Given
g(x,p) =10 x€R peER (2.45)

obtained from a reduced order ODE or Map, what conditions are required for g to be equivalent

to one of the normal forms, A, listed in Table (2.1), such that
g(x,p) ~ h(x,p) (2.46)
As part of the second stage a k parameter unfolding of g (x,4) is constructed, that is

G(Z,p,a) =0 XER ; pER ; acR (2.47)
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such that
G(x,p,0) =g(x,n) o ===g =0 (2.48)

The unfolding G is universal if it contains no redundancy in parameters, moreover the addition of

any higher order terms to the function G will not add to the qualitative behaviour to be expected.

2.7. Reduction Methods in Bifurcation Theory

7

Virtually all rigorous methods in dynamical systems theory are limited to finite dimensional
systems. In an attempt to reduce the dimension of the state space of the problems being
considered, analysts have in general relied upon the invariant manifold theory; The use of some

reduction method is implicit in all the classifications discussed above.

The Center Manifold theorem provides a means of systematically reducing the dimension of the
state space involved in a bifurcation problem [Kelly, 1967, Carr, 1981]. Attention is then focused
on the behaviour of the system in the reduced center manifold that contains all the essentjal

behaviour of the system in the vicinity of the equilibrium point about which it is constructed.

The center manifold is an invariant manifold tangent to the center eigenspace E. on which the
interesting asymptotic behaviour of the system lies. The theory is useful because it allows the
elimination of algebraically complexity due to none essential behaviour. For a rigorous statement

of the theorem see Guckenheimer and Holmes, 1983.

Assuming now that the unstable manifold E, is empty and that the linear part of the system has
been transformed to block diagonal form with a known equih“briﬁm at the origin, then the system

(2.1) may be written as

x(t)
y(t)

Bx + f(xy) (xy)eR™*xR™ ; B:n.xn.;C:n,xn,

Cy+g(xy) E.eR* ; E,eR" (2.49)

Here the eigenvalues of B have zero real part and those of C have all negative real part and the
functions f, g, £z, & f, and gy all vanish at the origin. The center manifold W5, is a tangent to the

center subspace E°, that is the y=0 subspace in (2.49). It may thus be represented by the local

graph
Wfoc = {(x,y) I}’=h(x)} h:R“—R™ ;UCR”C (250)

where U is some neighbourhood of the fixed point at the origin. Projection of the vector field on
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y=h(x) onto E° gives an approximation to the motion on Wj,.. The construction of the center

manifold system involves the approximation of h(x) using

h(x) = ax? + &x3 + =~ + HOT’s (2.51)

y#) = D:h(x)x = D h(x) [Bx + f(xh(x))] = [Ch(x) + g (xh(x))]
such that the reduced order system becomes
x(t) = Bx+f(xh(x)) (2.52)

The important point to note here is that the invariancé properties of the center manifold
guarantee that any small solutions bifurcating from the origin (0,0,0) must lie in the center
manifold. Thus one can then follow the local evolution, or behaviour, of bifurcating families in the
suspended family of center manifolds.

In much the same way as in ODE?s, a center manifold system may be constructed for a discrete

dynamical system or Map given
Xs41 = BXy + f (s, ¥n) (xyy)ERHCXRn';B:ncxnc;c:nsx”s
Yas1 = CYa +8(X:, ) EceR™ ; E eR" (253)

Where the eigenvalues of B are on the unit circle, | X | =1, i =1,..,n,, and those of C are within
the unit circle, | |<1,{=1.,n;. Again approximating h(x) with the Taylor series (2.51) gives
the reduced order discrete center manifold system

Xs+1 = BX, + f(xa,h(x,)) (2.54)

Parameterised families may be reduced in a similar fashion. Subsequent application of either of

the classification schemes discussed earlier completes the analysis.

2.8. Discussion

The methods outlined in this section provide us with a framework and a terminology to explain
the behaviour of nonlinear dynamical systems. It is this framework that we make use of in Part II

of this paper.

At best, for certain classes of nonlinear problems, the current methods provide a rigorous

approach to the enumeration, and classification, of the global characteristics of a parameterised
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system and its unfolding under perturbation. Unfortunately the more broad based results the

theory provides the more restrictive the form of model that may be considered.

Singularity methods appear at first to be very attractive, however, the theory of universal
unfolding has only been developed fully for systems of order n =1 up to codimension k =3.
Inevitably dependence on reduction methods beyond this introduces problems related to the
construction and validity of the reduced order systems itself. Not least of all, the need for
extensive a priori knowledge of the.solution structure of the system, in order to approximate the

center manifold. Indeed the location of the degenerate singularities must be known precisely.

In reality of course detailed information of this type, over a range of parameters, will rarely be
known. In addition, reduction methods, when employed, are only locally valid. These problems

are magnified in discrete systems where a profusion of periodic behaviour is all to common.

It is important however to see how the behaviour of a model changes if the equations that make
up that representation change in some manner. If only because such models are seldom known
accurately. The augmentation of system models with one or more parameters allows the
classification of such change. Mathematicians place the problem within the framework of
structural stability and bifurcation theory which we have reviewed briefly above. The analytical
basis of bifurcation theory provides a conceptual basis within which the behaviour of systems
dependent upon several parameters can be considered. A number of tools have been described,
most notably the invariant manifold theory and singularity theory, which facilitate detailed
qualitative understanding of many problems. These theories although undoubtedly powerful do
reveal practical limitations. This explosion in qualitative knowledge has stimulated demand for
quantitative detail as well. All the analytical methods require precise a priori knowledge of the

solution structure of the nonlinear equations before any classification can take place.

In an attempt to circumvent these limitations we adopt a numerical approach to the analysis of the

general parameterised system, (2.1) and (2.7), which will be introduced in Part II of this paper.
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Fig. 1 Saddle Node Generic Codimension 1 Bifurcation



Fig. ' 2

Transcritical Generic Codimension-1 Bifurcation



Fig. 3 Pitchfork Generic Codimension-1 Bifurcation



Fig. 4 Hopf Bifurcation Generic Codimension-1 Bifurcation



P-1 Orbit

Fig. 5 Flip Period Doubling Generic Codimension-1 Bifurcation
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