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Abstract

A new approach for identifying continuous time models from discrete time
sampled-data records is presented. The proposed method involves estimating
and validating a discrete time model, linear or nonlinear, based on sampled
data records, evaluating the discrete time linear and nonlinear frequency
response functions and then curve fitting to the frequency response data to
yield a continuous time model. No numerical differentiation and integration
is involved and hence higher derivatives of input and output data records are
avoided. Errors which would be introduced by the numerical approximation of
differentiation and integration are therefore eliminated. The orthogonal
estimator which is introduced to curve fit to the complex frequency response
functions provides information on the model structure and the unknown
parameter values for linear and nonlinear continuous time models, The
advantage of this approach is that nonlinear differential equation models
which can be related to the physical behaviour of the system can be readily
computed from discrete time data.
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1. Introduction

System identification based on sampled-data records is well established and
finds wide application in almost all branches of science and engineering,
Although the estimates obtained provide good modelling of the system under
investigation and reveal the system behaviours [1,2], it is generally not easy
to relate the estimated parameters to the physical behaviour or to a
continuous time description of the system. In continuous systems, many
characteristics can be directly related to some of the system parameters. For
example, hard and soft springs in a second order mechanical system will
produce jump resonance and the phenomenon can easily be identified by looking
at the system equation. In discrete-time forms, such relationships are less
obvious. Hence reconstruction of continuous time models from sampled-data
systems is desirable to enhance the interpretation of the final parameter
estimates,

Traditionally, the reconstruction of linear continuous system models from
discrete data is either based on the inverse z-transform or alternatively on
the computation of the frequency response function followed by curve fitting.
Whereas conversion from the z-domain to the s-domain is generally found to be
tedious and does not easily extend to the nonlinear case fitting to the
frequency response functions is easily automated and can be used for linear
and nonlinear systems. The latter approach exploits the fact that the
frequency response functions are invariant descriptors of the characteristics
of the underlying system. Whatever type of model is used to describe the
system, discrete or continuous of any form, linear or nonlinear, the frequency
response functions in each case must be identical if the models are adequate
descriptors of the system. Because fitting continuous time models directly
often involves numerical differentiation or integration it makes sense to
estimate the most concise discrete-time representation and then reconstruct
the continuous time model from the frequency response functions.

In the present study, a new methodology based on the ideas proposed above is
developed. The method consists of three steps: 1) estimation of a discrete
time model, ii) evaluation of 1linear and nonlinear frequency response
functions and iii) continuous time model reconstruction based on the frequency
response data.

Parametric estimators for linear and nonlinear systems which provide efficient
procedures for identifying both the structure and the unknown parameters of
linear and nonlinear systems, are well developed and can be readily applied
to solve the first stage of the problem [1,2]). This initial stage can be
subdivided into several procedures including testing for nonlinearities in the
data prior to analysis, structure detection (which terms should be included
in the model), parameter estimation, model validation and testing. Stage (ii)
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of the analysis entails probing the estimated discrete-time models to produce
the frequency response functions [1,2]. Finally, stage (iii) consists of
using a new orthogonal estimation routine for complex number systeps [5] te
determine both the structure and unknown parameters in g nonlinear
differential equation description of the system. Because details of stage (i)
and (ii) are available in the literature [1,2] the emphasis in the Present
paper will be on the reconstruction of continuous time models from estimated
frequency response data, Case studies are included to illustrate the
effectiveness of the proposed algorithm,

2. linear Svystems

Consider a linear system governed by the transfer function

Tiay = Helm) - L) (1)
’
where
As) - 89S "+a; 87+, L +a, 541

B(s) = bys™b,s™14,, 4 n-15+b,

n = order of the polynomial A(s)

m = order of the polynomial B(s)

U(s) = Laplace transform of the system input u(t)

Y(s) - Laplace transform of the system output y(t)

The frequency response of the System can be obtained by replacing s in eqn, (1)
with jw such that

. - Bljw)
H.(Jw) (7o) (2)

Alternatively H_(jw) can be computed directly using spectral estimation
methods. Assume the System described by eqn.(l) is sampled at intervals T
seconds apart and the deterministic part of the best fitted discrete model
obtained by parametric linear system identification for a set of collected
data is given by

Az y (k) = z79B,_(z"%) u(k) (3)



where

A (277) = 1+a, 2704, HE

z
B,(z71) = b +b, z714 ., +b, z7

d = Input time delay of the system in discrete time
y(k) = System output at the instant kT
u(k) = System input at the Instant kT

n, = order of the polynomial A (z71)

m, = order of the polynomial B,(z"%)

The pulse transfer function of this discrete model ig
g Bz

_1 =
H(z71) = z Az

(4)

and the frequency response of the model can be obtained by replacing z'! in
the polynomials with ™37 yhere w is the angular frequency to yield
i B (e-jw'!‘)
H_(e-Jjery _ -judr z
AL e (5)
-t s wls<snxn

If the discrete model described by eqn.(3) is a good approximation to the
continuous system described by eqn.(1l), the discrete frequency response
function eqn. (5) will be closely related to the continuous frequency response
function eqn.(2) such that e JedTy (g-JoT) . H.(jw) in the angular frequency
range - % < W< xn. In order to reconstruct a continuous time model based on
the frequency response data obtained from H,(e7%T) | a model of the form given
by eqn.(2) is built such that @ close approximation to the frequency response
is obtained

H ~JeTy o g(,z )
et (7o) (6)
- Tswlsn

where
B(.) = estimated polynomial B(.)

A(.) = estimated polynomial A(.)

Multiplying eqn. (6) with A(jw) and rearranging gives
H (e™7%T) o (1-A(jw) ) Hy(e79%T) + B(ju)
“Tswl<n

(7)



Consider for example a discrete frequency response function which can be
approximated by a first order system
A (e-dory - }?\'(jm)
A(jw)
o) (8)
Jdw + 1
ST Lwl<n

Rearranging gives
He(e9°T) = (1-A(jw)) H, (e 77) 4 B(jw)
_ = (9)
= -Jjaw H (e 7¢7) ;+ p
Curve fitting algorithms can then be applied to eqns. (7) or (9) for the
estimation of the polynomials A(jw) and B(jw) to yield a continuous time
model. The orthogonal least squares algorithm can easily be implementeq [5]

based on eqns.(7) or (9) to recover the wunknown coefficients of ay,

J=0,...,n-1 and by, k=0,...,m. Providing the sampling interval %% is greater

than the Nyquist sampling rate, the constructed continuous model will provide
a8 good approximation to the original system.

3. Nonlinear Systems

where y,(t) is the nth order output of the system and is defined ag

Valt) = f...fh,,(‘rl,...,tn)ﬁ u(t-t,)dr,
-1

where h,(ry,...,7.) is the nth order Volterra kernel. The nth order frequency
response function is defined by taking the multiple Fourier transform of the
nth order kernel [8,9].

HAdogs « cado,) = f...fh,,(':l,...,rn)e'”"""’"""""drl...drn (11)

For a set of sampled-data records, nonlinear frequency response data could be
obtained through multidimensional Fourier analysis, Alternatively, it could
be obtained analytically by applying the probing method to a fitted Parametric
discrete nonlinear model [1]. By curve fitting to the estimated frequency
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response data a continuous time nonlinear differential equation model can be
reconstructed,

In order to curve-fit a continuous time nonlinear model to a set of nonlinear
frequency response function%,the form of the continuous time nonlinear model
must be defined. Consider the nonlinear differential equation

1| d?y(t) dmu(t)
F [—d-{:-——,-..,y(t),'—-dc—,.

doy(t) d”u(t du(t
a:_“g‘t—' tooot ay(t) + a,,y(t) + amz_d"t(?"i Tt amm:"‘%‘ * 8pippU (L)

Lule)] =

2
doy(t d2y(t) dgat
va (A o A0 amn L,

1
"’31.1....,1[122%&-')') +...+=0

d
(12)
where 1 is the degree of nonlinearity, n is the order of dynamics in the
output y(t), m is the order of dynamics in the input u(t) and P oecl 18 &

polynomial nonlinear function. A nonlinear system with first order dynamics
and a second order nonlinearity could for example be expressed as

Fz[Mry(t)rduT(tt)‘fu(t) =

dt
al_d%(tf_)._ + ay(t) + as._ald(t_t_)._ + a,u(t)
dy(t) \? dy(t avie
* 31,1( J;'(t)) * allz}’(t)% ¥ a:,z_yd(glggd(tﬂ +a; ult) -———dyc-;tt)
+ a; ,y2(t) + a,,y(t) d”(t’+az‘y(t)u(t)

dt

2
s a_,_.a(——dl‘;(tt)) + &, (u(t) G2LE)

+ a, u?(t) =0

To identify the coefficients, the a's in eqgn. (12), nonlinear frequency
response functions for such a system are required. The probing or harmonic
input method is a simple and efficient way of analytically extracting
symmetrical nonlinear frequency response functions from a nonlinear model.

Let the input u(t) be a sum of n exponentials

u(t) = i e’er (13)

k=1



vhere w, may be any positive or negative real number. The nth order output
of the system can be expressed as

n a , T j(uh*..nml)r 14
Vaftl = ¥ sux Y, Hffoy, ... Jo) e o (14)
k1 k1
The symmetrised nth order nonlinear frequency response functionH (jw,, ..., jw )

can be obtained by equating the coefficients of n!e’®:**“s) in the system
output when the input is defined as in eqn.(12) [1,8]. The procedure is
recursive and is best illustrated by example.

Consider a system described by the differential equation

DLE 4 ay(e) + 4,y (L) - ule) (15)
The procedure begins with

u(t) = elet
From egns.(10) and (14)

y(c) = Hltjm)ejmt

and therefore

dy(t)

e # JoH, (jw) eler

Substituting into eqn.(1l5) gives

e7%f = joH, (jo) e7°f + a,H, (o) et + a[H, (jw) eIoe]

and equating coefficients of e“* on both sides yields

1

S e

Probing with two inputs

u(t) = el®t 4 gJuat

the output from eqns.(10) and (14) becomes

y(t) = H(jo,) e’ + B (jo,) €7 + 21H, (jo,, ju,) e @rredt (16)

Jaut J2u,t

+ Hy(jo,, jo,)e + H (ju,, ju,)e

Substituting eqn.(16), its derivative and the input into egn. (15) and equating

coefficients of 21e”“*®)¢ yields

0 = [j(01+(02) + a))H, (Jw,,Jw,) + aH, (jw,) H, (jw,)



or
a,H, (jw,) H, (jw,)
Jlw,+w,) + a;
- —aH, (F0,) By (F0,) B, (Fo,+F0,)

HR (jmlrjmz) e

Continuing the procedure by probing with three exponentials and equating

coefficients of 31e7*®*®)¢ o both sides of eqn. (15) yields

s ; y 2a ; i ; , . “
H;(Jmlrjm;ljmg) = _SHZ—[HJ.(J"JJ.)HZ (J‘l’zr]ms) + H;(sz)Hz (JmllJms)

+ H (jQ’;)Hz (jmlrjw;) ] H, (jm1+jmz+jw3)

The procedure can be continued indefinitely to find at each step higher order
nonlinear frequency response functions in terms of the lower order functions.
This procedure equally applies to discrete time nonlinear models where any
order of nonlinear frequency response functions can be recursively evaluated.

In general, the first order frequency response function obtained from the
probing method for a nonlinear system described by eqn.(12) is given by

._(amz(jco)M+...+ ammz) (17)

H(jo) =
, Jw (8; (Gw) 2 +...+ a,(jo) + @)

Dividing top and bottom by an;; and redefining the coefficients to ensure a
term 1 in the denominator gives

H(Jw) = = (@p,(Je) " +.. .+ a,,,.,) - (@ (Jo) ® +...+ a,(jw))H, (F) (18)

The second order frequency response function can now be obtained from the
equation

21(a; (Joy+jw,) 7 +.. .+ a,(Fo,+Jw,) + 1)H, (ju,, jw,)

-- a4, 4,H (J01) Hy (50,)[(50,) ™70 (F0,) 7 he (Fo,) ™5 (jo,) 2374
all possible 14,1,
d, £ p+l, 1; < B+l

- ax,,:,[(j"h} n+1-d, (jmz) u+m+2—1=H1 (jm:.) + U"-‘:.) feme2-1, (jmz) m:.-hHl (jf-ﬂz)]
all possible 1,,1,
d, £ B+1, 1; > ne1

- . 2=4; ¢ 2-1 . 2-3y ¢ 2-1
_ ail.i,[(-'?“’:)mm ;(sz)ﬂ".ﬂﬂ J._'_(Jml)mm -‘l;(sz)nﬂm .1;]
all possible 1,,1,
i, > o+1, iy>n+l

(19)



The third order frequency response function is given by

3 a, (Joy+Tw,+Jwy) P+u w48, (0, +J0,+50,) +1}H (J0,, Jw,, Fo,)

. n+1-4 . n+1-1 ; n+1-1
= - ai -fz -i: (Jmkl) 1('Jmk:) a(Jmks) P x
142,
all possible all possible ' . '
4,,4,,1y £ ne1 Kyodgoky = 1,2,3 H (kax) 5 (kaz) H (Jmkn)
ky # ky v ky
, nel-4, o n+l-d, o . nem+2-1
- (3] W) o, ) > %
. i N (7o) (Fu, (Fa,
all possible all possible . s
1,,4; $ n+1, 4y > ne1 ky,ky, ky =1,2,3 Hy (Jmk:) 4 (Jm“'z)
kywk, ¢k
. +1=1 . n+m+2-1 . n+m+z2-4 .
- ;4,4 LW e € T T T Hy (Fog)
all possible all posgible
1y s n+1, 4;,4y > nel kyoky ky =1,2,3 (20)
ky vl ek
. ném+2-1 . n+me2-1 ' n+m+2-i1
- By duty (o) HJeg) HJeg) '
all possible all possible
1y,43,4y > 0+ ky,ky,ky =1,2,3
ke ke k;
. ' n+1-1 . n+l-1
- 2la; (Jop*iog) Hiwey) ' x
1¢<42
all possible all possible : 4 5
i,,4; £ o+l ky kg ky = 1,2,3 H (Jmka'Jmka)Hl(Jmka)
kyoky ® ky
. . n+1-4 . nems2-1 . .
- 2]61“12 fj‘(-)k1+_']0kz) I(Jmk;) HHZ (Jmk]'Jmk;)
all possible all possible
1y £ 041, i; > n+l kyvkyoky=-1,2,3

ky » ky # ky

Similarly the k'th order frequency response function can be formulated in
terms of the lower order frequency response functions. To estimate the
coefficients, the a’'s in eqn.(12), the first, second, third and higher order
frequency response functions of eqns. (18), (19) and (20) are replaced by their
corresponding frequency response estimates. The orthogonal least squares
algorithm for complex number systems [5] can then be applied directly to
identify the unknown coefficients in the continuous time model of eqn. (12) .

4, Orthoponal least sgquares alporithm for complex number systems

Consider a complex number equation related by

N
Z(jw) = ?jeipi(ju) + {(Fw) (21)
=1



where M is the number of parameters in the equation, 6;, i=1,...,M are unknown
real parameters associated with the complex variable p;(jw), i=1,... M. Z(jw)
is the possibly complex dependent variable and {(jw) is some modelling error.

The conventional orthogonal least squares estimation algorithm [1,2] can be
extended to accommodate complex number systems [5] by transforming eqn. (21)
into the auxiliary equation

M
Z(jw) = ;:giwi(jm) + {(Fw) (22)
-1
Defining
wy(jw) = p, (jw)
i-1 (23)
w;(jw) = py(jw) - pa“wk(jm) . k<1
vhere
Wi (F)p; (Fo)
aki - ] r
We(Jw)w,(jw)
such that the g;, i=1,..,M are constant coefficients and the w;(jw), i=1,... ,M
are constructed to be orthogonal over the complex conjugate of the data
records. The superscript star * denotes complex conjugate and the overbar

denotes time average. Estimates of g; are given by

o, - ZU9IWiGo) -
wy(Jw)wi(jw)
Once the parameters g;, i=l,...,M have been estimated using eqn.(24), the
original system parameters §;, i=l,...,M can be recovered according to the
formula
eu" gx
4 (25)
8,8~ Y a8, , kem-1,...,1
d=k+1

The structure of the system or which terms to include in the model can easily
be determined by using the error reduction ratio test

_ G191 wilje)wi(jw)

=1 - - x 100 , d=1,...,M (26)
Z(jw)z* (jw)

€RR,

vhich gives the percentage contribution each term makes to the output
variance. Combining the orthogonal estimator and e¢RR test into a forward
regression procedure gives a powerful estimation algorithm for complex number
systems. Full details are given elsewhere [5].



5. Examples

Consider a nonlinear circuit called system §, described by the equation
0'2Ji%£§L + y{t) + 0.16y2(t) = ult) (27)

The system was simulated on a Vidac 336 analogue computer with a zero mean
Gaussian noise of bandwidth of 5Hz as the input to the system. 500 pairs of
input-output data collected by sampling at 31.25Hz were used for the
identification of the system. The best discrete NARMAX model, estimated after
structure detection, parameter estimation, model validation and testing was
given by [1]

y(k) = 0.1758y(k-1) + 0.0623u(k) + 0.1616u(k-1)

(28)
- 0.03839y?(k-1) + 0.569y(k-2) + 0.03143u(k-2)

An inspection on eqn.(28) and its first order frequency response function,
Fig.l, illustrates that the system is of first order dynamics with a second
order nonlinearity. The model eqn.(28) can now be probed [1] and 400 equally
spaced frequency response data in the range -5Hz to 5Hz were generated for the
reconstruction of the linear part of the original system. The error reduction
ratios for each candidate term and the corresponding orthogonal parameters for
the first three iterations are shown in Table 1. Candidate terms that were
selected for inclusion in the final model at each iteration based on the
criterion of maximum error reduction ratio are all underlined in Table 1. At
the end of the second iteration, the sum of the error reduction ratio for the
selected candidate terms is 99.992% of the total output. Error reduction
ratios for the remainder of the candidate terms after the second iteration
become insignificant compared to the first two selected terms. It is
therefore reasonable to argue that there are only two significant terms in the
model and the associated system parameters estimated using eqn.(25) are shown
in Table 2. The estimated parameters are comparable to the original system
parameters eqn. (27).

For the estimation of the second order nonlinearities, 800 frequency response
data were generated using #,(jw,,jw,) obtained by probing the estimated
discrete time model eqn.(28) [1]. Table 3 shows the first two iterations of
the estimation. With the inclusion of y?(t) which contributes 99.923% to the
total output, the rest of the candidate terms at the next iteration are all
insignificant compared to this term. Table 4 shows the estimated system
parameter for the variable y2(t). Finally, Combining the results of Tables
2 and 4 gives the estimated nonlinear differential equation
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y(t) = -0.1931%)— + 0.9965u(t) - 0.1514y2(¢t) (29)

which compares well to the original system S; eqn.(27).

Notice that a distinct advantage of the algorithm is that each degree of
nonlinearity can be independently reconstructed thus simplifying the
procedure. Furthermore because the frequency response data is generated by
probing the estimated discrete model any number of noise free samples over any
desired frequency range can be provided. Experimentation on the system may
of course produce data corrupted by additive and/or multiplicative coloured
noise. This is accommodated by fitting a noise model during the discrete
model estimation to ensure the parameters associated with the process model
are unbiased [1]. The noise model is discarded prior to probing [1l] for the
H;[.]'s and hence it is assumed that the data used for the continuous model
reconstruction are noise free.

The next two examples are the nonlinear circuits, NL1 and NL2 analysed in [10]
representing different single-degree-of-freedom systems. Full details of the
data capture, sampling rates etc. are given in [10].

Structure detection, parameter estimation and model wvalidation gave the
optimised discrete nonlinear models for system NL1 as (see Table 4(b) in [10))

y(k) = 1.3605y(k-1) - 0.93179y(k=-2) + 0.11451u(k-1) - 0.0062076u(k-2)
+ 0.178%7 - 0.0089813y2(k-1) - 0.010568y(k-1)u(k-2)

(30)
- 0.013498y(k-1)y(k-2) + 0.0075731y2(k-1) + 0.0082032y(k-2)u(k-1)
+ 0.0014783u?(k-2) - 0.0016733y(k-1)u(k-1)
and for system NL2? (see Table 8(b) in [10]) as
y(k) = 1.6021y(k-1) - 0.94726y(k-2) + 0.061490u(k-1) + 0.13597 (31)

- 0.013829y%(k-1) - 0.0025225y3 (k-1)

respectively.

For system NL1, an inspection of the identified NARMAX model eqn.(30) and the
first order frequency response function Fig. 2 shows that the system exhibits
second order dynamics with a second order nonlinearity. 400 equally spaced
frequency response data were used for the identification of the linear part
of the system. The selected terms together with their error reduction ratios
at different iterations are shown in Table 5. Table 6 shows the estimated

2
system parameters for the selected variables. With ‘j;:f)' diéf)

and u(t)

included in the final model, the sum of the error reduction ratio is 99.973%.
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For the estimation of the second order nonlinearities, 800 frequency response
data were used. Table 7 shows the selected six candidate terms together with
the associated error reduction ratios and Table 8 shows the estimated system
parameters for the selected variables. With the six candidate terms included
in the final model, the sum of the error reduction ratio is 99.939%.
Combining the results from Tables 6 and 8 produces the nonlinear differential
equation

2
y(£) = - 1.10402E-6 ddt(zt) . 9.404085‘-5—:{2;({'_—” +0.200629u(t)

+ 0.31075 - 0.020025y2(¢t) - 2.99024E-5u(t) SX(E)
dt (32)

= 0.013396y(t)u(t) + 6.70568E—5}’(t)£’xd(ti
_g dy(t) du(t) 2
+ 8.47344F QT T + 0.0038862u%(t)
for the system NL1. The constant term in eqn.(32) was obtained by equating
the steady-state output of egns.(30) and (32) with the input set to zero on
the assumption that the mean in eqn.(30) arose from a d.c. shift on the
measured output. Equation (32) is composed of a second order system with
damping ratio 0.004475 and undamped natural frequency 951.7 rad/s. The
nonlinear part is dominated by the y?(t) term since this contributes more than
60% of the total output of second order frequency response function.

For system NL2, an inspection of the identified model eqn. (31) and the first
order frequency response function Fig. 3 shows that the system exhibits second
order dynamics with a third order nonlinearity. 400 equally spaced frequency
response data were used for the identification of the linear part of the
system. The selected terms together with their error reduction ratios at
different iterations are shown in Table 9. Table 10 shows the estimated

system parameters for the selected variables. With d?;;zt) ' dyaftt) and u(t)

included in the final model, the sum of the error reduction ratio is 99.989%.

For the estimation of the second order nonlinearity, 800 frequency response
data were used. Table 11 shows the selected candidate terms together with the
associated error reduction ratios and Table 12 shows the estimated system
parameter for the selected variable. With just a y?(t) term included in the
final model, the sum of the error reduction ratio is 99.911%.

For the estimation of the third order nonlinearity, 1600 frequency response
data were used. Table 13 shows the selected candidate term together with the
associated error reduction ratios and Table 14 shows the estimated system
parameter for the selected variable. With just y3(t) included in the final
model, the sum of the error reduction ratio is 99.907%.
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Combining the results of Tables 10, 12 and 14 yields the reconstructed

nonlinear differential equation

_ L diy(e) . dy(t)
y(t) = - 1.60650E s--%j’t— 9.25612E S—X-—-—-—dt +.18450u(t) (33)

+ 0.3942 - 0.041541y%(¢t) - 0.007608y3(¢t)

for system NL2. The constant term in eqn.(33) was obtained by equating the
steady-state output of egns.(31l) and (33) with the input set to zero on the
assumption that the mean in eqn.(3l) arose from a d.c. shift on the measured
output. Equation (33) is composed of a second order system with a damping
ratio 0.004485 and undamped natural frequency 969 rad/s. The nonlinearity
appears as a nonlinear spring type element governed by the polynomial
f(y)=y+.041541y%+.007608y>.

6. Conclusion

A new method of reconstructing nonlinear differential equations from sampled
data records has been introduced and illustrated using three nonlinear
systems. The new algorithm is based on the application of a new orthogonal
forward regression estimation for complex number systems applied to data
generated by probing an identified discrete time system representation. The
method exhibits several useful properties. First, higher order derivatives
of the input and output are not required and therefore errors induced by
numerical approximation to differentiation are reduced to a minimum. Secondly
the algorithm works on short possibly noisy sampled data records and higher
order nonlinear terms can easily be accommodated, Finally the physical
interpretation of the system can be studied based on the identified continuous
time model.
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Figure 1. First order frequency response for system S,
i Py €RRy Bi
1 _dy(g) 0.000 0.0000000
de
_dul(t) 20.487 0.0119719
dt
=udE) 23.288 -.2320950
2 _gay(t) 76.704 0.1931260
-
_du(t) 20.487 0.0119719
dt
3 _du(t) 0.004 -.0000187
dt
Table 1. First three iterations for the estimation of system S,

Candidates Parameters

-u(t) -.996546

_dyl(t) 0.193126
dt

Table 2. Final parsmeter estimates for'sxstem Sy
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i Pi €RR, By
1 [ dy(t)\2 0.010 -.000050
=
et 0.054 -.001157
_dy(t) du(t) 0.005 -.000020
dt dt
(e (D) 0.039 -.000450
dt
-y2(¢t) 99.923 0,151396
t
-y(t)u(t) 72.173 0.110856
_{ du(t)\2 4.998 0.000203
(=5
oy du(e) 9.005 -.003724
HUR <o
g8 25.014 0.039428
o _{dy(t)\2 0.039 -.000050
(5]
-y (t) dy(t) 0.098 -.001157
dt
_dy(t) dule) 0.024 0.000020
dt dt
—ult) d{;t) 0.123 -.000450
t
-y (t) dud(tt) 0.113 -.000423
=y(t)u(t) 0.097 -.0059817
_{du(t)\2 0.094 0.000014
weow
—u(t) diéf) 0.001 -.000069
_u?(e) 0.137 -.002198

Table 3

. First two iterations for the estimation of system §;

Candidate

Parameter “

-y2(t)

0.151396
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Table 4. Second order estimate for system S,
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First order frequency response for system NIL1

Figure 2,
i Pi €RRy Ey
1 _ d?y(¢t) 91.981 1.05691e-6
dt®
2 -u(t) 7.290 -0.183004
3 _”g%}gl 0.702 9.40408e-5
£

Table 5. Linear estimation for system NL1

Candidates Parameters
_d¥y(t) 1.10402e-6
de?
_dy(t) 9.40408e-5
dt
-u(t) -0.200629

Table 6. First order

parameters for svstem NL1
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i P €RRy 291
1 —y2(¢) 61.514 0.032947
dt
3 -y (t)u(t) 11.850 -.019020
4 (8 d}:i(tt) 2.799 -4.4609e-5
5 _dy(t) du(t) 2.745 -8.3150e-9
dt dt
6 —u2(t) 0.153 -.003886

Table 7. Second order estimation for system NL1

Candidate Parameter
-y2(¢t) 0.020025
~u{ &) dy(t) 2.99024e-5
dt
-y (t)u(t) 0.013396
_ dy(t) -6.70568e-5
y(t) i
_dy(t) du(t) -8.47344e-9
dt dt
-u?(t) -.0038862

Table 8.
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Second order parameters for system NL1
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Figure 3. First order frequency response for system NL2

i Py €RRy i
1 _aty(p) 90.390 9.93406e-7
dt?
2 -u(t) 8.878 -0.170641
3 _jggﬁl 0.721 9.25612e-5
t

Table 9, Linear estimation for system NIL2

Candidates Parameters
_d*y(t) 1.0650e-6
dt?
_dy(t) 9,25612e-5
dt '
-u(t) -.18450

Table 10,

First order parameters for svstem NL2
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Pi

GRRi

E1

-y2(t)

99.911

0.041541

Table 11. Second order estimation for system NL2

Table 12. Second order parameters for system NL2

Candidate

Parameter

-y2(t)

0.041541

|

Py

ERRi

Bi

-y3 ( E)

99.907

0.007608

Table 13. Third order estimation for system NL2

Candidate

Parameter

-y3(t)

0.007608

Table 14.

Third order parameters for system NL2
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