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Abstract L e sl

An orthogonal estimation algorithm for complex number systems is derived. It
is shown that a modified Error Reduction Ratio (eRR) test together with the
orthogonal estimation algorithm provides an efficient way of identifying both
the structure and the unknown parameters of complex number systems. A forward
regression procedure is proposed as an optimal search algorithm for this
problem and simulated examples which show the application of the method to the
parameterisation of linear frequency response functions are included.
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1, Introduction

Orthogonal least squares estimation algorithms [Korenberg 1985, Korenberg,
Billings and Liu 1988] have been found to be efficient procedures for
identifying unknown linear and nonlinear systems. They, do however, fall
short in at least one area, the estimation of complex number systems. Complex
number systems which are rare in the real world are commonly found in the
signal processing field. For example, signals with real and imaginary parts
are common in communication systems and in frequency response analysis. It
is therefore desirable to have an efficient way of estimating unknown
parameters associated with these complex number systems. In the present study
it is shown that the original orthogonal least squares estimation algorithm
[Korenberg, Billings and Liu 1988] can be reformulated to estimate the unknown
parameters associated with complex number systems in such a way that all the
properties of the original algorithms are retained. The Error Reduction Ratio
(¢RR) test is also reformulated for the complex number system case to provide
an efficient way of identifying the system structure or which terms to include
in the model. The parameter estimation algorithm and associated ¢RR test are
then combined in a forward regression procedure to provide an optimal search
algorithm for this problem. Simulated examples showing the application of the
algorithm to the identification of the structure and unknown parameters of
linear frequency response functions are included.

9. Orthogonal Least Squares Estimator for Complex Number Systems

Consider a complex number system which can be expressed as

M
zZ(w) = ;:Bxpi(m) + E(w) (L)
-1
where 0,, i=1,...,M represent the M real unknown parameters associated with

the complex variables p,(w), i-1,...,M and Z(w), E(w) represent the possibly
complex dependent variable or output and some modelling error respectively.
The objective of the estimation algorithm is to estimate the unknown

parameters in eqn.(l). The proposed orthogonal least squares estimation
algorithm involves transforming eqn.(l) into an auxiliary equation
M
Z(w) = ;giw,(m) + §(w) (2)
=1
where g;, i-1,...,M are some constant coefficients and w;(w), 1-1,...,M are

constructed to be orthogonal over the complex conjugate of the data records
such that

wr(w)w (w) =0 for kei (3)



where * denotes complex conjugate and overbar ~  denotes time average. A
family of orthogonal data records could then be readily constructed by
defining

w, (@) = p;(w)

1-1 (4)
w,(0) = pylw) —?:u“wk(m) , k<i

-1
and

(] P .
“ki'—“"s(___“.lp___u g k=1,...,1-1

Wi (@) we(w)

Combining the auxiliary equation, egn.(2), and the orthogonality of the data
records, eqn.(3), gives the parameter estimate

Z(w)wilw)

IR kil £ e B (5)

! wi(w)wi (o)

provided wy(w)wi(w) * 0. Inspection of egn.(5) indicates that if wi(w) is

not related to the output Z(w), the estimated orthogonal parameter ¢&; will

be small because the average value Z(w)wi(w) will not be significant. Hence
the orthogonal parameter ¢, could be used as an indicator of the significance
of orthogonal terms w;(w). If the magnitude of the estimated orthogonal
parameter &, is less than a certain threshold, say C,;, the associated
orthogonal term w,(w) should be regarded as insignificant. That is discard
w;(w) from the final estimate if

FARKS

during the estimation process to avoid numerical problems in eqn.(3).

Once the parameters g,, i-1,...,M have been estimated using eqn.(5), the
original system parameters 6,, i-1,...,M can be recovered according to the
formula
Bu = G
X (6)
8, = & - 1§1a“91 , k=M-1,...,1

Equations (4), (5) and (6) define the orthogonal least squares estimation
algorithm for complex number systems. The algorithm is remarkably simple and
easy to implement and retains all the properties of the original orthogonal
least squares algorithm. If all the data records and system parameters in
eqn.(l) are real, the proposed algorithm reduces to the original orthogonal
least squares algorithm [Korenberg, Billings and Liu 1988].



3. Error Reduction Ratio for Complex Number Systems

The error reduction ratio [Korénberg, Billings and Liu 1988], which is a
byproduct of the orthogonal least squares estimation, can provide information
regarding the significance of variables in the system model. This can act as
2 selection tool to sort through all possible variables and produce a
parsimonious model of the system under investigation. A version for complex
number systems can also be derived.

Consider the auxiliary equation
M
Z(w) = Y g,wile) + §(e)
2. vy

Multiplying the auxiliary equation with its complex conjugate and taking the
time average gives

M

Z(w)Z* (o) E g.91 wilw)wi(w) + §lw) E* (w) (7)
=

assuming that E(w) is a zero mean white noise sequence which is independent
of the orthogonal data set and the orthogonal property of eqn. (3) holds. The
maximum mean square of the magnitude of the prediction errors is achieved when
no term is included in the model (M=0) to give

| T E° (@) |y = Z(@) 2" (0) (8)

From eqn.(7), the reduction in the mean square of the magnitude of the
prediction errors eqn.(9) as a result of including the term g;w;{(w) can be
expressed as a percentage reduction in the total mean square of the magnitude
of the errors by defining

;91 wilw)wi(w)
Z(w)z" (w)

Notice that while #; are always real g, may be complex.

eRR, = x 100 , i=1,...,M (10)

Hence €RR can serve as a selection tool for determining which system variables
to include in the final model. A large error reduction ratio will thus
jndicate that an estimated variable is significant and should be included in
the final model. Usually eRR, is tested against a threshold, say C,, and the
i-th term is only included in the model if €RR; exceeds the threshold C,.

L. Forward Repression Algorithm

The proposed orthogonal estimator coupled with the modified error reduction
ratio test provides a powerful estimation algorithm for complex number systems
which can be considered as an extension of the forward regression algorithm
of Billings et al [1988]. The algorithm can be summarised as follows:
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a) Start the estimated model with no terms and define all possible complex

variables p;(w), i-1,...,M which might result in the final estimate.
b) Employ the orthogonal least squares estimator and the error reduction
ratio, egns. (&), (5) and (10), to search through all possible
variables.
c) Apply the error reduction ratio and orthogonal parameter tests on each

variable in turn.

If |§;| < C, or €RR; < G , Wy(w) will be discarded from the estimation.

d) Test 1: Select the wvariable which has the maximum error reduction
ratio as a candidate to enter into the final model.
Test 2: Alternatively, select the variable which has the maximum
| §¢| as one of the candidates to enter into the final model.

e) Pass the rest of the variables to the next stage of the estimation.

) Repeat b), c¢), d), and e) until the error reduction ratios or the

magnitudes of the estimated orthogonal parameters of the remaining
variables are all less than the chosen threshold or the variables have
been exhausted.

h) Re-construct the actual system parameters using eqn.(6).

The advantage of the forward regression algorithm is that it provides an
efficient yet simple method to search through all possible wvariables which
should be included in the model. Notice that throughout it has been assumed
that £(w) is zero mean and white. This assumption will hold in most of the
applications as discussed in section 5 below. If the noise does not satisfy
these assumptions a noise estimator must be appended to the above algorithm
[Korenberg, Billings and Liu 1988] to ensure the estimates are unbiased.

5, Examples

One useful application area for the proposed estimation algorithm is the
parameterisation of frequency response functions from a set of frequency
response data records. To illustrate the idea, consider a set of N frequency
response data H(jw,), n-1,...,N generated from the linear system S,
bys + by

H(s) = 3
a,st+as+1

(11)

In order to estimate the parameters by, b,, a, and a,, rewrite eqn.(ll) as

H(jw) = - a,(jw)2H(jw) - ja,0H(jw) + Jjbw + b, (12)

which is linear-in-the-parameters.

Comparing egn.(12) with eqn.(1l), we have

4
Z(w) - ;:Bipi(w)
-1



where

Z{w) = H(jw)
61 - ao ’ Pl(m) = —(jm)zH(jm)
8, -a, , plw) = -jwH(jw)

6, = b, , p;(w) = ju
6

« = b+ b (W) 1

The proposed estimation algorithm can then be applied to eqn.(1l2) to identify
the parameters b,, b, & and a, respectively. Of course the frequency
response data H(jw) could have been obtained from several algorithms.
Typically H(jw) would be the output from a spectrum analyser or the result of
digital spectral estimation. In either case it is well known that the
estimates of H(jw) are unbiased and hence the assumption that £(w) is zero
mean and white in previous sections is clearly justified in these type of
applications.

A set of 200 equally spaced frequency response data generated from eqn.(11)
in the frequency range 0 to 5 Hz with b,, b, a, and a, set to 0.5, 1, 0.4 and
2 respectively, was used to estimate the transfer function of the original
system. An overparametrised transfer function of the form

bys?® + by;s* + b,s + b,

3 2
2,8 + a;s* + 3,5+ 1

H(s) =

having complex variables 1, jo, (FJw)?, (jw)?, -jeH(jw), -(jw)?H(jw) and
-(jw)?H(jw) was initially specified for the estimation so that the
effectiveness of the proposed algorithm in detecting both the correct model
structure and estimating the unknown parameters could be tested. The error
reduction ratios for each complex variable, their corresponding orthogonal
parameters and magnitudes of the orthogonal parameters for the first five
jterations of the estimation are show in Table 1. Complex variables that were
selected into the final model at each iteration using test 1 are underlined
in Table 1 (e.g. maximum €RR or | §1). At the end of the fourth iteration, the
sum of the error reduction ratio for the selected variables is 99.999%. Error
reduction ratios for the rest of the complex variables at the fifth iteration
all become insignificant. It is therefore reasonable to argue that there are
only four parameters in the orthogonal equation and their associated
parameters are all underlined in Table 1. The original system parameters
which were obtained using eqn.(6) are shown in Table 2. Clearly the actual
system parameters can be recovered by the proposed estimation algorithm.
However if one of the complex variables, say jo is omitted from the
estimation, the estimate will be insufficient. This would be clearly revealed
by the estimated orthogonal parameters and the actual system parameters.
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Since the last estimated orthogonal parameter is complex, the estimated system
parameters will also be complex. Table 3 shows the result of the estimation
if only three complex variables 1, -jwH(jw), -(jw)2H(jw) are included in the
final estimate. All the estimated system parameters associated with the
complex variables are complex. (i.e. the estimate is biased). The estimated
system parameters could therefore also serve as an indicating factor of the
correctness of the final estimate. If the complex parts of the final estimate
are small, the deviation from the original system parameters will also be
small. With only three complex variables selected, the sum of the error
reduction ratio is 94.438% which clearly indicates that there is a deficiency
in the estimates. Another point to note is that in the first iteration of the
algorithm, complex variables which are not related to the final estimate are
clearly indicated by their error reduction ratio and their associated
orthogonal parameters where both of the readings are small.

A further point to mnote at the first iteration is that the magnitude of the
orthogonal parameters corresponding to the complex variables (jw)2?, (jw)?® and

-(jw)?H(jw), (i.e. complex variables which should not be included in the
system model), are small compared to the terms that should be in the model.
The contribution of these terms to the output of the system could be checked
using the modified error reduction ratio. Since both of these values were
small, it would be reasonable to say that they are insignificant to the final
estimate and could be discarded at an early stage of the estimation. This
could drastically reduce the computational time as lots of complex variables
would be discarded from the estimation at each iteration. 1In this example,
13 complex variables would pass through the orthogonal estimator instead of
25 in the original case if C, was chosen correctly.

Table 4 shows the first five iterations for the estimation of the same
transfer function, eqn.(1l), but with by, b;, & and &, set to 0.0002, 0.5, 0.4
and 0.001 respectively (System S;). The same parameters were specified for
the estimation. Tables 5 and 6 respectively show the results of the
estimation if 4 and 3 complex variables were included in the final estimate.
Even though some of the system parameters b, and &, are very small, the
corresponding magnitudes of the estimated orthogonal parameters are
significant, that is magnitudes of the estimated orthogonal parameters can be
used to indicate the significance of complex variables regardless of the
magnitude of the system parameters. With 4 complex variables included in the
final estimate, the original system was fully recovered. However, if only
three complex variables were included in the final estimate, the estimated
system parameters became complex. Results were very similar to the previous
example.



6. Conclusion

An orthogonal least squares algorithm has been derived for complex number
systems. The orthogonal property of the algorithm allows each parameter 1In
the auxiliary model to be estimated one at a time by repeated application of
a very simple formula. Additional terms can be added to the model without the
need to re-estimate all the previous model coefficients and the percentage
reduction that each term makes to the mean squared of the magnitude of the
output error, the ERR test, provides an extremely simple indication of the
significance of each term in the model. Moreover, magnitudes of the estimated
orthogonal parameters can be used to indicate whether complex variables are
related to the system. Combining the modified error reduction test with
orthogonal parameter value checking forms a very powerful sorting tool which
can drastically reduce computational time. Other advantages are that the
estimate itself provides information on the goodness of fit of the estimate
and implementation on a microprocessor should be straightforward,
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Iteration Complex Error Orthogonal Parameter
Variables Reduction
Ratio
1 P eRR, g gl
1 1 37,202 0,060939 - j 0.10804 0.12404
Jw B8.948 -0,003262 * J 0.000761 0,00335
(Fw)? §.388 -1.5447E-5 + J 8.5017E-5 9.6264E-5
(Fw)? 2.831 2,874BE-6 + j 3.82B6BE-7 2.9015E-6
=jwH(jw) 25,426 8.6348E-20 * j 0.08008 0.08008
—(Fw)2H{je) 8.197 0.002616 + § 2.1415E-21 0.002616
~-(j0)H(ju) 4.272 -5.8897E-23 - J 7.6880E-5 7.6890E-5
2 Jju 25,752 0.007478 + j 0.008503 0.011323
(Fw)? 16.016 0.000185 - J 0.000194 0.000275
(Fw)? 11,469 -5,6381E-6 = J 5.3B04E-6 7.779BE-6
—jwH(Tw) 54.450 0.510078 = j 0.19618 0.546503
— ()3 H(5w) 25.712 -0.006532 - J 0.005847 0.008767
- (jw)H(F) 15,913 -0.000136 + J 0.000173 0.00022
3 Jw 2.652 -0.005886 - J 0.000255 0.005801
(Fw)? 1.846 -B.7421E-6 * j 0.000123 0.000123
(Fw)? 1.364 3.2450E-6 + j B.5337E-8 3.2461E-6
~(f0)2H(Tw) 2.786 0.004777 + i 0.000189 D.004781
- (Fw)H(Fw) 1.872 -4.0609E-6 = J 9.9628E-5 9,8712E-5
4 Ja 5.561 0.5 + J 7.8383E-14 0.5
(Fw)? 2.040 0.000284 - J 0,00055 0.000624
(Fw)? 1.552 -B.7492E-6 - J 4.7B54E-6B 9.9724E-6
- () H(Fw) 2.049 -0.000238 + j 0.000438 0.0004088
5 (Fw)? 1.012E-23 =1.1538E-16 = 3 1.7417E-15 1.7455E-15
(Fw)? 2.708E-24 -1.5355E-17 + J 2.2241E-18 1,.5515E-17
=(jw)*H(je) 1.037E-23 2.0259E-16 + J 1.398BE-15 1.4134E-15
Table 1. First Five Iterations for the Estimation of S,
Complex Variable Parameter Complex Variable Parameter
~jeH(je) 2.000 -jeH(je) 0.6055 = j 0.3287
-(jw)3H(Fw) 0.400 -(jw)H(F0) 0.0048 + J 0.0002
1 1.000 1 0.7767 = J 0.2213
Jw 0.500
Table 2, Estimated S, with 4 Varisbles Table 3. Estimated S, with 3 Variables
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Iteration Complex Error Orthogonal Parameter
Variables Reduction
Ratio
i P eRR, g g
1 1 0.5013 0.642381 % J 0.326827 0.720742
Jw 0.0031 -0.001566 i J 0.00271 0.003130
(Fw)? 3,.855E-6 -1.8200E-6 + J 4.1812E-6 4,5693E-6
(Fw)? 2,115E-6 1.0463E-8 - J 1.2511E-7 1.2554E-7
—JwH(Fw) 99.9882 5.3475E-18 + J 0.6334 0.633400
-(jw)3H(jw) 99.7590 0.400276 - J B.5205E-18 0.400276
-{Fw)H(jw) 75,4560 -3,0227E-18 - J 0.181722 0.181722
2 1 0.0056 0.076619 + J 0.000268 0.076618
Jw 0.0013 1.4181E-5 = J 0.002024 0.002024
(w)? 0.0006 -5.7964E-5 ¥ J 5.0403E-6 5,7966E-5
(jw)? 0.0004 -1.6B44E-8 + ' 1.7485E-6 1.7486E-6
~(50)3H(Fe) 0.0035 -0.055874 -  j 3.1924E-15 0.055974
—(F0) *H(jw) 0.0013 3.3995E-17 + j 0.001619 0.001618
3 Jw 0.0034 3.7353E-6 + J 0.006524 0.006524
(Fa)? 0.0021 0.000160 = J 8.5B24E-8 0.000160
(Fw)? 0.0015 -2,4202E-9 = J 4.5305E-6 4,5305E-6
M CIOL G 0.0062 0.398788 = J 0.006669 0.399855
- () H(Jw) D.0034 =5.7431E-5 ' J 0.005218 0.005218
4 Jdw 1.444B8E-6 0.000200 + J 1.2588E-13 D.000200
(Fw)? 1.38380E-6 -2.6510E-8 - J 5.0185E-6 5.01BBE-6
(Fw)? 1.26819E-6 =1.4976E-7 + J 1.0787E-9 1.4977E-7
-(Fw)3H(50) 1.44468E-B -0.000160 + J 2.442BE-B 0.000160
5 (Jw)? 1.3561E-24 =2.4102E-14 = J 2.1621E-15 2.4189E-14
(7w)? 7.8561E-25 =3.0270E-17 * J 3.3802E-16 3.3937E-16
=(jw)H(jw) 6.9558E-23 7.3220E-12 = J 3.4B54E-10 3.4B662E-10
Table 4, First Five Iterations for the Estimation of 5,
Complex Varieble Parameter Complex Varisble Parameter
~JuH(je) 0.0010 =jwH(jw) =0.0085 J 0.0003
- (§u)2H(Fw) 0.4000 =(Jw) () 0.3888 J 0.0067
1 0.5000 1 0.49808 j 0.0038
Je 0.0002

Teble 5. Estimsted S, with 4 Varisbles

Table 6. Estimated Sy with 3 Variables




