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Orthogonal Least Squares Parameter Estimation ‘""”’"
Algorithms for Nonlinear Stochastic Systems
SA. BILLINGS and GAN. JONES
Department of Control Engineering, Universiry of Sheffield S1 3JD, UK.

Abstract: The derivations of orthogonal least squares algorithms based on the principle of Hsia’s
method and generalised least squares are presented. Extensions to the case of nonlinear stochastic
systems are discussed and the performance of the algorithms is illustrated with the identification
of both simulated systems and linear models of an electric arc furnace and a gas furnace,

1. Introduction

A wide class:of finite-dimensional nonlinear systems can be represented by the NAR-
MAX' fm‘clydel (Nonlinear Autoregressive Moving Average Model with eXogenous
inputs) [Leontaritis and Billings,1985]. Expanding this representation however, gives a
large number of possible terms which may be required to represent the dynamic pro-
cess. Estimating all of the parameters of such a- model simultaneously requirés exces-
sive computaton and can introduce severe numerical ill-conditioning problems. To
overcome these difficulties, an auxiliary model can be introduced defined such that the
candidate terms in the model are orthogonal over the data set. This has several advan-
tages over conventional methods, the most dramatic of which is the ability to estimate
the coefficient of each term independently of the other terms, and subsequently to esti-

mate the contribution that the term makes to the overall system output, thus facilitating
term selection.

This approach has been employed to derive a parameter estimation algorithm based on
extended least squares [Korenberg,Billings,Liu,McIlroy, 1988] and to study various
orthogonalisation methods [Chen,Billings,Luo, 1989]. Many other conventional least
squares like estimation algoﬁthms have been previously derived, mostly for linear sys-
tems, and this paper attempts to extend two such algorithms, based on Hsia’s
[Hsia,1976], and the generalised least squares [Clarke,1967] routines, to take advantage

of using an auxiliary orthogonal model and to extend the algorithms to nonlinear Sys-
tems, where this is appropriate.

Section §2 considers alternative representaions of nonlinear system dynamics. Then
sections §3 and $§4 consider the two algorithms debiased least squares [Hsia,1976], and
generalized least squares [Clarke,1967] respectively. Section §5 illustrates the perfor-
mance of the new algorithms for simulated nonlinear systems and for the identification
of linear models of an electric arc furnace and a gas furnace.



2. System Representation

A dynamic system with additive output noise can be expressed in several forms within
the NARMAX representaion [Leontaritis and Billings,1985; Chén and Billings,1989]."
The form of this model used in the present study is

(1) = F‘[z(r—l),....z(r-—Nz),u(r),....u(:—Nu),
e(t=1),...e(t=N,)] + e(r) . (1)
which may also be written as

z(1)

Fg[z(:-1),....z(:—N,),u(r),....u(z—N,,)] +
Ff,[z(t—l),....z(t—Nz),u(t),....u(t——N,,),e(t—l),....e(r—Ng)] + e()
= Fﬁ,[z(r—l),....z(t—N,),u(r),....u(t-—N,,)] + €@) ()
where all terms in F’a[...] do not include any e(z) terms V¢, and
u(r) is the system input
z(t) is the measured system output

e(?) is the residual or prediction error sequence defined as

e) = z() — F'[.] - Fyl..]

In eqns (1) and (2), the lagged values of e(r) are included within the model to accom-
modate coloured or correlated sequences of deterministic prediction errors. This is

essentially the extended least squares formulation [Korcnberg,Billings,Liu,McHroy,
1988].

3. Debiased Least Squares

A system represented as in (2) can be expanded, with F!, defined to be a polynomial,
to the form

m=M
z(t) = ¥ 0,0, + £ 3)
m=0

For example: the model
2(t) = az(t-1) + Bu(=1) + (@t

can be expressed in the form of (3) by purting



B = o,  py) =
61 =B, O = u@-1)

Equation (3) can be writen in marix form as
Z=PO + ¢ (4)

where

N
~
Il
o
~~
—
~
4
(3]
N

..... z(V)]

g = [e(1),e)...eV))
Po(l) 2y . Py(l)
Po(2) p1(2) . . pu(2)

P = . ) i (5)
poN) pi@V) . . PM(N)J

and the p,(r) terms depend only on lagged values of z(t) and u(t).
To formulate the algorithm consider an auxiliary form of eqm (4)

Z=Wg +¢g (6)
where
W=Prl g g=1p ™)

are formed such that the columns of W are mutually orthogonal, and T is a unity diag-
onal triangular matrix [Korenberg et al. 1988]. The formulation of this orthogonal
model is described in Appendix A. Rather than following the extended least squares
formulation derived previously [Korenberg et al. 1988], in the present study an alterna-
tive solution to the correlated output noise problem is proposed. This new algorithm
which is derived by extending Hsia’s method [Hsia 1976] is outlined below.

A normal least squares estimate of the parameter vector £ in eqn (6) can be obtained
as

-1
& = [WTW] wiz (8)
Substituting (6) into (8), gives

-1 -1
&y = [WTW] Wiwg + [WTW] wle

.



= ¢ + [ww] e ©)

Hence the least squares estimate will be biased whenever g(f) is a coloured noise
sequence since

E[W'g] = @ (10)
However, rearranging  (9) gives
g =g - [WT ]ﬁlwfg | (11)
or |
8 = &5 — Lpis (12)

Hence if an estimate of 8Bias €an be made such that
Elépias] = 2pia : (13)
an unbiased estimate of g can be obtained.

An iterative algorithm to estimate € and gp,,c can be formulated where from eqn (6)
€ is estimated as

=z — wy (14)

and j denotes the iteration index.

&pias cannot be estimated directly as
-1
8Bias = [WTW} wTle (15)

for substituting (14) into (15) and expanding, shows that if

g =g - o¢ (16)
then
piae = g/ (17)
and hence
gt =g (18)

and the algorithm fails.

However,if &(r) is modeled as FI[.. ] in eqn (2), expanded as a polynomial, then

=0
) = ):cqmq + e(1) (19)
=0

=il



where the ¢,'s are coefficients and the @,’s are the regressor terms.

For example: the model
E() = ae(t-1) + Bu(r=De(r-1) + e(p)

can be expressed in the form of (19) by puring
Co = o, W) = e(r~1)
g =B, o0 = u(t=1)e(-1)

In matrix form

&0 = Q¢ + ¢@n) (20)
where
£ = [B(1)EQ)....e)]
g = [€1:6550n:00]
€ = [e(1),eQ2)....e(N)]
r(;00(1) o (1) . . mQ(l)-
@p(2) ®(2) . . mQ(Z)'
0 = (21)
_CDDiN) ml-(N) 2 5 GJQ‘(N)-
The bias term can therefore be iteratively computed as
8pias = [WT ]_1WTQQ (22)

and g corrected accordingly. Orthogonal least squares can be used a second time to
estimate ¢ from g and Q which is formed from the latest residual sequence. Finaly, the
frue process parameters can be found recursively as

@ =§-T-nd (23)

Note that in the current algorithm, the noise model is considered as a moving

average type process. However an autoregressive type representation could also
be used

&(r) = Fﬁ,[z(r—l),‘...z(t—Nz),u(t),....u(r—Nu),e(:-l),....e(r—NE)] + e(r)



since the estimates § and hence g are corrected at each iteration stage.

The selection of terms to be included in both the noise and the process models in the

extended least squares formulation was achieved by implementing ‘a forward regression T -

algorithm coupled with an error reduction ratio test (ERR) [Chen,Billings and Luo,
1989]. In Debiased Least Squares the ERR test can be applied to select the process
model terms. A candidate process term is accepted into the model if the error reduc-
tion ratio is above the threshold C4. Noise terms may also be selected by considering
the contribution they make to &(z), and using a separate threshold C s

The model will be satisfactory if, and only if, the residuals are unpredictable from all
linear and nonlinear combinations of past inputs and outputs. This can be demonstrated
if the following correlation tests [Billings and Voon,1986] are satisfied:

ee(T) = 8(1)

G (1) =0 W&

Beeu(®) = Ele(De(t-1-Du(-1-1)] = 0 V& (24)
0.2.(0)=0 WV

02D =0 W

The standard deviations of the process parameters can be found by using the result
that if e(r) has been reduced to a white sequence

?

E[g_e_T] = o (25)
Hence
cov(@) = E[(g—g)(g—g)T]
-1
- o (ww) - 26)
and
cov® = T lcov(@)TT 27)

[Korenberg et al.,1988].

Similarly, the standard deviations of the noise parameters can be estimated by assum-
ing

Fil.] = FiL.] (28)

and hence that € is known.



The results of applying this new algorithm to two industrial processes are given in sec-
ton §5.

4. Generalized Least Squares

Parameter estimates for a system of the type considered in this paper can be obtained
using a Generalised Least Squares algorithm [Clarke,1967], provided that the noise can
be adequately modeled as an autoregressive process such that

Q) = Fyle(t-1)..e(t=Np)] + e(t) (29)

This condition implies that, if a nonlinear process expansion is used, acceptable esti-
mates can only be obtained in special cases.

The algorithm can be modified to use an orthogonal estimation routine at each itera-
tion, which will aid term selection. However the data filtering used in GLS destroys
the orthogonal properties of the model and a new orthogonal model must be derived at
each iteration stage. In addition if an orthogonal model is used to estimate the noise

parameters, this must be deorthogonalised in order to obtain the necessary filter param-
eters.

Such an algorithm is not described in greater detail in this paper because the inherent

structure of the original algorithm means that an orthogonal version will not bring any
advantages.

5. Identification Results

The Debiased Least Squares parameter estimation algorithm described above has been
used to identify models from both simulated and real data sets.
5.1 EXAMPLE 1: Identification with simulated data.

Consider the system

y@) = 0.5y(:=1) + u(z-2) + 0.1y(+-2)u(r-1)
€(t) = 0.5e(r—1) + 0.2e(t=2)% + (1)
z2(t) = y(@) + e (30)

which when rearranged takes the form of eqn (1)
2(r) = 0.5z(+~1) + u(+-2) + 0.1z(¢=2)u(e~1) — 0.25e(r-2)
= 0.1u(t-1)e(r-2) + 0.2e(2)2 - 0.05u(r~1)e(r-3)



— 0.1e(r-3)% — 0.02u(r-1)e(t~4)2 + e(r) (31)

A sequence of 600 data pairs was generated using a gaussian input N(0,4) and a
noise sequence e(f) with a maximum magnitude of 2. The first 400 data points
were used for system identification, and the full data set for model validation.

The candidate terms for the identified model were obtained by expanding (1) as
a cubic polynomial with Ny=N,=2, and N, =4 to give a total of 164 terms.
The model set was reduced, by excluding all cubic terms except those linear in
u(t=1) and quadratic in e(.), to give 54 possible terms. Identification with
C4=0.015 and C4, = 0.0075 gave the model:

Terms Parameters [ err];s Std. dev

z(=1) 0.4933 0.2381 0.022

u(r-2) 0.9961 0.5030 0.031

z(t=2)u(r-1) 0.1276 0.0319 0.012

e(t—4) 0.1189 0.0107 0.051

u(t—-1)e(r-2) —0.1606 0.0744 0.026 (32)
u(r—=1)e(t-3) =0.0642 0.0151 0.026

u(—2)e(r—1) —0.0583 0.0103 0.027

e(t=2)e(r-2) 0.1586 0.0258 - 0.034

e(t=3)e(r-3) -0.1061  '0.0165  0.034

u(t-1e(t-1)e(r-1) —0.0325 0.0097 0.015

The model validity tests, defined in eqn (24), are illustrated in Figure 1 for this
model. Note that ¢§§(2) # 0, clearly indicating that an e(t—=2) term is missing
from the model. Hence the model was reidentified, using the terms of (32) aug-
mented by an e(—2) term with C,; = 0 and C4e = 0.005. Estimation yielded

Terms Parameters  [err]/s  Std. dev

z(r-1) 0.5143 0.2381 0.022

u(t-2) 0.9944 0.5030 ©  0.030

z(t=2u(+-1)  0.1211 0.0319 0.012

e(-2) ~0.2611 0.0522 0.051

u(t-1e(t-2) ~0.1576  0.0687  0.027 8

u(t-1)e(=3) —0.0665 0.0142 0.026
u(t=2)e(r-=1) —0.0450 0.0065 0.025
e(t-2)e(t=2)  0.1576 0.0226 0.038
e(t=3)e(r-3) —0.1052 0.0149 0.037

Which by inspection of the model validity tests (Figure 2) can be seen to provide
an acceptable representation of the system dynamics.

-8 -



5.2 EXAMPLE 2: Identification of an electric arc furnace.

This data set was collected from a 135 tonne 35MVA 3-phase electric-arc steel-

making furnace with an amplidyne Ward-Loenard regulator. A description of the

plant and the data is given by Billings and Nicholson [Billings and Nicholson,
1975]. The input sequence is a PRBS injected into the amplidyne, and the out-
put sequence is the electrode position. 250 data pairs were used for the
identification and 350 pairs were considered for the model validity tests. Due to

the presence of an integrator on the system output, the differenced output z4(0)
was used throughout where

24(8) = z(¢) = z(+=1) (34

A candidate model of 24 terms was obtained by expanding (1) as a linear poly-

nomial with Ny=N, =N, =8. Identification was performed with C; = 0.005 and

Cge = 0.0025, yielding |
Terms Parameters [err]’s  Sid. dev

u(-5) - —0.4209 00113  0.081
u(e-7)  -0.1699  0.0073  0.090
z-1)  1.7927 0.6846  0.045

20-2) -1.5895  0.0363  0.066
24(-3) 11994 01058  0.065
2,t-4) 04728 00517  0.043 (33)

e(t-2) —0.7629 0.3773 0.065
e(r-3) 0.1128 0.0062 0.065
e(r—4) 0.0758 0.0033 0.065
e(t=5) —0.2242 0.0297 0.066
e(r-8) 0.0915 0.0047 0.066

Which by inspection of the model validity tests (Figure 3) can be seen to ade-
quately represent the system dynamics.

The one step ahead predicted output 7(z), defined as
240 = Folzft=1)se2gG-N) (1), ts(=N,)] +
ﬁf,[zd(:—l),....zd(z—Nz),u(z),....u(z—Nu),e(:—l),....e(:—Ne)] (36)

where e(r) =.z ) - 24(1), is compared with the measured output in Figure 4.

The model predicted output is defined as

220 = FQlaft=1)r B f(t-N ) )....ts(=N,)] (37)

g

ES



23

and is shown in Figure 5.

EXAMPLE 3: Identification of a gas furnace.

This data set was collected from a gas furnace producing carbon dioxide by Jen-
kins and Watts [Jenkins and Watts, 1968]. The input sequence is the input gas
rate (a second input, air rate was kept constant) and the output sequence is the
percentage of carbon dioxide in the outlet gas. The first 200 data pairs were used
for identification and 295 for model validation. Due to a trend in the data the
identification was performed on differenced outputs and inputs z,(r) and wuy(r)
where

240 = z() — z(t~1) and uy(t) = u(t) — u(-1) (38)

A candidate model of 24 terms formed by expanding (1) as a linear polynomial
with Ny =N, =N, =8 was used with Cq=C4 =0.01. The estimated model is
given below
' Terms Parameters [err]’s  Std. dev
uy(+=3) -0.0733 0.0823 0.003
ugt=5 -0.0711 07366  0.004
z4-1)  0.5381 0.0642 0.017 (39)

e(-3) -0.1825 0.0295 0.031
e(t—4)  -0.2334 0.0496 0.031
e(r~=5)  —0.1892 0.0314 0.031

Inspection of the model validity tests (Figure 6) shows this model to be an
acceptable representation of the system dynamics. The one step ahead predicted

output is compared with the measured output in Figure 7, and the model predicted
output is shown in Figure 8.

6. Conclusion

An established system identification algorithm has been extended to the nonlinear case,
and reformulated to take advantage of an orthogonal auxiliary model.

The advantages of the new algorithm include computational simplicity and the ability

to implement a simple term selection routine, based on an error reduction ratio test,

The results of applying the new Orthogonal Debiased Least Squares algorithm to iden-
tify models of simulated systems and to both an electric arc furnace and a gas furnace

have been presented.

-10 -
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APPENDIX A: Formulation of the Auxhillary Orthogonal Model

The matrix decomposition theorem [Fox, 1964] states that a positive definite square
matrix A can be decomposed as

A = LDU Al

then it can be shown that

and hence
A = Ulpy A3
The correlation matrix PTp associated with the model '
Z=PO +¢ A4
is symmetric and positive definite and can therefore be expressed as
PP = 1Tpr A5

where T is unity upper triangular and D ig diagonal with all positive elements.

Now eqn A4 can be expressed as

Z=PT'nO + ¢ A6
or
Z=Wg + ¢ A7
where
W =Pl o =10 A8
and it can be shown that
wiw = p A9

-11 -



Defining W as

|-W0( D wi(1)
wo(2) wi(2)

L wy(l)

- WM(N)J

0

N .
> wi(D)

=1

W =
woN) wi(N) .
where
N
2 widw() =0 Viw
=1
specifies D in eqn A9 as
[ v
>, w0
=1 -
N
> wi@)
=1
D =
0

Premultipling the definition of W in eqn A8 by Wl

WIWT = WIPTIT =

or
-1
T = [WTW] wip =

Multipling this expression out gives
B

N N
2wo(Dpo(2) 2 wo(Dp,(8)
=1 =1

N N
> wh(o) Y wi(e)
=1

=1

N N '
2 W(Bpg(2) 2wy(Dp(d
=1 =1

N N
T wi(e) S wi )
=1

=1

N
2 Wp(Opa(2)
=1

and postmultipling by T gives
wip

DlwTp

v ]
2wo(@py (D)
=1

N
S wh()

=1

N
> wi(®)

=1 i

AlQ

All

Al2

Al3

Al4



. %
Goo o1 . . oy
®ro A .. oy

= ; . . ' AlS
Crmo Oy . . OﬂﬁmJ

To satisfy the requirements of A5, T should be upper triangular, angd this can be
achieved by defining

[0 Vi>j
a; = 1 Vi=j Al6
N
1 ZwiOpo)
=1 v o
7 Vi<j
W)
§ =1 .
which implies
1 o Qo2 . . Oy
ooy Loy .
T = | Al7

. 1]
The elements of W in eqn A10 can now be determined by writing

Wr = p .

as
W=WwW-wr-r | Al8

Eqn A16 implies that the K" column of T can be found from P and the first k-1
columns of W. Similarly eqn A18 implies that the & column of W can be found from
P, the first k-1 columns of W, and the first k£ columns of T. Hence the columns of T
and W can be found sequentially to form the two matrices.

Once an estimate £ has been found, © can be obtained by rearranging
£ =16 Al9

as

=13 -



A

©=g-T-0nbd A20

which enables the estimates 0; to be found sequentially from g, T and B Vi>i
without any need to invert T
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FIGURE 1: Model validity plots for the initia] model esdmation of examplel
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FIGURE 2: Model validity plots for the fina] model estimation of example 1
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FIGURE 3: Model Validit.y plots for the model estimation of example 2
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FIGURE 4: One step ahead and measured outputs of an electric arc furnace (example 2)
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FIGURE 5: Predicted output of an electric arc furnace (exampl
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FIGURE 6: Model validity plots for the model estimation of example 3
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FIGURE 7: One step ahead and measured outputs of a gas f-l.-lrnace (example 3)
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FIGURE 8: Predicted output of a gas furnace (example 3)
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