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Over the past four decades research has revealed that cells in the hippocampal formation 

provide an exquisitely detailed representation of an animal’s current location and heading. 
These findings have provided the foundations for a growing understanding of the mechanisms 

of spatial cognition in mammals, including humans. We describe the key properties of the 

major categories of spatial cell: place cells, head direction cells, grid cells, and boundary cells, 

each of which has a characteristic firing pattern that encodes spatial parameters relating to the 

animal’s current position and orientation. These properties also include the theta oscillation, 

which appears to play a functional role in the representation and processing of spatial 

information. Reviewing recent work we identify some themes of current research and 

introduce approaches to computational modelling that have helped to bridge the different 

levels of description at which these mechanisms have been investigated. These range from the 

level of molecular biology and genetics to the behaviour and brain activity of entire 

organisms. We argue that the neuroscience of spatial cognition is emerging as an 

exceptionally integrative field which provides an ideal test-bed for theories linking neural 

coding, learning, memory and cognition. 

Introduction 

How does an animal, or human being, know where it is, and how does it remember distant goals, and then 

navigate efficiently towards them, while avoiding hazards and barriers? What kinds of representation underlie 

this kind of spatial ability? Over the past four decades, efforts to address such questions have provided the 

foundations for a richly productive field connecting different levels of neuroscientific investigation, from 

membrane potentials and synaptic currents to individual neurons, from neuronal networks to complex behaviour 

and human cognition. 

In introducing the topic of ‘Space in the Brain’, we want to draw a distinction between spatial frameworks tied 

to a particular body part, object or action and those that are fixed with respect to the outside world, independent 

of particular actions and objects. The brain makes use of neural representations of both types. The first type of 

representation is crucial for behaviours such as catching a ball or picking a fruit from a tree. Behaviours such as 

navigating long distances over natural terrain or through a new city are also dependent on the second type of 

representation. This issue will focus primarily on the second type of spatial framework, which depends on a 

specialized system centred on the hippocampus, a phylogenetically ancient and well-preserved structure, which 

in humans is found deep in the medial temporal lobes.  

To understand what is so special about the hippocampal formation, it is first instructive to consider how spatial 

parameters are reflected in the firing of neurons in other parts of the brain. Throughout the brain, individual 

neurons are often found to have spatially-restricted firing fields, which carry spatial information about the 

source of sensory information, or destination of planned actions. Thus, a neuron in primary visual cortex might 

respond to a stimulus in a particular part of the visual field [1] , a neuron in primary somatosensory cortex might 

respond to a tactile stimulation of a particular body part [2] and the firing of a motor neuron might help to direct 

limb movements in a specific direction [3]. In each case neural activity reflects the spatial relationship between 

a stimulus or response and a part of the body. Similar but somewhat more abstract forms of spatial coding are 

found beyond the primary sensory and motor cortices, notably in parietal cortex where individual neurons’ 
receptive fields may be fixed with respect to the hand, head or trunk, and may respond to multiple sensory 

modalities [4-6]. Such neural codes incorporate spatial information about stimuli and responses in terms of 

various egocentric reference frames (each anchored with respect to the body or part of the body). They are well-

suited to mediating spatial behaviour in the immediate environment and to computing transformations between 

visual and body-based reference frames in the online control of action [7]. They carry spatial information about 

stimuli and responses, and can in principle perform spatial computations linking one with the other [8, 9].  

All of the above representations are “egocentric” in terms of their spatial reference frame. It is debatable 

whether they represent space itself in an absolute sense, and when they do represent locations in the world, those 

locations must be updated as the various parts of the body, and the body itself moves.  
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By contrast, and as we explain in more detail below, cells in the hippocampal formation can represent an 

animal’s current location or heading independent of individual sensory cues and particular actions. Their firing 

fields are anchored to the external environment (and thus termed “allocentric” or world-centred), rather than to 

individual objects, actions or to the body. These cells appear to provide the basis for a cognitive map: a 

representation of the environment and the places and objects within it that is to some extent independent of 

bodily posture or orientation. As such it affords long-term memory for the spatial relationships between places, 

the routes between them, the resources, goals and hazards they contain, in that it does not require continuous 

updating as the animal goes about its daily life [10-13] 

Below we briefly outline key aspects of the anatomy of the hippocampal formation and the properties of its 

spatial cells as characterised through in vivo extracellular unit recording in freely behaving animals, mainly 

rodents. These cells form the building blocks of spatial representation. Their fascinating properties provide 

detailed quantitative constraints on computational models which have been further supported by advances in 

optogenetics, juxtacellular recording and 2-photon imaging in behaving animals, and human electrophysiology 

and neuroimaging. These developments have fuelled further discoveries, and we outline some of the themes of 

current research and the new avenues which have been opened up. The neuroscience of spatial cognition, we 

will argue, is emerging as an exceptionally integrative field which provides an ideal test-bed for theories linking 

neural coding, learning, memory and cognition. 

Anatomy and spatial cells of the hippocampal formation 

In this section we outline the anatomy of the hippocampal formation and describe some of the spatial properties 

of the neurons within it. Much of the evidence we refer to is based on research in rodents, although as we 

explain later, there is mounting evidence that the critical spatial properties are maintained in other mammals 

including humans. We should also note that although our focus on the hippocampal formation is justified by its 

central role in spatial cognition, cells with related spatial properties (notably Head Direction cells) are found in 

other brain regions. 

Anatomical sketch of the hippocampal formation  

The hippocampal formation includes the hippocampus proper and the adjacent cortical areas to which it is 

connected. The hippocampus proper consists of the “Cornu Ammonis” (CA) fields: the much-studied CA1 and 

CA3 fields, and the smaller, little-studied CA2 field. The hippocampal formation thus consists of: the entorhinal 

cortex (divided into lateral and medial cortices), dentate gyrus, CA1, CA2, CA3, subiculum, presubiculum, and 

parasubiculum (see Figure 1). Hippocampal regions and pathways were sufficiently distinct as to allow the very 

early pioneers of neuroanatomy [16] to identify key elements of the circuitry (see left side of Figure 1). Indeed, 

the relative simplicity of the hippocampus, as compared to neocortex, strongly appealed to early researchers of 

memory, whether as physiologists demonstrating synaptic plasticity [17] or computational theorists modelling 

functional capacities [14, 18]. Notably, this region contains several largely-unidirectional projections, a crucial 

feature for early experiments on synaptic plasticity [19] (see Figure 1 and legend). The superficial layers of the 

entorhinal cortex are typically regarded as the major conduit for neocortical information to enter the 

hippocampus, while its deep layers and the subiculum are thought to provide output from the hippocampal 

formation to the rest of the brain. CA1 also functions as an output (e.g., to prefrontal cortex). However, the 

presence of bidirectional and re-entrant pathways, and projections influencing both superficial and deep 

entorhinal layers, means that it is not entirely straightforward to define pure “input” and “output” pathways, or 

feedforward hierarchical structure (see [20] for further discussion). 
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Figure 1 Left side of Figure emphasises gross morphology (rat brain) of cell layers in hippocampus & dentate gyrus, and 

long-established unidirectional projections. Classic trisynaptic pathway consists of projection from entorhinal cortex 

(LEC: lateral entorhinal cortex; & MEC: medial entorhinal cortex) to dentate gyrus (DG), from DG to CA3, and from CA3 

to CA1. Entorhinal input also consists of direct monosynaptic LEC & MEC projections to CA3, to CA1, and to subiculum 

(Sb). CA1 projection to Sb and to LEC/MEC, and Sb projections to LEC/MEC, complete the circuit. Other circuits involve 

projections from subiculum to presubiculum (PreSb) and to parasubiculum (ParaSb), and projections from PreSb to MEC, 

and ParaSb to both LEC and MEC. Arrows indicate direction of projection, and circles indicate cell bodies. For simplicity 

in this highly schematic figure, omissions include the following: dendrites and dendritic location of axonal termination 

zones: commissural projections connecting left and right hemispheres; CA2-involving projections. Additional guidance. 

The term ‘hippocampal formation’ applies to regions contained within dashed box. Entorhinal pathways to DG, CA3, 
CA1, and Sb known as perforant pathway, DG to CA3 pathway as mossy fiber projection, CA3 to CA1 pathway as 

Schaffer collaterals. As well as projecting in feedforward manner to CA1, the CA3 pyramidal cells project to other CA3 

pyramidal cells; these recurrent collaterals were proposed by Marr to underlie pattern completion (the ‘collaterals effect’, 
[14]). Postrhinal cortex is rat analogue of primate ‘parahippocampal cortex’, strongly implicated in visuospatial 

processing. In rodents, term ‘postsubiculum’ (containing many HD cells) refers to dorsal portion of presubiculum. Two 
parallel pathways formed by projections from postrhinal cortex and presubiculum to MEC, and perirhinal cortex to LEC, 

are not fully illustrated.  Inspired by [15]. 

An important anatomical feature that the schematic Figure 1 does not emphasise is the substantial projection of 

CA3 pyramidal cells to other CA3 pyramidal cells. The axons forming this projection are called the recurrent 

collaterals (as distinct from the CA3-CA1 projections called the Schaffer collaterals), and were proposed by 

Marr to underlie pattern completion (the ‘collaterals effect’, [14]). Pattern completion is the process by which 

the re-presentation of a subset of cues associated with an event gradually triggers reactivation of the full neural 

representation of the original event, and thereby enables retrieval of that event. (Marr’s idea initiated the process 

of formally modeling hippocampal circuits using attractor dynamics; attractor models relevant to spatial coding 

are discussed in sections below.)  

Subcortical input and output and the theta oscillation 

While the much-processed neocortical input to the hippocampus via the entorhinal cortex has often been 

emphasised in memory research, we note that many inputs crucial to spatial representation and behaviour are 

subcortical. For instance, cells with a robust head direction signal (described below) are found in the anterior  

thalamus, and this region projects strongly to the hippocampal formation (notably to the dorsal presubiculum, 

see [21] for review). Important subcortical outputs include projections to the mammillary bodies, and ventral 

striatum. One perhaps under-emphasised subcortical projection is that from the hippocampus and subiculum to 

the lateral septum. Interestingly, there is a direct CA3-lateral septum projection. This projection is part of a 

polysynaptic CA3-VTA pathway which supports associations between reward and spatial contexts [22]. 

Importantly, all regions of the hippocampal formation receive direct projections from the medial septum and 

diagonal band of Broca (hereafter medial septum) , and these projections play a crucial role in generating and 

sculpting the 4-12 Hz theta oscillation, a quasi-sinusoidal fluctuation in the local field potential characteristically 

seen during locomotion [23]. This oscillatory medial septal input is a defining feature of the hippocampal 

formation in rodents and the theta rhythm has been hypothesized to play important roles in processing novelty, 

[see citations in 24], in scheduling memory encoding versus retrieval [25 , 26, 27], and in spatial representation 

[28, 29].  
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Regarding spatial representation specifically, several studies have shown that theta frequency and amplitude 

correlate with running speed [30-35]. These correlations, and the well-established relationship between theta 

phase of firing and distance coding in both place cells and grid cells, as further demonstrated by Jeewajee and 

colleagues in this issue [36], have led to the suggestion that the theta oscillation plays a role in coding for self-

motion, and can be used to estimate spatial translation [11, 37, 38]. We consider the phenomenon of phase 

precession in some detail below in discussing the properties of place cells and grid cells. Intriguingly, theta-

modulated neurons have recently been discovered in the anterior ventral thalamus and medial septum which 

appear to combine the head direction and theta self-motion signal, using a theta frequency code for locomotion 

speed in a specific allocentric direction. These have been called velocity-controlled oscillators, see [39, 40]. In 

general, the view that spatial translation might be encoded using the theta oscillation remains influential and 

controversial. In this special issue, several authors explore this possibility [36, 41, 42] while others take issue 

with it [43]. Jacobs in this issue [44] considers the possibility that there is a navigation-related oscillation in 

humans which is homologous to rodent theta, but which occurs at a lower frequency, [45, 46].  

We should emphasise that the hippocampal theta oscillation has multiple generators and is dependent upon 

much more than reciprocal anatomical connectivity with the medial septum and other subcortical regions, 

important as they are.  Intra-hippocampal connectivity, and theta resonance characteristics conferred by intrinsic 

membrane properties are also crucial to normal functionality of hippocampal theta [47, 48].  Here, we note that 

the rich functionality conferred by oscillatory systems in the hippocampal formation requires a vast supportive 

network of inhibitory neurons. Somogyi and colleagues in this issue [49] review important work on the classes 

of interneurons (currently numbering ~20 in CA1) that support and control dominant hippocampal oscillations 

such as theta, gamma, and ripples. Somogyi and colleagues emphasise the way in which pyramidal cell function 

in CA1 (i.e., place cell function) relies on a precise medley orchestrated by many spatiotemporally-specific 

patterns of inhibition. Different classes of interneurons target different subcellular domains (e.g., the axon 

hillock or the distal or proximal apical dendrites) and/or provide inhibition at different phases of the theta cycle 

(e.g., the trough or the peak). How does spatiotemporally-specific inhibition confer functionality? This will take 

considerable research effort to unravel, but some clues exist already. Mizuseki and Buzsaki in this issue [50] 

review evidence implicating interneurons in phase precession, including a study showing that silencing 

parvalbumin interneurons, which provide perisomatic inhibition to CA1 pyramidal cells, results in narrowed 

theta phase variance of pyramidal spikes and thus disruption of the correlation between spike phase and 

location. The scheduling of encoding vs retrieval states by theta phase and acetylcholine in CA1 and CA3 place 

cells [25, 27, 51, 52] may also depend upon spatiotemporally-specific inhibition inhibition, in this case affecting 

the balance between feedforward inputs supporting encoding vs recurrent inputs supporting retrieval. 
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Spatial Cells 

In this section, we briefly discuss all the major types of spatial cells found in the hippocampal formation. Figure 

2 provides an introductory overview, showing one example of each of the four fundamental spatial cells: a place 

cell (Fig. 2A), a head direction cell (Fig. 2B), a grid cell (Fig. 2C), and a boundary cell (Fig. 2D). 

 

Figure 2 Four types of fundamental spatial cell. Figure shows one example of each type of fundamental spatial cell: A) 

Place cell; B) Head Direction cell; C) Grid cell; D) Boundary cell. For each cell: left hand column shows locational firing 

ratemap (A, C, D) or directional firing polar plot (B), with peak firing rate in Hz shown top left of ratemap/polar plot; 

right-hand column depicts path taken over whole trial (black line), on which are plotted the locations at which spikes were 

recorded (green squares). In firing rate maps, one of 5 colours in locational bin indicates spatially-smoothed firing rate in 

that bin (autoscaled to firing rate peak, dark blue: 0-20%; light blue: 20-40%; green: 40-60%; yellow: 60-80%; red: 80-

100%). Head direction, grid, and boundary cell recorded in 1 x 1 metre (place cell: 62 cm x 62cm) square-walled box with 

50cm-high walls. For boundary cell, 50cm-long barrier inserted into box elicits second field along north side of barrier (as 

predicted by boundary vector cell model [53]) in addition to original field along south wall. Cells provided by Sarah 

Stewart and Colin Lever. 

Place Cells 

Place cells were discovered in the hippocampus of the freely behaving rat by O’Keefe and Dostrovsky [54]. 

They are principal cells in the hippocampus proper and and Dentate Gyrus . Place cells characteristically fire at 

a low rate throughout most of the environment, but each cell shows increased firing when the animal is within a 

circumscribed region of the environment (its “place field”). The spatial pattern of firing including the place 

field(s) can be visualised using a firing rate map, where the average firing rate at each location is represented by 

the colour (see Figure 2A, where the place field of the cell in the specific environment shown occurs in a 

restricted region towards the northern part of the east wall). Place cells recorded at dorsal sites tend to have 

smaller fields while those recorded at ventral sites are more broadly tuned [55] [56]The pattern of firing across 

different trials in the same environment can be very stable, but different patterns and different subsets of cells 

are seen in sufficiently-different, or sufficiently-experienced, environments (‘remapping’ [57-63]). 
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Different place cells recorded simultaneously in the same environment have different place fields, such that at 

any location only a small subset of place cells will be firing strongly. By monitoring the firing rates of a small 

population of cells, the animal’s current location can be reconstructed very accurately [64, 65]. Place fields can 

be remarkably robust to the removal of one or more individual cues [66], though some cues are more important 

than others (e.g., removing the bounding walls of an environment reliably elicits remapping [61]). In the open 

field, firing rates do not typically depend on the animal’s orientation (head direction or direction of travel [67]). 

Place fields are seen on first exposure to an environment and do not depend in a straightforward way on a 

particular task or action. Although place cells are defined by the prominent spatial correlates of their spiking 

activity, it should be noted that their firing rates are sensitive to changes in other environmental variables such 

as odour and colour [68, 69] 

Phase precession and the theta oscillation 

Two decades ago, O’Keefe and Recce [28] observed that the spatial code expressed by place cells extended 

beyond the rate based code revealed by place field maps. Interestingly, within the place field, spikes occurred at 

progressively earlier phases of the LFP theta rhythm as the animal progressed across the field (see Figure 3). 

The theta phase precession phenomenon suggested that the locational firing of place cells might be causally 

linked to theta, and O’Keefe and Recce suggested that both phenomena might be understood in terms of 
interference between two velocity-sensitive theta-band oscillations, one occurring at a slightly higher frequency 

than the other, such as that of the local field potential and the neuron’s intrinsic oscillation. (We consider this 

issue further below in discussion of grid cell models.) 

 

Figure 3 Theta-phase precession of place cell firing. (a) As a rat runs along a linear track, a place cell in the hippocampus 

fires as the animal moves through the firing field (b). The firing rate code for location is also a temporal code (c): spikes 

(ticks) are fired at successively earlier phases of the theta rhythm of the local field potential (blue trace), referred to as 

‘theta-phase precession.’ The theta phase of firing correlates with the distance travelled through the place field (d), even 

when pooled over runs that might be fast or slow. Adapted from (Huxter et al., 2003). 

Importantly, theta phase coding of distance-through-field observed in place cells, and also in grid cells [70] is 

cell-specific. At the same time as place cell X fires at a late phase of pyramidal-layer theta as the rat enters cell 

X’s place field, place cell Y will be firing at an intermediate phase of pyramidal-layer theta in the middle of cell 

Y’s field, and place cell Z will be firing at an early phase of theta as the rat exits cell Y’s place field. Thus, place 

cells firing at later, intermediate and early phases will have firing fields respectively centred ahead of, centred 

on, and centred behind, the rat; the spatial order of firing fields on the track will be present in the temporal order 

of firing within each theta cycle. (Whilst this effect is most clear on a linear track [28, 71], the same pattern can 

also be seen in animals foraging in open environments [72, 73].)  Considerable information, then, exists in the 

potential of individual spatial cells to fire at different phases of the theta cycle. In this issue, Mizuseki and 

Buzsaki [50] argue for a more complex view of oscillations beyond providing synchrony, and consider how 

theta increases information content by reducing redundancy, i.e., by reducing synchrony of firing. They find that 

the spike co-activation of principal cells (i.e., spike synchrony) in the hippocampus and entorhinal cortex is 

reduced under theta states (locomotion and REM sleep), relative to under slow wave sleep and immobility-

associated states. Rather, prominent synchrony is reserved for, and helps to define, the “cell assembly” level of 
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organization which operates at a shorter period than the theta cycle. In this case, the cell assembly refers to those 

co-actively spiking place cells whose place fields occur at similar track locations.  

Head Direction Cells 

Whereas place cells’ activity represents where the animal is regardless of its orientation, Head Direction (HD) 

cells, discovered by Ranck and colleagues [74], provide a representation of allocentric heading independent of 

location. HD cells are found in the dorsal presubiculum [74] and entorhinal cortex [75] but also, it should be 

noted, outside the hippocampal formation, for example, in anterior dorsal thalamic nucleus and retrosplenial 

cortex [see 76]. Each HD cell has a preferred direction corresponding to a compass direction. It fires rapidly 

whenever the animal is facing in the preferred direction and only weakly otherwise (See Figure 2B, where the 

cell’s preferred direction is East-South-East). The full range of directions is represented such that at any time a 

subset of head direction cells will be firing. By monitoring the firing rates of a modest number of cells recorded 

concurrently, the animal’s heading can be reconstructed with great accuracy [77, 78]. When polarising cues are 

held constant, the preferred directions of HD cells are stable, and the angular distance between two cells’ 
preferred directions remains constant. However, preferred tunings of the entire system can be rotated by moving 

prominent visual cues in an otherwise impoverished environment. Changes that affect the directional tuning of 

the HD system also affect the location of place fields. For example, in a cylindrical environment, rotations of a 

single salient cue that induce simultaneous rotation of HD cell tunings also induce similar rotations of place 

field locations. These and other data suggest that place cells rely on directional information from the HD system. 

Consistent with this view, lesioning the HD system disrupts the ability of visual cues to control the orientation 

of place fields within a cylinder [79]. Interestingly, the omnidirectionality of place cell firing also depends upon 

intact HD input. In an open environment, the direction that the rat travels through a given place field (e.g., from 

east to west vs. from west to east) generally makes little difference to the cell’s firing rate [67, 80]. However, 

after lesioning the HD system, place fields become more directional [79].  In general, that spatial representations 

in the hippocampal formation have an allocentric map-like quality likely depends on intact HD function.  

Several studies have examined the issue of sensory control over the HD system [76] For instance, early 

studies considered to what extent one cue set (e.g., “idiothetic” cues to self-motion derived from 

proprioceptive, motor and vestibular sources) might typically predominate over another (e.g., visual)[76, 

81, 82]. Arguably, this question remains unresolved, though a common view is that self-motion cues 

control moment-to-moment firing, with periodic and rapid updating from distal cues at or beyond the 

boundaries of explorable space [76, 83-85]. One approach to this question has been to explore influences 

on HD responses under cue conflict [76], showing that the influence of cues is not fixed by cue type, but 

considerably plastic according to circumstances. For instance, Jeffery and colleagues had previously 

shown interesting plasticity in the sensory control of place field orientations (in effect a by-proxy study of 

the HD system). Place cells increasingly ‘distrust’ a prominent visual landmark if that landmark is 

explicitly shown to be mobile with respect to other cues [86]. In this issue, Knight and colleagues [87] set 

up a conflict between visual cues and idiothetic-plus-background cues, and found that HD cells followed 

the visual cue when  conflicts were small, but ‘compromised’ between the two cue sets when conflicts 

were large. These studies provide important insights into the extent to which the HD system can adapt as 

different directional cues become available. 

Grid Cells 

In 2005, the already very active field of spatial hippocampal research was electrified by the discovery of a new 

class of spatial cells, “grid cells”, by a group led by May-Britt and Edvard Moser [88]. Grid cells we first 

identified in medial entorhinal cortex (MEC) and have since been found in pre- and parasubiculum [89]. Like 

place cells, they fire at specific locations in the environment, but unlike place cells, each grid cell has multiple 

firing fields which tessellate the environment with a strikingly regular triangular pattern (see figure 2C).  

The grid field can be characterized in terms of three properties: scale (determined by the distance between 

adjacent firing rate peaks), orientation (of grid axes relative to some reference direction) and spatial phase (i.e., 

the 2D offset of the grid relative to an external reference point). Grid fields from cells recorded from the same 

site can have widely differing spatial phases, so that they may be offset with respect to one another, even when 

they share the same scale and orientation. 
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As in place cells, the scale tuning of grid cells varies systematically along the dorsal-ventral axis of the 

hippocampal formation, with fields recorded from cells in dorsal MEC being smaller and closer together, while 

fields recorded from ventral MEC are larger and more spread out [88, 90]. This gradient parallels changes in the 

intrinsic temporal properties of the cell membrane that in turn appear to be governed by properties of a 

particular ion-channel (HCN1 [91, 92]).  

Initially, grid cells recorded from the same animal were thought to show the same orientation, and grids 

recorded from the same location in entorhinal cortex were thought to have the same scale [88], but accumulating 

evidence began to suggest that rather than forming a continuum, grid cells might form discrete subsets marked 

by abrupt jumps in scale [93]. The arrangement of grid scales has important consequences for the ability of the 

grid system to encode very large spatial scales [94, 95], and this is explored further in Towse et al this issue 

[96]. Recent evidence from studies involving large numbers of grid cells recorded in the same animal [97] 

shows that grids form modules with distinct combinations of scale and orientation tunings. These are 

anatomically overlapping while still showing an overall tendency for scale to increase in the dorsal-ventral 

direction. Although across the entire population, the distribution of orientations is far from uniformly distributed 

over the ~60 degree range, orientations of grids vary more between- than within modules, suggesting that 

different modules operate somewhat independently. Moser et al.[43], discuss these findings in terms of their 

implications for the underlying mechanisms of grid formation, arguing that they point to the existence of distinct 

sub-populations with dissimilar patterns of inhibitory interconnectivity, and that their independent responses to 

environmental change may have a functional role in driving place cell remapping and the formation of 

distinctive hippocampal codes for different environments.  

The beautiful periodicity of grid fields has attracted widespread attention, and many papers in this issue are 

concerned with grid cells. Several explore how their characteristic firing patterns might be derived and 

maintained, including in different environments [41, 43, 96, 98]. What is the function of grid cells? The 

consensus has developed rapidly since 2005 [88] that grid cells are involved in path integration. By path 

integration we mean the use of self-motion signals to estimate travelled distances and directions, which can in 

turn contribute to the maintenance of estimates of current location. Although the original picture of grid cells 

(e.g., that grid scale is invariant across environments) is being revised [93, 99], these revisions will probably not 

undermine the widely-held view that grid cells subserve path integration. Arguably, the significant change of 

view is the increasing appreciation that grid cells are not always crucial to place cell function and cognitive 

mapping in all situations (as sections below make clear). Rather, their importance to other spatial cells and to 

behaviour may be restricted to those circumstances when path integration is dominant and adaptive. Thus, in 

this issue Poucet and colleagues argue that the self-localising properties of place cells will only be dependent 

upon grid cells when external sensory information is unavailable or degraded, as in the dark [100]. These 

authors present an anatomically-based model whereby the ventral MEC specifically supports navigation in the 

light, while the dorsal MEC, rich in grid cells, supports navigation in the dark.  A synthesis may be that place 

cells and spatial behavior can rely either on self-motion cues or external environmental cues, but that precision, 

stability, and adaptability are maximized by combining signals from both.  

What, then, are the cues in the external environment that the hippocampal formation uses in spatial mapping, 

and how does it use them? One answer to this question is provided by boundary cells.  

Boundary Cells 

Early research on place cells often emphasized that the locational firing patterns were environment-specific; that 

a cell might fire in the north-west of a rectangle, but in a circle, fire at its centre, or not at all [57]. However it 

was later observed, with manipulations affecting only environmental geometry, that place cells typically fired at 

“corresponding” locations in geometrically different environments – places that tended to maintain their 

distance to the nearer walls of each environment [61, 101], see also [102]. This suggested that distances to the 

boundaries of the environment might determine the spatial tunings of place cells, leading to the prediction [53, 

101, 103, 104] that the input to the hippocampus might include cells whose firing rates encoded preferred 

distances to environmental boundaries in specific allocentric directions (in turn determined by the HD system). 

The firing patterns of a given place cell under a variety of geometric manipulations were well modelled as the 
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thresholded sum of a small number of the putative “Boundary Vector Cell” (BVC) inputs [53]. On the basis of 

this computational model, BVCs were predicted to have extended firing fields parallel to the edges of the 

environment and to have additional fields where new barriers were inserted. For example, a given BVC might 

fire whenever a wall or barrier is found ~5cm to the South of the rat; this cell would be expected to fire along 

the Southern perimeter of an enclosed environment and also along the Northern side of a barrier introduced into 

the same environment (see Figure 2D). Cells with such characteristics were subsequently discovered in the 

subiculum [105, 106], medial entorhinal cortex [107, 108] and presubiculum and parasubiculum [89].  In other 

words, boundary cells are found in all the regions of the hippocampal formation outside the hippocampus 

proper.  

BVCs were hypothesized to have a wide range of distance tunings such that a significant proportion would be 

expected to fire at some remove from the environmental boundary. However, initial evidence suggests the large 

majority of boundary cells have firing fields very close to the edges of the environment (i.e., they encode short 

boundary vectors). Currently, the spatial properties of subicular “BVCs” [105, 106], entorhinal “boundary cells” 

[108] entorhinal and presubicular and parasubicular “border cells” [107] appear to show some overlap. It may be 

conservative to regard them as belonging to a common functional category which, to avoid any anatomical 

implication, one could label as “boundary cells”. 

In this issue, Stewart and colleagues [109] further investigate the issue of what constitutes a boundary. They 

show that subicular boundary cells respond to two major types of environmental boundaries: vertical surfaces 

and drop edges. Both present interruptions to the ground plane, but generate very different sensory perceptions. 

Stewart and colleagues show that a majority of boundary cells treat walls and drop edges similarly. For instance, 

a cell exhibiting an extra field in the location predicted by the BVC model in response to an inserted vertical 

barrier, as in Figure 2D, will likely show the predicted extra field in response to a newly-created drop boundary. 

They conclude that the cells they report are specialized to code environmental boundaries and are well described 

by the boundary vector cell model. They also report a subvariant of boundary cells (“boundary-off cells”) which 

clearly look like “inverse” boundary cells (they fire everywhere except where a short-range boundary cell might 

fire). Taken together with interneuron-like boundary cells, these results show that environmental boundaries can 

act in an inhibitory manner, and may provide proof-of-concept for some models of detour behavior and place-

input dependent grid cell formation [110]. 

The existence of boundary cells suggests that cues derived from environmental geometry are among the more 

important sources of external sensory information supporting cognitive mapping in the hippocampal formation. 

That environmental boundaries influence place cell firing has been evident for some time; increasingly we are 

beginning to understand that environmental boundaries influence grid cells too [93, 110, 111]. It is worth briefly 

mentioning, though it is beyond this review’s scope to discuss in detail: 1) the hippocampal formation seems 

particularly necessary for boundary-based, rather than landmark-based, spatial learning in humans [112-114]; 

and 2) boundary-based learning may follow different learning rules than landmark-based learning, although this 

is controversial [112, 113, 115-117].  

Other Spatial Cells 

The discovery of grid cells led to the development of several computational models of grid formation [38, 118, 

119] described at different levels of complexity and detail, but with the common property that grid fields result 

from the summation of three sets of band-like inputs. The firing fields of each set of inputs would resemble 

parallel bands occurring throughout an environment (i.e., stripes) and the orientation of each band would be 

separated by 60 degrees from the other two sets.   

The periodic structure of MEC and parasubicular cells was investigated by Krupic and colleagues using 2D 

Fourier analysis to decompose the spatial firing patterns of each cell into periodic components [120]. Grid cells 

constituted 26% of the cells they recorded (characteristically showing 3 periodic components of similar 

wavelength (scale) orientated a 60 degree intervals), but a further 44% showed other spatially periodic 

responses. These included a subset of cells which could be described in terms of a single periodic component 

(showing a firing field with parallel band-like features, consistent with the models). Yet, across the population 

recorded in an individual animal, cells’ tunings tended to be clustered around a small set of orientations and 
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scales (common to both grid and periodic non-grid cells) suggesting that input to each MEC/parasubicular cell 

might be composed from a common, discrete set of band-like inputs. Grid cells showed more stable periodic 

tunings than other cells and, intriguingly, some cells that manifested a grid-like field in one environment showed 

a less grid-like field in another, again suggesting a link between properties of the environment and the locus of 

grid cell firing. These observations raise the question as to whether grid cells form a distinct class of spatially 

periodic cell, or whether they might constitute an exceptionally-ordered and stable extreme within a continuum 

of cells which might combine periodic inputs at different orientations. In this issue Krupic and colleagues draw 

on these data to present a model which addresses the issue of environmental dependence of grid fields by 

incorporating information about environmental boundaries [109]. 

Conjunctive cells, time cells, object cells 

For completeness, we should also mention a number of classes of cells whose firing properties do not fall neatly 

into the categories discussed above but which may prove to play an important role in the function of the 

hippocampal formation (for example, in integrating different forms of spatial and non-spatial information to 

form new memories). First, we note that many of the spatial cells in the entorhinal cortex show degrees of both 

locational (grid, boundary) and directional (HD) information [75, 121]. Indeed, in tasks that constrain the 

animal’s movement to a set path (for example along a track) hippocampal place cells (normally insensitive to 
direction) often become directional and fire only or principally in one direction [35, 67]. Second, and perhaps 

relatedly, in tasks involving repeated actions along a fixed path where the action must be delayed in time with 

respect to an event or location, a subset of hippocampal pyramidal cells (“time cells”) become attuned to 

specific delays or in some cases jointly signal both time and location/distance along the path [122, 123].  

‘Spatial’ vs ‘Non-spatial’ Pathways? 

In the preceding discussion of spatial cells we have not mentioned the lateral entorhinal cortex (LEC) which 

forms a substantial input to the hippocampal formation. So, what is its role in spatial cognition, if any? The head 

direction signal arriving via the dorsal presubiculum appears to underpin the spatial processing of the entire 

hippocampal formation and it is notable that there are strong projections from the presubiculum to the MEC but 

not to LEC. This alone could suggest that the MEC is more involved in map-like spatial processing than the 

LEC. Furthermore, MEC is preferentially reciprocally connected with the Postrhinal/Parahippocampal cortex, 

strongly implicated in visuospatial processing, while LEC is preferentially reciprocally connected with the 

Perirhinal cortex, strongly implicated in item/object processing. The MEC and LEC projections to the dentate, 

CA fields, and subiculum, and the ensuing projections from those regions in turn, form two broadly parallel 

pathways. As a first approximation these observations seem to imply is that the MEC-related pathway is spatial, 

while the LEC-related pathway is a “non-spatial” or “what?” pathway, perhaps.  

The concept of spatial and non-spatial pathways may be a useful shorthand, but it may also require some 

refinement. In this issue, Knierim and colleagues [124] argue that the spatial MEC vs non-spatial LEC 

dichotomy is too simple, and that the LEC can provide spatial information, but that this is spatial in a different 

sense, using local frames of reference, in contrast to the global frame of reference used by MEC. Interestingly, 

one function of the LEC is to code for the remembered locations of objects [124-126]. 

Hippocampal replay and preplay 

Because place cells fire so consistently at specific locations it is possible to reconstruct an animal’s location 
based on place cell firing [64]. As the animal moves along a given trajectory, place cells fire in a reliable order. 

Remarkably, these spatially constrained trajectories can also be detected in brief bursts of firing that occur when 

the animal is stationary and during quiet wakefulness and sleep - a phenomenon termed “replay” or 

“reactivation” [127-130]. Replay events are synchronized with EEG features (“sharp waves”, “ripples”) and 
may run in either forward or in reverse [131] directions. An individual ‘virtual’ replay trajectory (e.g., place 1 

through to place 10 from the beginning to end of a track) takes one or two orders of magnitude less time than 

that required to move through the actual trajectory in physical space (say a 2 metre track). However, it should be 

noted that such ‘compression’ of a longer trajectory is not unique to sharp wave/ripple replay events. Longer 

trajectories are also effectively seen in a single theta cycle (~125ms duration in a rat) due to the phenomenon of 

theta phase precession (see discussion above). A single theta cycle recapitulates in a temporal sequence the 
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spatial sequence of locations centred behind, on, and then ahead of, the moving animal. (These spatial sequences 

occur for space 'nearby' the rat and will be shorter than whole-track trajectories.) Such temporal compression 

phenomena render learning spatial sequences more amenable to the associative rules underlying long-term 

synaptic plasticity, such as pre-before-postsynaptic neuron spiking within relatively short time windows (say up 

to ~50ms). Consonant with plasticity-enhancing temporal firing sequences, the standard functional interpretation 

of replay events is that they reinstantiate activity that occurred during recent behaviour, and support a 

consolidation function in learning and memory. Rehearsing routes offline might aid the formation of 

behaviourally-valuable spatial maps, or aid in the transfer of rapidly-acquired hippocampal spatial memories to 

brain regions outside the hippocampus (systems consolidation; see [132, 133] for reviews).  

A recent, and very welcome, development in the replay literature has been to incorporate behavioural learning. 

In this issue, for instance, Csicsvari and Dupret [134] review their elegant work in a ‘cheeseboard’ task 
involving new spatial goals each day,  in which they show that sharp wave/ripple replay of goal locations in 

sleep predicts subsequent memory performance. Csicsvari and Dupret [134] survey the replay literature as a 

whole to emphasise the importance of replay events during waking behavior as well as sleep, and argue that 

replay events stabilize new cognitive maps and adaptive spatial memories. Their review also considers functions 

for replay that go beyond consolidation in the simplest sense. For instance, a recent study has shown that sharp 

wave/ripple reactivation sequences in the awake rat often predict the future trajectory of the rat towards a 

desired goal [135]. In this issue, Dragoi and Tonegawa [136] discuss “preplay”, a related phenomenon [137, 

138], in which cell assemblies fire in a constrained sequence in advance of any relevant spatial experience. They 

argue that preplay suggests a degree of preconfiguration within the hippocampal spatial network, and that 

patterns of place cell activity during novel spatial experiences may involve selection from among a set of pre-

existing cell assemblies. These intriguing findings are potentially challenging for a straightforward experience-

consolidation account of replay. However they are consistent with earlier observations that forward replay 

events tend to precede the corresponding actions [139] and with the idea that the hippocampus may be involved 

in planning future behaviour as well as in representing the present and storing past experiences [140]. 

Current Themes 

The relationship between grid cells, HD cells, place cells, and boundary cells 

An important theme of current work is to understand the interactions between the various classes of spatial cell 

in the hippocampal formation; where do these signals encoding location, heading and environmental geometry 

arise and how are they combined? The standard view of the relationship between grid cells and place cells has 

been that a given place cell is formed by a linear summation of different grid cells; many studies have modeled 

this relationship [37, 141, 142]. A useful feature of the grid cell code is that, despite its periodicity at the level of 

individual cells, a suitable combination of grids with different scales can provide a highly specific code for a 

given location, since their spatial phases only coincide rarely; linear summation of such grids would thus lead to 

the highly circumscribed, aperiodic firing characteristic of place cells. 

At the time of their discovery there were strong a priori grounds to regard grid cells as key causal contributors 

to the locational signal in hippocampus: grid cells were first discovered in superficial layers of MEC which form 

the major spatial input to the hippocampus (within which, of the spatial cells described above, only place cells 

are encountered). Indeed, it was this well established anatomical relationship that had encouraged investigation 

of the spatial properties of MEC cells [143]. However as noted by Witter [20], the traditional hierarchical view 

of the system is giving way to a more sophisticated understanding as spatial cells with similar characteristics are 

discovered elsewhere in the hippocampal formation.  

Recent work ([144] reviewed in [143]) uses a new optogenetic technique to directly investigate the spatial 

functional properties of cells immediately downstream of the hippocampus. Viral transduction is used to label 

entorhinal cells afferent to place cells at a hippocampal injection site. The infected entorhinal cells express 

channelrhodopsin, such that they can be selectively activated by a specific wavelength of laser light. Spatial 

properties of the light-activated entorhinal cells are identified using conventional extracellular recording 
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techniques and their connectivity with hippocampal target cells is inferred from the latency with which 

postsynaptic spikes are observed in the hippocampus following light stimulation of MEC. The results indicate 

that all classes of spatial cell (i.e., grid, HD and boundary cells) provide input to hippocampal neurons. 

These findings confirm that, in adult animals, grid cells provide an important input to hippocampus. However it 

is also clear that other spatial cells contribute to this pathway. Thus, to the extent that grid cells do play a role in 

governing the locational signal in the hippocampus proper, they may not do so alone. Indeed, there is increasing 

evidence to suggest that the other spatial inputs to the hippocampus may be equally fundamental. 

First, recent work ([145, 146] reviewed by Wills et al in the current issue [147]) has begun to address the 

development of spatial properties in different classes of spatial cell in the hippocampal formation. Wills et al 

provide a wide-ranging review of the development of spatial representation and behavior in rodents, posing 

several searching questions. For example, do hippocampal place cells’ spatial properties depend on the pre-

existence of grid cells in the entorhinal cortex? In fact, the evidence indicates that place cells are already 

established before stable grid fields are apparent in MEC, suggesting that place cells must receive other, earlier, 

spatial inputs, possibly from HD and boundary cells. 

Second, inactivation of the medial septum strongly disrupts grid cell firing patterns, while the properties of place 

cells and head direction cells (and seemingly boundary cells) are relatively unperturbed [148]. Interestingly, 

inactivation of the hippocampus also makes grid cells lose their gridness [149]. To what extent this disruption is 

a specific consequence of the removal of place cell locational signals remains to be shown, but it is clearly 

evidence, if anything, in favour of the dependence of grid cells upon place cell firing. 

In this issue, Krupic and colleagues [110] propose a speculative model of grid cell formation in which grid cell 

properties depend upon place-like signalling and upon inhibition from environmental boundaries; in other 

words, grid cells represent a form of place cell output. Another theoretical approach [29, 150] has been to 

assume that boundary cells determine the location and shape of place fields in relation to environmental 

boundaries [53], and that place cells then anchor grid cells to the environment. In this model, therefore, the 

relationship between environmental boundaries and grid cells is indirect.  An alternative view of boundary cells 

is that they directly anchor grid cells to environmental boundaries [107, 111]. One of the reasons the boundary-

to-grid relationship is important is that pure path integration processes rapidly accumulate error. External 

environmental boundaries potentially provide a valuable error-correction mechanism. 

Modelling mechanisms of spatial representation 

Attractor models of spatial representation 

The spatial responses of individual neurons in the hippocampal formation potentially provide the basis for a 

neural code for variables such as location, heading and speed. Computational models are required to understand 

the way in which these spatial codes might be derived from more fundamental signals and how they interact 

with each other and with non-spatial information to form spatial memories and to guide complex spatial 

behaviour. The ordered anatomy of the hippocampus made it an early target for computational modelling and 

there was  already an extensive literature, pre-dating the discovery of grid cells [88], addressing the mechanisms 

of spatial representation and memory in the hippocampus. However, the discovery of detailed and ordered 

spatial code in the grid cells of the MEC added important new impetus [151]. While it is beyond the scope of the 

current article to review the earlier modelling work in detail, we outline below some key concepts (continuous 

attractor networks, ring attractors) derived from early modelling approaches are necessary to follow current 

research in the area. 

One of the most important insights originates with Marr [14], who pointed out that the recurrent collateral 

connections of the CA3 field provided an ideal substrate for an associative memory system, capable of storing 

patterns of cortical input and recovering such memories from degraded cues (pattern completion). CA3 

pyramidal cells project to CA1 (Schaffer collaterals, the feedforward projection), but also to themselves (the 

recurrent collaterals). Marr assumed synaptic plasticity between members of the set of CA3 neurons that fired 

together during a particular event (“cells that fire together, wire together”). Under this assumption, the initial 
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firing of only some members of that set (corresponding to the presentation of partial cues) would subsequently 

tend to trigger the firing of the other members of that set, such that eventually all the cells corresponding to the 

original event fired (corresponding to retrieval of the entire event).Thus, the network will tend to evolve toward 

one of these stable stored states, known as “attractors”. A special type of attractor is a continuous attractor, in 
which the stable states are not discrete but form a continuous manifold – that is, depending on its input (or 

potentially its internal connectivity) the network can move through a family of such stable states without 

encountering any “barrier” – it is argued (e.g., in  [37, 77]) that this type of representation is ideal for the 

representation of continuous variables (such as location and direction). 

To date, one of the most promising applications of continuous attractors is in modelling the head direction 

system [77]. Here, the periodicity of directional information, combined with the stability of the relative HD 

tunings of different cells under cue rotation are suggestive of a specific type of continuous attractor mechanism, 

known as a ring attractor. Neurons representing different headings can be visualized as if organized into a ring 

in which the strength of connections between any pair of neurons is a function of the angular difference between 

their preferred directions. With appropriately chosen symmetrical connections, short-range excitation establishes 

a stable “bump” of activity at a particular location in the ring, representing the current heading. Because the 

attractor is continuous, the bump can be moved smoothly around the ring by asymmetric interactions whose 

strength relative to the symmetric interactions reflects the angular velocity of the head. The ring attractor has 

become the dominant model of the HD system and related periodic continuous attractors are incorporated into a 

number of models of the grid system (see below).  

In an empirical investigation in this issue, Knight et al [87] set up a conflict between different sets of 

cues, and tested predictions derived from a ring attractor model against those of an alternative Bayesian 

cue integration model. The results were consistent with attractor models when conflicts were small 

(‘follow visual cue’), and with Bayesian cue integration models when conflicts were large (‘foll ow 

weighted average of the two cue sets’). Importantly, experience altered the responses. In Knight et al and 
the accompanying computational study [152] the authors suggest that the results can be explained by 

incorporating short-term and long-term plasticity effects into a ring attractor network. Interestingly, these 

results in HD cells follow similar findings in the orientation of the place cell represen tation [153].   

Models of grid field formation 

Much of the recent theoretical work on spatial representation has focused on the mechanism of grid field 

formation. Early models fell into two distinct categories, operating at different levels of description: 

One type of model stressed the role of intercellular interactions in establishing the spatial pattern of grid cell 

firing and ensuring its subsequent stability by forming a continuous attractor network (CAN). CAN models had 

originally been proposed to explain place field firing [154, 155]. In these models, a “bump” of activity, this time 

representing the animal’s 2D location, is shifted by an asymmetric input determined by the animal’s running 
speed. With the inclusion of periodic boundary conditions (analogous to those seen in ring attractors) [154] such 

mechanisms might account for the regularity and stability of grid fields [156, 157].  

With appropriately chosen lateral connections (forming a Mexican-hat function; local connections excite 

neighbouring cells while more distant connections are weakly inhibitory) a topographically-organised 

population would spontaneously form a stable triangular grid-like pattern of activity across the cortex (the 

mechanisms of this self-organising process are similar to those identified by Alan Turing in a seminal paper on 

the chemical basis of morphogenesis in biology [158] so this system is sometimes called a “Turing layer”). As 

in the earlier place cell models, this grid-like pattern could then be smoothly shifted across the cortical surface 

driven by velocity modulated input, with the result that the firing of any given neuron would peak at a grid of 

spatial locations [156]. One difficulty with this initial suggestion was that it suggests a cortical patterning of 

activity (neighbouring cells share similar spatial phases), which is not observed experimentally. However this 

does not rule out the possibility that a continuous attractor could be established using non-local lateral 

connectivity. One proposal is that the appropriate non-local connectivity could be established by early post-natal 

learning [37]. The idea is that a “hard-wired” Turing layer outside MEC provides a training input to the mEC. 

This patterned input enforces a periodic structure on the developing spatial representation in MEC. Competitive 
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interactions between mEC cells ensure that different neurons come to represent different spatial phases and 

Hebbian learning between MEC neurons then establishes long-range coupling between neurons sharing similar 

inputs from the Turing layer as required for continuous attractor dynamics. 

While CAN models aim to explain the form of grid fields in terms of grid cell interactions, another type of 

model focuses on temporal properties of grid and place cell firing and the relationship between the timing of 

action potentials and the ongoing theta oscillation that dominates the hippocampal formation, especially during 

active motion. Several experimental phenomena link theta to functional properties of spatial cells in the 

hippocampal formation including spatial representation, learning and memory. The most salient is the theta 

phase precession phenomenon [28, 36]. Since its discovery in place cells it had been speculated that spatial 

localisation of action potentials might result from interference between theta oscillations in the local field 

potential and intrinsic oscillations within each place cell. Because the theta frequency is linearly dependent on 

running speed, the resulting “beating” interference could produce localised fields. However, this beating activity 

would be expected to result in spatially periodic fields, in contrast to the typically aperiodic character of 

hippocampal place fields [159]. The discovery of (periodic) grid cells, naturally reinvigorated interest in 

oscillatory interference; in order to account for the regularity of grid cells 2D fields, they would require input 

from multiple velocity controlled oscillators, each modulated by movement in a particular grid direction (i.e., at 

60 degree intervals) [29]. 

The observation of grid cells had inspired two distinct computational accounts, and in turn the models’ 
predictions stimulated a burst of experimental research. In the last five years remarkable technical advances 

allowed researchers to record membrane potentials from isolated cells in behaving animals for the first time 

[160, 161]. Oscillatory interference (OI) models received some support from a pioneering investigation of 

intracellular dynamics of place cells which showed the predicted interference of intrinsic oscillations in the theta 

band with those of the local field potential [160]. However results from a similar study in grid cells were more 

challenging for the OI account: grid fields were found to coincide with slow, ramping depolarisations [162], 

which it was argued were more consistent with the collective activity of a continuous attractor. So while spike 

timing in grid cells and place cells alike appeared to depend critically on intracellular theta, the signal driving 

the lattice-like location of grid fields appeared to have a different origin. CAN models appeared more consistent 

with the observed ramping depolarisations, but did not address spike timing phenomena. By contrast, early OI-

models regarded theta phase precession as an essential element in the formation of grid fields, but did not 

simulate intercellular interactions, while noting that they might play a part in maintaining the stability of spatial 

responses across the population as a whole [38].  

In the current issue [162] several authors point out that CAN and OI models are not incompatible and that a 

hybrid model which incorporates both mechanisms would address intercellular interactions and temporal 

properties simultaneously [98, 163]. Indeed, Blair and colleagues [41] put forward one such model in which 

populations of interconnected theta cells form ring attractors within which the phases of theta bursts are 

modulated by the velocity of movement. The joint activity of these cells constitutes a synchrony code for 

location and, when they converge on a grid cell, both spatial periodicity and temporal properties are captured. 

More generally, recent studies investigating the part played by intracellular dynamics and temporal properties in 

generating and constraining spatial signals have brought a new, finer focus to models which are specified at 

increasingly detailed level. Hasselmo [42] investigates the phenomenon of theta-phase skipping, wherein the 

activity of  distinct subgroups of grid cells (and interneurons) alternates between theta cycles. The model 

provides a new network-level explanation of periodic spatial firing and theta phase-skipping based on an OI like 

mechanism and dependent upon cells’ intrinsic resonance, connecting with earlier work linking resonance to the 
spatial scale of grid fields [91]. Interestingly the model provides an interference based explanation for spatial 

periodicity even in cells with low frequency resonance (corresponding to slow, sub-theta band intrinisic 

oscillations as reported in bats and humans [164-166]). 

Continuous attractor and oscillatory interference mechanisms provide some insight into how cellular and sub-

cellular interactions could give rise to the remarkable regularity of grid fields, but they do not explain how the 

observed range of grid cells might come into existence and, in particular, how the distribution of grid cell 
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tunings (scales, orientations) might emerge in a population of cells. Another strand of modelling work has 

stressed self-organizing processes that could underlie the development of network-level attractors and the 

emergence of specific tunings of grid cells. Grossberg and Pilly in this issue [167] review recent work which 

develops these themes, again exploiting velocity-driven ring attractor mechanisms, but focusing on self-

organizing principles to provide an account for the formation of grid fields based on band-like inputs [38, 120], 

the selection of particular grid scales and the development of grid modules. Linking functional, anatomical 

observations of grid cells to their computational properties, Brecht and colleagues [168] address the origin of 

grid field periodicity in a very different way by raising the intriguing hypothesis that it may arise from an 

isomorphic hexagonal organization of calbindin-positive patches in medial entorhinal cortex.   

To date, most modelling work has naturally been concerned with mechanisms underlying the settled periodicity 

of grid fields in fixed environments, but there is growing evidence that grid fields, and in particular their scales, 

orientations and angular symmetry are sensitive to geometric change [93] environmental novelty [99] and 

behavioural factors [111]. Ultimately grid cell models will need to accommodate these findings. Towse and 

colleagues[96] investigate the idea that the expansion in grid scale observed when animals encounter new 

environments may be explained as an optimal response to spatial uncertainty: minimizing the effects of spatial 

inconsistency between the locations represented by different modules of grid cells. 

The grid cell phenomenon may have wider implications for neuroscience. The strikingly periodic representation 

of non-periodic variables (2D spatial location) is as yet unparalleled elsewhere in the nervous system.  This type 

of code has some powerful and distinctive computational properties [94-96, 169]. In several current models, 

periodicity is seen as a robust property of a dynamic continuous attractor network, which may have some 

functional value in forming a coherent and stable population response in the face of diverse multimodal inputs 

of varying reliability. In particular, periodicity means that grid cells can form a continuous and isotropic 

representation of space while extending over an arbitrary interval. It seems possible that such properties may 

have applications to other continuous variables, and one wonders whether non-spatial “grids” may be detected 
elsewhere in the brain. 

Novel methods and increasing integration 

Understanding of the detailed functional properties of the hippocampal formation has benefitted greatly from 

recent technical advances which have allowed manipulation and measurement of cellular activity at an 

unprecedentedly microscopic resolution. Recording neural activity in awake behaving animals is necessary in 

order to expose the spatial correlates of activity in the hippocampal formation, but until fairly recently this was 

only possible using extracellular techniques where the location of the electrodes can only be coarsely estimated 

through (post-mortem) histology. Now, however, whole cell recording techniques can be used in-vivo to isolate 

and target identifiable cells with specific anatomical and electrophysiological characteristics and can also be 

carried out in awake behaving, and even freely moving, animals [170, 171]. Drawing on an approach first used 

to facilitate human neuroimaging studies of spatial behaviour, virtual reality can be used to present realistic 

visual-spatial cues as an experimental animal runs on a rollerball [172, 173]. This allows for complex spatial 

behaviours (and, potentially, drastic environmental manipulations) while maintaining the stability of the head in 

the recording apparatus Studies combining VR with intracellular electrophysiology are generating new insights 

into the detailed anatomy and subcellular structure of spatial representation in the hippocampal formation [160, 

162, 163]. Such methods can in principle be combined with optical imaging and microscopy to resolve 

correlates of subcellular activity at the level of individual dendrites and synapses[174]. This will allow 

characterization of physical growth processes involved in learning and memory. 

Another very important technical advance has been the development of optogenetics. This exciting technique 

[175] permits neurons to be selectively labelled  and then reversibly activated or inactivated using laser 

application of specific wavelengths of light. As noted earlier, the technique is already being applied to the 

characterization of functional connections within the hippocampal formation [143], but it opens up many more 

possibilities for research into the causal role of different parts of the hippocampal formation in supporting 

specific spatial behaviours and memories. Work by Tonegawa and colleagues [176] indicates that optogenetics 

may be used to selectively label and later reactivate the sparse ensemble of hippocampal neurons involved in the 
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encoding of a specific fear memory, eliciting “freezing” behaviour (normally specific to the spatial context in 

which it was acquired) at a new environment. There is great potential to build on this approach in understanding 

the basis for spatial and episodic memory (or its putative analogue in animals, ‘episodic-like’ memory [177]). 

Our growing understanding of spatial representations in the hippocampal formation should make it possible to 

target and manipulate specific spatial-context specific memories and behaviours, and show how different cell 

types, ensembles and brain structures are causally involved in episodic encoding, storage and retrieval. 

Spatial representation in non-rodent species 

Most of our current understanding of the neuronal representations of space in the hippocampal formation is 

based on experiments in rats and mice. Cells with spatial properties corresponding to those of place cells, head 

direction cells and grid cells have now all been reported in primates [178-180]. However, methods established in 

rodents for extracellular recording during free movement around an enclosure or along a track are not practical 

in primates. As a result these studies tend to produce sparser data which makes the unambiguous 

characterization of detailed spatial correlates of spiking activity and intercellular interactions much more 

difficult. There may also be significant differences in the forms of sensory information available to different 

mammalian groups. For instance, primates can perform a lot of useful spatial exploration purely visually, using 

eye movements as an alternative to locomotion. This has implications for primate processing based upon ‘spatial 
view’ [180, 181 ]. 

A more recent suggestion of a species difference concerns theta, and thus, potentially, self-motion processing. In 

rats and mice, active navigation is often associated with a strong theta oscillation, a phenomenon linked to 

spatial representation through the phase precession effect and theoretically important in a class of models of grid 

cell formation. However, grid cells can be identified in bats in the absence of such oscillations [182], but see 

also [183]. It will be important to establish cross-species similarities and differences in the relationship between 

locomotion speed and theta. One way to achieve this will be to compare theta oscillations across different 

species in similar circumstances, for example comparing theta power during navigation in virtual reality in mice 

[173] and in humans [44, 166, 184].  

Human spatial cognition: functions of the hippocampal formation and wider navigation network 

One of the central motivations for animal research on the hippocampal formation is to shed light on its function 

in the human brain. Although this issue focuses on the spatial functions of the system, the hippocampus has a 

more general role in memory. For example, atrophy in the hippocampal formation is often an early feature in the 

progression of Alzheimer’s Disease [185], and patients with damaged hippocampi often have difficulty in 

forming new, enduring memories of personally-experienced events [186, 187] .  This general episodic amnesia 

coexists with marked deficits in spatial orientation and navigation [188]. Consistent with the omnidirectional 

nature of place cell firing in the open field in rats and humans [67, 189] the hippocampus particularly supports 

view-independent and allocentric spatial memory [190, 191]. Spatial function is also dependent on those medial 

temporal and parietal regions through which the hippocampus receives its input: damage to the posterior part of 

the parahippocampal gyrus (known as parahippocampal cortex, PHC) leading to topographical amnesia, a 

specific impairment of spatial memory and behaviour [192], while damage to the retrosplenial/medial parietal 

region also leads to navigational problems [193-195]. 

Understanding the basis of spatial cognition in the intact human brain has been advanced through functional 

neuroimaging. Techniques such as functional Magnetic Resonance Imaging (fMRI) have limited temporal and 

spatial resolution, but do allow for the imaging of the whole brain, so that the role of different structures can be 

investigated on the millimeter scale. 

Responses to static visual stimuli (spatial scenes including images of rooms, buildings, landscapes and so on) 

have proved revealing with regions of the ventral, medial parietal and lateral occipital neocortex found to be 

selectively responsive to different forms of visual stimulus. An area of PHC lying close to the posterior 

collateral sulcus (the “parahippocampal place area” [196]) is characteristically active in the processing of static 

spatial scenes and, for example,  in sections of a movie which depict places [197]. Scene selective activity is 

also observed on the lateral surface of the occipital cortex and on the medial surface in the region of 
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retrosplenial cortex (RSC), often extending into adjacent medial parietal, medial temporal and posterior parietal 

cortex. Although these regions were initially identified in studies of high-level visual processing, early evidence 

indicated that they were specifically involved in spatial processing. For example, the PPA is sensitive to 

spatially organized scenes but not to visually similar scenes in which the same elements have been scrambled 

[196]. Interestingly, although the PPA is normally unresponsive to images of isolated objects, it is more active 

for “landmark” objects which have previously been seen at navigationally significant locations [198].  

Neuroimaging investigations of spatial cognition have also explored more active spatial tasks, implicating the 

hippocampal formation, consistent with the cell-level literature outlined above. For example, activity during a 

wayfinding task, which requires participants to find new accurate routes within a familiar virtual environment, 

can be compared to the activity seen during a task where participants follow a visible trail. Here, activity in the 

hippocampus is associated with accurate navigation, with more accurate navigators showing greater 

hippocampal activity during a wayfinding task [199, 200]. These studies characteristically also show navigation-

related activation encompassing posterior and medial regions (including RSC) and parahippocampal cortex 

(including PPA). It has been argued that this “core network”, centred on the hippocampus, is not unique to 

navigation but is also active during tasks that involve spatial imagery (for example, imagining another person’s 
point of view, retrieving episodic memories) and thus subserving a more general “self-projection” or “scene 
construction” function [12, 201-205].  

Early fMRI studies focused on univariate task comparisons, which reveal regions that are more active during 

one task than another, and on correlations between behaviour and voxel-level neural activity.  More recent 

advanced techniques such as fMR-adaptation and multi-voxel pattern analysis now permit the computational 

properties of to be probed in more detail. For example, one study showed that scene categories (for example, 

beach, building) can be decoded from patterns of activity in the PPA in response to static images [206]. One 

promising avenue for current research is to determine whether spatial parameters such as heading and location 

can be decoded from the activity within different parts of the core spatial network. Epstein and Vass [207] 

review some recent work from the Epstein lab using these techniques to investigate the complementary 

functional roles of regions within- and beyond the hippocampal formation. For example, they show that the 

retrosplenial/medial parietal region might encode information about locations and directions within well-

learned, familiar environments. 

The noninvasive character of fMRI makes it an ideal technique for investigating function in healthy human 

participants, but the spatial resolution of the technique is limited to (at best) around 1mm, making it difficult to 

directly investigate the cell-level properties which have been so critical to the study of spatial representation in 

animals. However, the organization of the grid cell system may make some of these properties accessible at the 

macroscopic level, rather as molecular structures are revealed in analyses of macroscopic properties of crystals. 

Preliminary evidence came from a study by Doeller and colleagues [208]. They investigated the grid system in 

humans using fMRI by analyzing activity during a virtual spatial memory task in which participants explored a 

circular arena locating objects. In entorhinal cortex the degree of activation was modulated by the direction of 

movement, with peak activity observed when participants moved parallel to six axes separated by 60 degrees, 

similar to the axes of grid fields which appear to be clustered throughout entorhinal cortex in rats [93, 97]. An 

advantage of fMRI over cellular electrophysiology is that it allows activity to be imaged across the whole brain. 

Interestingly, for instance, the six-fold directional signature suggestive of grid system activity was seen beyond 

the hippocampal formation in a network typically associated with autobiographical memory retrieval. 

More direct evidence of spatial representation in the human hippocampal formation comes from studies 

involving intracranial electrophysiology. The implantation of depth or surface electrodes is sometimes required 

prior to surgery for the treatment of pharmacologically intractable epilepsy in order to identify the origin of the 

seizure. When micro-electrodes are implanted within the brain it is possible to record not only EEG but also the 

spiking activity of individual neurons as participants undertake spatial tasks. Place responsive cells with 

properties that resemble rats’ place cells have been found in the human hippocampal formation [189]. A 

proportion of cells was also found to be modulated according to the current goal in a virtual navigation task, and 

some cells were sensitive to specific objects or views.  In a separate virtual navigation study [209] cells in 
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entorhinal cortex (termed “Path Cells”) showed spatially distributed firing patterns which were modulated by 
the direction of movement (clockwise or anticlockwise).  Excitingly, Jacobs and colleagues have recently 

reported cells with grid-like firing in humans during virtual navigation [165]. While many characteristics of 

spatial cells seen in animals have been observed in humans, these studies also point up potential differences. For 

instance, in this issue, Jacobs [44] argues that the dominant oscillation in humans is at a lower frequency than in 

rodents. A similar view has also been argued by Watrous and colleagues [166], who find that human 

hippocampal rhythmicity is centered around ∼3 Hz while that of rats is centered around ∼8 Hz.  

If something akin to the rodent grid system exists in humans, it will be interesting to see to what extent its 

properties (such as scale, orientation coherence and graded topographical organisation and modularity) are 

preserved. Practical limitations to electrophysiology in humans may make detailed population level analyses 

impractical, but the unique macroscopic properties of the grid system may make them accessible to fMRI [208]. 

More generally, we might expect human neuroimaging, with its larger scope, to contribute further to the bigger 

picture, helping to reveal the modular and topographical structure, macroscopic functions and interactions of 

spatial systems within and beyond the hippocampal formation. It seems likely that, as with other classes of 

spatial cell [165, 189] boundary cells may exist in humans, but this remains to be demonstrated. Establishing the 

existence and properties of boundary, geometry and distance related processing in humans is a potential target 

for future neuroimaging research [113, 114], where it may make contact with the growing literature which 

addresses related processes from the standpoint of human and computer vision [206, 207, 210-212]. 

Overall, results from human neuropsychology, neuroimaging and electrophysiology strongly suggest an 

evolutionary continuity spanning mammalian species and implicating the hippocampal formation and its cortical 

inputs in allocentric spatial processing in rodents, primates, and humans alike.  

Conclusions 

 

The study of spatial cognition and the function of the hippocampal formation is proving to be a particularly 

successful example of integrative neuroscience. It is a field in which we can point to substantive empirical and 

theoretical links at every stage between the most elemental mechanisms and their most macroscopic 

manifestations in behaviour and cognition. What is the secret of this successful integration? First, the critical 

central phenomena, the observation and characterisation of the spatial cells of the hippocampal formation, 

provide a well-established and theoretically-grounded coupling of neural firing to behaviour [54, 74, 88, 106-

108]. Second, the field benefits from a solid foundation in anatomy [16, 213]. Third, there is an extensive, solid 

literature connecting anatomy to learning, memory and behaviour [17, 214]. Fourth spatial neuroscience has an 

unusually mature, quantitative and mechanistic theoretical basis in computational modelling [14, 37, 38, 77, 84, 

94, 119, 154, 215] which acts to connect empirical phenomena at one level to those at another and to generate 

new testable predictions. Perhaps most importantly of all, in the analysis of the brain basis of complex 

behaviour, the field of spatial cognition benefits from a focus on functions which appear to be largely preserved 

across vertebrate species including humans. Insights with their bases in the fundamental neuroscience of the 

hippocampal formation in animals have proven to generalise to the mechanisms of human cognition in 

demanding and naturalistic tasks such as navigation. These foundations have provided the theoretical and 

empirical basis for targeted and connected investigations of spatial cognition ranging from the level of 

molecular biology and genetics to the behaviour and brain activity of entire organisms including humans. 

If anything, the future looks even more exciting than the past: the combination of well-established techniques 

such as single unit recording with powerful new approaches in optical imaging, optogenetics, intracellular 

electrophysiology and human neuroimaging should lead to even stronger links between molecular, anatomical, 

neural, systems, behavioural and cognitive neuroscience. In turn, this process is already driving new discoveries, 

invigorating the field with fresh questions which will continue to contribute, we believe, not just to a deeper 

understanding of spatial cognition, but toward integrated theories of the mechanisms of learning, memory and 

neural representation more generally.  
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