
promoting access to White Rose research papers 

   

White Rose Research Online 
eprints@whiterose.ac.uk 

 

 
 

Universities of Leeds, Sheffield and York 
http://eprints.whiterose.ac.uk/ 

 

 
 
This is an author produced version of a paper published in Journal of Rheology. 
 
White Rose Research Online URL for this paper: 
 
http://eprints.whiterose.ac.uk/78378/ 
 

 
 
Paper: 
Das, C, Read, DJ, Auhl, D, Kapnistos, M, den Doelder, J, Vittorias, I and McLeish, 
TCB (2014) Numerical prediction of nonlinear rheology of branched polymer 
melts. Journal of Rheology, 58 (3). 737 - 757 (21). 

 

http://dx.doi.org/10.1122/1.4869485 

 

http://eprints.whiterose.ac.uk/78378/
http://dx.doi.org/10.1122/1.4869485


Numerical prediction of non-linear rheology of branched polymer melts

Chinmay Das,1, a) Daniel J. Read,2, b) Dietmar Auhl,3, c) Michael Kapnistos,4, d) Jaap den

Doelder,5, e) Iakovos Vittorias,6, f) and Tom C.B. McLeish7, g)

1)School of Physics and Astronomy, University of Leeds, Leeds, LS2 9JT,

UK
2)Department of Applied Mathematics, University of Leeds, Leeds, LS2 9JT,

UK
3)Faculty of Humanities and Sciences, Maastricht University, P.O. Box 616,

6200 MD Maastricht, Netherlands
4)Plastika Kritis S.A., P.O.Box 1093, GR 711 10 Iraklion, Crete,

Greece
5)Dow Benelux B.V., Performance Plastics Materials Science, P.O. Box 48,

4530 AA, Terneuzen, Netherlands
6)Bassel Polyolefine GmbH, LyondellBasell, R&D Polymer Physics and

Characterization, Industriepark Hoechst, D-65926 Frankfurt am Main,

Germany
7)Departments of Physics and Chemistry, Durham University, Durham DH1 3LE,

UK

(Dated: 14 March 2014)

In a recent short communication (Read et al., Science, 333, 1871, 2011), we showed
that a computational scheme can describe the non-linear flow properties for a series of
industrial low-density polyethylene (LDPE) resins starting from the molecular archi-
tecture. The molecular architecture itself is determined by fitting parameters of a re-
action kinetics model to average structural information obtained from gel-permeation
chromatography and light scattering. Flow responses of these molecules in transient
uniaxial extension and shear are calculated by mapping the stretch and orientation
dynamics of the segments within the molecules to effective pom-pom modes. In this
paper, we provide the details of the computational scheme and present additional
results on a LDPE and a high-density polyethylene (HDPE) resin to illustrate the
dependence of segmental maximum stretch variables on the flow rate.
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I. INTRODUCTION

Predicting the flow properties of entangled branched polymer melts from their molecular
structure remains one of the hard problems of polymer physics. It also attracts, understand-
ably, considerable industrial interest. The very large separation of the relevant relaxation
timescales renders traditional molecular simulations like molecular dynamics or Monte Carlo
of little use for industrial polymer resins. Similarly, extensions of liquid state theories to pre-
dict the flow properties have had limited success. However, in the last decade, considerable
success has been found in the case of linear rheology by using the phenomenological relax-
ation mechanisms of extended tube theory (Doi and Edwards, 1986; de Gennes, 1971) to
follow numerically the relaxation of a set of representative molecules defined at the segment
level (Larson, 2001; Park et al., 2005; Das et al., 2006a). These ‘hierarchical’ relaxation
algorithms work by using a faithful representation of the reaction chemistry to generate an
ensemble of molecules in-silico. To probe at the experimentally relevant timescale, a de-
scription of the molecules at the level of entanglement segments suffices. After a small step
strain, coupled phenomenological rules give the time relaxation of stress carrying segments at
discrete times. The visco-elastic moduli are then calculated by assigning the weights calcu-
lated during the previous step to the set of Maxwell modes defined at those quasi-continuous
times. This approach has met with considerable success for a wide variety of both model and
industrial resins, despite requiring only two chief fitting parameters for each polymer chem-
istry (the chemistry-dependent entanglement molar mass Me and the entanglement time τe).
In addition, two more chemistry-independent, dimensionless, order-one parameters, related
to the dynamic tube dilation through constraint release and the branch-point hop size, are
required.

In this paper, we describe an extension of such a computational scheme for predict-
ing the non-linear flow properties of generic branched polymer melt. The linear rheology
is calculated from a set of Maxwell modes, with the weights and relaxation times of the
Maxwell modes computed from following the relaxation of the representative molecules in
time. Correspondingly, we calculate the non-linear rheological response from a set of pom-
pom modes (McLeish and Larson, 1998), with the appropriate parameters of these pom-pom
modes computed from the relaxation after a small step strain. We highlight here the four
non-trivial aspects of this work at the very outset: Firstly, multimode pom-pom equations
(Inkson et al., 1999) frequently have been used to fit the nonlinear rheological response of
branched polymers - but we are aiming for a priori prediction and not a fit of experimental
data in this work. Thus, the priority variables and the relaxation times appearing in the
pom-pom equations are endowed with a physical meaning from the topological structure
and stress relaxation time-scales. Secondly, to predict the linear rheology correctly, one uses
two sets of Maxwell modes - one for the stress relaxed by the chains and another for the
stress carried by the tube constraints themselves. We extend the use of pom-pom modes
in a manner that is consistent with this constraint release picture. Thirdly, the geometric
concept of priority variable (Bick and McLeish, 1996) has been used in the literature to
assign the maximum stretch of segments in a branched molecule. But, as we show in this
work, one needs to modify the “bare” geometric priority so that it becomes flow rate de-
pendent. Finally, it is non-trivial that the topological connectivity of the molecules and the
computation required to predict the linear rheological response alone contain enough infor-
mation for accurate prediction of the stress growth and relaxation in the non-linear regime.
Since we know that the pom-pom equations are versatile enough to fit both the extensional
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and shear results found in experiments of complex-architecture melts (McLeish and Larson,
1998; Inkson et al., 1999; Lee et al., 2001), if we find a way to assign proper weights to
possibly a large number of such modes, the hope is that we can capture the non-linear
rheology properly. But, the ultimate success of the scheme rests through comparison with
experimental results. By comparing our predictions with the experimental data on the stress
profile during startup uniaxial extension and shear flow for some industrial resins, we show
that the scheme is fairly successful, given there are no extra free parameters beyond those
already present for predicting the linear rheology.

The rest of the paper is organised as follows: We begin with a short recapitulation of the
scheme used for predicting the linear rheology of generic branch-on-branch polymer melt
(Das et al., 2006a) in sec. II. Next we give a brief summary of the pom-pom constitutive
equations and previous attempts in assigning pom-pom parameters to branched polymer
resins (sec. III). These two introductory sections are brief and serve only to introduce the
variables used in rest of the paper. The new physics included in marrying the pom-pom
equations with the hierarchical relaxation scheme is in sec. IV. Sec. V gives a detailed
description of the algorithm. The scheme is included in the publicly available software to
calculate rheological properties (Das, 2012). We consider an industrial branched low-density
polyethylene resin (LDPE) and a metallocene catalysed high-density polyethylene (HDPE)
resin to test the predictive power of the algorithm in VI.

A short description of the algorithm and results on a series of LDPE resins have been
published elsewhere (Read et al., 2011). The description of the algorithm in that work was
necessarily too short to provide all the important details for a critical evaluation of the
scheme, or for others to build on this work. We end this paper with a summary including
our own views of shortcomings in the scheme and an outlook on the possible extensions to
this work.

II. COMPUTATIONAL LINEAR RHEOLOGY

The generalisation of the process of arm-retraction from simple entangled star polymers
(Milner and McLeish, 1997) to more complex branched architecture was initially investigated
analytically in a few simple cases (McLeish, 1988; Rubinstein et al., 1990). The coupled
nature of the relaxation prohibits an analytical description without drastic simplifications for
industrially relevant resins with large topological polydispersity. Larson (2001) introduced
the ‘hierarchical’ numerical relaxation scheme based on the tube model of de Gennes (1971)
and Doi and Edwards (1986) for branched polymer melts. Das et al. (2006a) extended the
scheme for generic branch-on-branch polymers. For distinguishing between the two, we use
the already common terminology of ‘hierarchical model’ for (Larson, 2001, and extensions
by Larson and collaborators) and ‘BoB’ for (Das et al., 2006a). For molecules which can be
cast as a comb or star polymer, both models follow very similar physics and differ only in
details. A comparative analysis of the two has been recently done by Wang et al. (2010). We
should also note here a rather different approach for numerical prediction of linear rheology
by van Ruymbeke et al. (2006). Of these, only the ‘BoB’ code is generic enough to handle
the highly branched structure that arises in polymers like LDPE.

A number of articles already cover the methodology used in calculating the rheological
response of branched polymers in the linear regime in BoB (Das et al., 2006a,b; Wang et al.,
2010). We only summarise the main ideas here, chiefly to introduce the variables that are
required in the calculation of the non-linear rheology.
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FIG. 1. Schematic representation of hierarchical stress relaxation: (I) Relaxation of stress carried by

a given polymer (represented by solid line) after a small step strain is hindered by the tube potential

(diameter a, drawn as dashed line). Free-ends (labelled by numbers) of length Z retract as star-arms.

(II) For t > τ3 (the retraction time of segment 3) the branch-point B provides localised friction

(indicated by filled circle). The relaxation of material softens the confining potential, indicated by

thick dashed lines around the original tube. z(t) designates the length of the original tube segment

lost at time t, measured from the end-monomer of a free-end. (III) Beyond τ2, the relaxation time

of segment 2, the free-end 1 can retract by any combination of the inner segments, hindered by

the localised frictions from the relaxed side-arms. This assigns a dynamics to Z̃, the pivot point of

retraction, determined by the localised frictions at branch-points. (IV) At long times (here, t > τ6),

the unrelaxed segments behave like a linear molecule and can relax by reptation.

Fig. 1 summarises the relaxation schemes considered in computational linear rheology.
In the dense environment of melt, the topological constraint of non-crossing gives rise to the
effective confinement of a given strand of a molecule in a tube potential due to all the other
molecules. The tube diameter a sets the length scale for the problem. The entanglement
molar mass Me, the molar mass of a chain having the same size as the tube diameter, is
used to express the length Z of the polymer segments. The entanglement time τe, the Rouse
relaxation time for a linear polymer of length equal to the tube diameter, is used as the unit
of time.

After a small step strain, at early times, only the chain ends can explore new confor-
mations through withdrawal in the tube and subsequent sampling of uncorrelated tube
constraints. In this process, the stress carried by the part of the old tube, that is renewed,
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is lost. The variable z(t) defines the length of the tube, measured from the free end, that
has relaxed. Once, a side arm retracts its whole length (at time τa), it assigns an extra drag
ζa on the backbone, localised at the branch point, given by

ζa =
2kBTτa
p2a(τa)2

, (1)

where kB is the Boltzmann constant and T is the temperature. The parameter p fixes the
diffusive hop length scale and a(τa) is the tube diameter relevant at τa. Strands with one
or more localised drag-points from side-arm collapse are termed compound arms. The arm-
retraction mechanism becomes more subtle when branch-points on compound arms, deeper
than the currently-relaxing tube segments, become mobilised themselves. The subsequent
fluctuations of such branch points can contribute to the relaxation of the free ends. A good
approximation to this retraction of compound arms considers an effective segment length
Z̃, which itself has a Rouse-like dynamics with friction centres coming from the relaxed
side-arms (Das et al., 2006a). Z̃(t) gives the pivot point about which the compound arm
undergoes coherent fluctuations at time t. Equivalently, the time t at which Z̃ reaches
a certain part of a molecule assigns an approximate Rouse time for that part. Once the
leftover backbone becomes effectively linear, it can relax by reptation - a faster mechanism
compared to deep arm-retraction.

Since the tube constraint is due to all the other molecules, which themselves are relaxing
at the same time, the tube constraint is itself time dependent. Phenomenologically (with
some scaling level theoretical backing (Colby and Rubinstein, 1990)), this is described by
tube dilation - where the tube diameter scales with φ, the amount of unrelaxed material
(a(t) = aφ−α). Thus, with relaxation, the tube diameter increases (the confining potential
softens), which in turn increases the rate of relaxation. The coupling between the different
molecules is expressed by determining the tube diameter in a self-consistent way. The current
effective/dilated tube at relaxation time t is termed the “supertube”. The entanglement
density experienced by the segments due to the supertube is denoted by φST (t). Except for
those times in which some fraction of the molecules undergoes rapid relaxation, φST follows
φ.

Fig. 1 illustrates the above relaxation mechanisms for a specific molecule. In particular, it
shows: (I) the initial unrelaxed topology of the molecule in tube co-ordinates; (II) relaxation
of side arms, with corresponding tube dilution and softening of the potential; (III) full
relaxation of side arms and mobilisation of branchpoints, allowing deeper relaxation of a
compound arm; (IV) terminal relaxation by reptation of a linear-like segment. A detailed
commentary of these stages for the specific molecule is given in the figure caption.

The stress relaxation is calculated as

G(t) = G0

∫

∞

0

e−t/τ

[

− d

dt
(φ(t)φST (t)

α)

]

τ

dτ. (2)

Here, G0 is the plateau modulus (G0 ≃ 4

5

cRT
Me

, with c being the polymer density and R the

universal gas constant).

III. PRIORITY VARIABLE AND POM-POM CONSTITUTIVE

EQUATIONS

Bick and McLeish (1996) introduced the concept of priority variable to describe the
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FIG. 2. Priority variables for a branched molecule. (a) For a given strand, we count nL, the

number of free ends on the left (against the arrow), and nR on the right (along the arrow heads).

(b) Geometric priorities are defined by the smaller of these two numbers.

damping function for the nonlinear stress relaxation in polymers containing long-chain
branching, where the experimental damping function for the relaxation modulus is found to
be much weaker than that predicted by the Doi-Edwards damping function. A large strain
increases the contour length between branch points, which are not (initially) free to retract
along confining tubes in the same way as a free end. The consequent segmental stretch
enhances the elastic stress. However, at higher strains, an imbalance in the tensions along
segments connected to a branch point can cause “branch point retraction” along the tube
containing the most stretched segment. At short times, the force balance at the branch
points gives a maximum tension needed before the branch point can retract. For a chain
segment between branch points, priority was defined as the ratio of the maximum permis-
sible tension to the equilibrium tension of that chain segment. The entropic nature of the
tensions give rise to a simple geometrical picture (Fig. 2). For any given strand, one counts
the number of free end on the left nL and the same on the right nR of that segment. The
minimum of these two defines the priority of the segment. The priority is the value of the
local chain stretch at the point of branch point withdrawal; the chain segment is assumed
to maintain that maximum stretch at all higher strains.

For a general long chain branched polymer, the relaxation times vary widely (relaxation
time depends exponentially on the ‘depth’ of a segment in a molecule). Thus the geometric

6



1

1

1

1

2

FIG. 3. “Snipped” priority (Read and McLeish, 2001) for the same molecule as in fig 2 at a certain

flow rate. The segments having relaxation times shorter than the inverse flow rate are replaced by

‘blobs’ signifying localised frictional drags.

criteria given above does not capture the maximum tension in a given segment at all flow
rates. Read and McLeish (2001) introduced the idea of “snipped” priority. They identi-
fied a timescale associated with the flow (τF, the inverse of flow-rate) and suggested that
segments which relax faster than this time-scale should be neglected in calculation of the
priority. Thus, in Figure 3, the segments having relaxation times shorter than τF are re-
placed by ‘blobs’ signifying localised frictional drags, which do not contribute to the priority
calculation. Effectively the molecule in Figure 3 behaves like an ‘H’ polymer with a single
backbone capable of supporting a (dimensionless) stretch of λ = 2. The “snipped” prior-
ity underestimates the extension hardening severely; this was clear in the original work of
Read and McLeish (2001), even bearing in mind the approximations in their scheme. We
confirm this observation more quantitatively below in Fig. 8. Nevertheless, the concept of a
“snipped” priority gives useful insights towards building a model for flow-modified priority
developed in this work.

A simpler class of polymers, pom-pom polymers comprising a single backbone with q
identical side arms at the both ends, allow a simple constitutive equation that successfully
capture the stress profile in nonlinear flow (Bisko et al., 1997; McLeish and Larson, 1998).
The number of side arms q gives the maximum permissible tension on the backbone and
hence gives the priority of the backbone. The pom-pom equations are simple because all
the side arms have the same timescales of retraction and the stress contribution is assumed
to be dominated by the backbone. The dynamics of the stretch relaxation of the backbone
is governed by the balance of the entropic tension and the localised frictional force at the
branch-points. This gives an upper bound on the elastic force and hence on the stretch
λ of the backbone. For faster flow, the branch-points will withdraw in the backbone tube
and no further increase of stretch is possible. McLeish and Larson (1998) also considered
the coupled dynamics for the branch-point withdrawal. Later authors (Inkson et al., 1999;
Blackwell et al., 2000) neglected this dynamics of branch-points because of the large sep-
aration of timescales for branch-point withdrawal and stretch relaxation. For a numerical
calculation, as in this work, the natural choice is the differential approximation of the con-
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stitutive equation connecting the stress σ with the orientational tensor S:

σ = 3Gλ2(t)S, (3)

with S ≡ A/tr
(

A
)

determined through the auxiliary tensor A satisfying the upper convec-
tive Maxwell model

D

Dt
A = K ·A+A ·KT − 1

τo

(

A− I
)

. (4)

Here, D
Dt

≡ ∂
∂t
+ v.∇ is the convective derivative, K is the deformation rate tensor, I is the

identity tensor, and τo is the orientational relaxation time of the backbone. The dynamics
of the stretch λ is given by

D

Dt
λ = λK : ST − 1

τs
(λ− 1) exp

[

2

q − 1
(λ− 1)

]

, (5)

with τs being the stretch relaxation time of the backbone. For an ensemble of different pom-
pom molecules, the stress is assumed to be additive. Thus each of the pom-pom molecules
are characterised by its weight fraction determining G in the stress contribution, number of
side-arms at each end q, the orientational relaxation time τo and the stretch relaxation time
τs. The lengths of the backbone and the dangling arms together determine the prefactor G
in the stress equation in the original formulation.

IV. COMPUTATIONAL NON-LINEAR RHEOLOGY

The simplicity of obtaining the numerical solution for non-linear flow behaviour of pom-
pom model led to considerable work towards mapping an arbitrarily branched molecule to
pom-pom modes. Multi-mode pom-poms have been used successfully to fit the non-linear ex-
tensional and shear rheology data (Inkson et al., 1999). The distributions of the time-scales
and of the priorities for highly branched resins like LDPE do not strongly depend on the
number of modes selected for data fitting, which suggests that the continuous limiting form
of the fitting parameters as a function of mode relaxation time may have direct relationship
to the polymers themselves. However, when one considers modelling of simple polymers,
where the structure is known, the fitting parameters in general do not bear any resemblance
to the geometric priority q or snipped priority qS (Inkson et al., 1999). Thus, in spite of
considerable success of fitting both extensional and shear startup, extension hardening and
shear thinning at a number of flow rates, such exercises so far lacked predictive power for
a resin where the structure is known but the rheological data is absent on which to fit the
model parameters.

A. Pom-pom modes accounting for distribution in orientational relaxation

times

The resolution in pom-pom modes must reproduce the linear envelope decided by the
linear rheology. Coarse-graining over a time interval ∆t at tM , eqn. 2 resolves the stress
relaxation to a set of Maxwell modes with the associated modulus gM(tM) given by

− gM
G0

= [φα
ST ] ∆φ+

[

αφα−1

ST φ
]

∆φST . (6)
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tube escape

Constraint release

FIG. 4. Molecular contributions to stress decay: The boxed thin lines represent parts of the

molecule having relaxation time τM and contributes as ‘tube escape pom-pom modes’. The inner

segments (represented by thick lines enclosed in dotted representation of the tube) are still to escape

from the tube. These inner-segments contribute to relaxation by constraint release and decide the

‘constraint release pom-pom modes’.

Here, ∆φ is the change in the amount of unrelaxed fraction in the time interval ∆t and ∆φST

is the change in the entanglement density experienced at the same interval. We interpret
the two terms on the right-hand side of eqn. 6 containing ∆φ and ∆φST respectively as
describing the stress relaxation due to escape from the confining tube constraint and due
to the constraint release on the remaining chains trapped in the tube potential at this time
scale (Fig. 4). This prompts us to consider two separate sets of pom-pom modes: ‘tube
escape modes’ and ‘constraint release modes’. Both of these two sets of modes share the
same orientational relaxation time (τo = τM) but the priority and the stretch relaxation
time distribution are determined by the currently relaxing parts of the chains for the tube
escape modes, and by the unrelaxed part of the chains for the constraint release modes.

B. Stretch time distribution

Stretch in a part of a molecule relaxes via motion in which chain tension acts against
local friction: either monomeric friction from the background melt or, in the case of a
compound branched arm, much larger friction arising from side chain motion. For the
outer-most branches, we consider that chain tension balances monomeric friction only, so
that τs = z2τe/4 (obtained as the Rouse time of that arm, when pinned at one end). For
inner-segments, we require the effective “Rouse time" when friction is considered to arise from
side arms. Fortunately, the relevant calculation is already embedded within the original BoB
algorithm since, as outlined in section II, the pivot point location Z̃(t) is obtained as the
length of chain with effective Rouse time equal to t. Thus, we can find the stretch relaxation
time τs of a particular chain segment simply by inverting the function Z̃(t), to find the time
at which Z̃(t) reaches that segment.
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For the constraint release pom-pom modes, we assign τs values that are the same as their
orientational relaxation times. Our rationale for this is that constraint release gives a motion
of the tube contour similar to that of a simple Rouse chain (Klein, 1978; Vivoy et al., 1991),
which relaxes both stretch and orientation at the same rate (Doi and Edwards, 1986). The
best way of approximating this within the pom-pom model is to set the stretch relaxation
time equal to the orientational relaxation time.

C. Flow modification of priority

(?)

2

1

1

E2

E1

B1

B2

B3
2

FIG. 5. Assignment of flow-modified priority at flow rate 1/τF: Segments with τs < τF are described

by broken lines. To calculate the effective priority of the thick segment, we travel left along the

molecule. At end points like E1 and E2, where end-segments have τs > τF, the segments are

assigned a value 1. At a branch-point like B1, where both the segments have τs < τF, the segment

before the branch-point is assigned a value 2 irrespective of level of branching outwards from the

branch-point. Several possibilities need to be considered in cases where one segment at the branch

point has τs < τF and the other has τs > τF (like at branch point B3). If the segment with τs < τF

has τo > τF, it can maintain a tension difference of 1 and gives a contribution of 1 to the priority

sum. Else, we consider the equilibration time of the branch-point by calculating the Rouse time

of inner segments of B3 including the friction from collapsed side-arm. B3 can maintain a tension

difference and contributes to the priority sum if this equilibration time is greater than τF.

In fig. 5, we consider a generic polymer to enquire about the priority one should assign to
a particular segment at a particular flow rate (with associated flow time scale τF, which is the
inverse of the flow rate). Following on from the concepts of “snipped priority" introduced by
Read and McLeish (2001), we recognise that at different flow rates a given segment will have
different effective values for its maximum stretch, due to relaxation of other chain segments.
The main innovation introduced in Read et al. (2011) is to recognise that the critical issue
is not (as Read and McLeish (2001) thought) the orientational relaxation time. Instead,
we believe it is a question of how chain stretch is transferred from outer chain segments
towards the inside of the molecule, which has to do with stretch relaxation times. Segments
whose stretch relaxation time is greater than the flow time, τs > τF, are able to transfer
tension from the outside of the molecule towards the inside, whilst segments with stretch
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relaxation time less than the flow time, τs < τF, cannot themselves stretch and so cannot
transfer tension inwards, no matter how many chain ends they are attached to.

As with the “geometric priority" introduced by Bick and McLeish (1996), we start from
a given segment and initially look to one side of it (e.g. the left hand side). Rather than
counting chain ends, we examine the relaxation times of each segment as we look outwards,
as follows. We illustrate some of these cases for a specific molecule in figure 5, giving details
specific to that molecule in the figure caption.

• For an inner segment with τs > τF, if the two outer segments have τs < τF, the outer
segments cannot stretch. But the current segment can stretch, up to a maximum
stretch of 2 (at which point, withdrawal of the branchpoint will occur). So, we add 2
to the priority sum. Two examples of this are B1 and B2 in figure 5.

• If we reach a segment with τs > τF and both the segments outside it have τs > τF,
all segments can stretch, and we simply proceed to find out what chain structure is
beyond the two outer segments.

• For a segment with τs > τF, but where only one of the two segments beyond it has
τs > τF, only one of the subsequent segments can stretch (an example is B3 in figure
5). For the subsequent segment that stretches (B2 in the figure), we look to see what
is beyond. For the segment that does not stretch (e.g. the dashed sidebranch at B3)
we need to decide whether it provides sufficient friction that this branchpoint can
sustain a significant difference in stretch between the two “stretching" segments. In
other words, at the current flow rate, is it possible for the stretch on the inner segment
(B3) to be greater than the stretch on the outer segment (B2) by one unit? To answer
this, we look at the orientation relaxation time (τo) of the side branch.

– If τo > τF, then flow is fast enough to orient the side branch, so the side chain
will certainly count towards the priority and we add one to the priority sum.

– If, on the other hand, τo < τF, more care is required: we calculate an “equilibration
time" τeq for the side branch, as detailed below. If τeq > τF, then the side branch
can support the tension difference, and we add one to the priority sum.

To calculate τeq, we have implemented a scheme designed specifically for situations in
which different side arms along a chain are expected to have greatly varying relaxation
times (as is usually the case in, for example, polydisperse industrial resins). The scheme is
not expected to work well, for example, in the case of regular polymer combs in which all
side arms are of similar length.

We envisage a situation in which all segments outside the side branch have reached their
maximum priority, and their branch-points are now withdrawn into their tubes. For such a
chain configuration, withdrawn branch-points count little towards the effective friction for
motion of polymer along the tube because chain motion will simply change the degree of
withdrawal of the branchpoint (and so do not require branchpoint hopping from side arm
relaxation). So, we anticipate only a small amount of friction from branch-points outside
the considered side branch.

Looking inwards from the current side branch, we may encounter several shorter side-
branches with faster orientational relaxation times. We assume these give negligible friction
in the current calculation. Eventually, we will typically find a side branch with larger
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orientational relaxation time than the current one, which will act as a pivot point for local
chain motion to equilibrate chain stretch. We measure the length of chain between the
current side branch and the first one found inwards with larger orientational relaxation
time, and this gives an effective spring constant for the local equilibration of stretch due to
motion of the side branch. To locally equilibrate the chain stretch, this spring pulls against
the friction from the side branch, which can be obtained from its orientation relaxation time
(τo) using eqn. 1. The ratio of the friction constant to the chain spring constant, so obtained,
gives the equilibration time τeq, used in the above calculation of priority.

The priority calculation is repeated for the right-hand side of this particular segment
and as with geometric priority, the lower of the two priority sums sets the priority of the
segment.

V. ALGORITHMIC IMPLEMENTATION

The linear version of the computational rheology code (previous versions of BoB) already
computes the two “fronts” z(t), marking the relaxation of chain ends through tube escape
and Z̃(t), the pivot point about which the retraction is considered at time t. The latter
variable defines an approximate Rouse time of a segment of an arbitrarily branched polymer
molecule and influences the dynamics of z(t) internally. We identify this Rouse time as
the stretch relaxation time of a segment. In the current version of the code, during the
relaxation after small step strain, the segments of the polymer molecules store the times at
which either z(t) or Z̃(t) reaches the end of the segment in concern. They respectively give
the orientational (τo) and stretch (τs) relaxation times of the segments. The segments also
store the friction defined from the time of complete retraction (eqn. 1). The prediction of
linear viscoelastic moduli already employs the form of sum of a large number of Maxwell
modes (eqn. 2). They are coarse-grained to have roughly two Maxwell modes in a decade
of frequency. With a given choice of Maxwell times (τM), the associated weights (gM) are
unique.

To predict the non-linear flow behaviour at a given flow rate, we execute the updated
code twice. In the first step, the code generates or reads in the supplied polymer ensemble,
and executes the algorithm to calculate linear rheology. During this process it follows time
relaxation, and outputs τo, and τs for each of the segments and {τM , gM} associated with
the linear relaxation spectrum. In the second pass of the execution, the program uses the
same polymer ensemble, now decorated with the relaxation time scales, and hence amenable
to computation of flow modified priority variables. During the small strain relaxation in
this second execution, the program maintains separate lists accounting for material relaxing
through tube escape and through constraint release. For each type of stress relaxation, the
lists store the fraction of the relaxation modulus associated with a given priority, subdivided
into material with different stretch times (binned in log-scale, typically with 20 bins). The
contents of the lists are written to a file when the time reaches the next Maxwell time τM ,
which acts as the orientational relaxation time τo for the current modes (For weights at τM ,
we use averages over segments relaxing between the times τM/1.1 and 1.1× τM). So, at each
Maxwell time, the Maxwell mode is subdivided into a (typically large) number of pom-pom
modes with different priority and stretch relaxation time. Once all of the molecules have
relaxed, the pom-pom modes are used to compute the transient stresses in start up shear or
start up uniaxial extensional flow.
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A. Modelling of HDPE molecules

The HDPE resin (HDB6, The Dow chemical Company) used in this work was synthe-
sised with single-site metallocene catalyst in a continuously stirred tank reactor (CSTR)
(Wood-Adams et al., 2000). The ensemble of molecules in this case can be fully charac-
terised by just two parameters: one characterising the average molar mass and the other
characterising the average number of branches. Among different possibilities, we choose these
two parameters as the weight averaged molar mass (MW ) and the number averaged branch
per molecule (bm). Because the resin was prepared without any co-monomer, the amount of
branching is accurately known from NMR. The weight averaged molar mass is known from
GPC-MALLS. The MW and bm can be recast as the number averaged segment length (MN,S)
between the branch-points and a branching probability (bU , ‘up-stream’ branching proba-
bility). We use a simple scheme introduced in (Das et al., 2006a) to generate segment-level
description of molecules representing the HDPE resin. The algorithm is based on the known
statistical distribution of single-site CSTR metallocene resins (Read and McLeish, 2001).
Starting from the end of the molecule at which the last monomer was added, we generate
a Flory distributed segment of average length MN,S and use the branching probability to
decide if the particular segment would end at a branch-point. If it ends at a branch-point,
we continue adding branches recursively.

B. Modelling of LDPE molecules

We use a Monte Carlo method to generate a statistical representation of low density
polyethylene (LDPE) molecules. Tobita (2001) used such a procedure to consider the dis-
tribution of polymer structures arising from a free-radical polymerisation occurring in a
batch reactor (although the basic scheme can be generalised to other reactor types). The
basic steps considered are initiation (rate Ri), chain propagation (rate Rp), branching (rate
constant kb), scission (rate constant ks), chain transfer to small molecules (rate Rf ) and
termination by combination (rate Rtc) or by disproportionation (rate Rtd). For the batch
reaction, this generates a five parameter space of

τ = (Rtd +Rf )/Rp Termination

β = Rtc/Rp Combination

Cb = kb/kp Branching

Cs = ks/kp Scission

xf Final conversion.

For details of the Monte Carlo scheme, and for the relevant equations, we refer the reader to
Tobita (2001). Repeated application of the algorithm produces a set of molecules selected
on a weight-biased basis. The position and number of all branch-points, together with the
molecular weight of the strands between them, are known. If sufficient number of branched
polymers are generated in this way, then one can interrogate them for statistics of the overall
polymer distribution (e.g. molecular weight distribution) or use the generated molecules
as input into the BoB algorithm to calculate rheology. The molecules could be used as-
generated, but we save computational effort in the rheology calculation by retaining only
a fraction of these molecules, chosen uniformly across the range of logarithmic molecular
weights generated by the algorithm. This allows us to reduce the number of molecules
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used in the rheology calculation by a factor of roughly 100; the calculations below used a
representative set of around 3000 molecules, but retain many large molecules in the tail of
the molecular weight distribution.

We seek to use the above algorithm as a means to model the molecular architectures
present in commercial LDPEs, generated in tubular reactors. In the idealised “plug flow"
limit, a tubular reactor is equivalent to a batch reactor. However, real reactors are not
ideal, and we found it was usually not possible to match experimental molecular weight
distributions with a single batch simulation. In the absence of detailed information of
reactor variables and operation, we aimed to produce a reasonable representation of LDPE-
like architectures, consistent with experimental data on molecular weight distribution and
branching levels (from GPC-MALLS data). Our solution was to consider a superposition
of up to three batch processes, with identical reaction parameters τ , β, Cb and Cs, but
different overall conversions xf . A possible qualitative justification for this is that pure plug
flow is unlikely, and different residence times are expected across the cross-section of the
reactor tube, leading to different conversions. An alternative suggestion is that broadening
of molecular weight distribution is induced by multiple injection points in an idealised tubular
reactor.

To reduce the parameter space, we assume no scission, i.e. Cs = 0, since its value
appeared to be consistently small when left as a free parameter. Although there are several
parameters in the reaction scheme, their effects are distinctive. Increasing τ results in shorter
chain strands and smaller overall molecular weight. The value of τ could be determined
to reasonable accuracy by matching the low-molecular weight tail of the molecular weight
distribution. Increasing β increases molecular weight and polydispersity but without greatly
affecting branch density or typical molecular weight of linear strands in the molecules. In
contrast, increasing Cb increases molecular weight and polydispersity but also increases
branching, giving rise to smaller chain strand lengths between branch-points.

VI. RESULTS

We have measured rheological responses of six different commercial grade LDPE samples
and one HDPE sample to test the computational scheme detailed here. The rheological
responses of the LDPE samples are published in a short communication (Read et al., 2011).
Besides the HDPE resin, we select only one of the LDPE resins (LDPE2) here to illustrate
the predictions under different assumptions of the modelling. Details of characterisation and
rheological response measurements can be found in the supplementary online material of our
earlier publication (Read et al., 2011). Molar masses and radius of gyration contractions
factor (g-factor) were measured with GPC-MALLS for the LDPE samples. For the HDPE
resin, branching was independently measured with NMR. Shear responses were measured on
a strain controlled rheometer (ARES, Rheometric scientific) using cone and plate geometry.
Optional stretching device (SER, Xpansion instruments) was mounted onto the rheometer
to measure the non-linear elongational flow response.

We use tube dilation exponent α = 1 and the branch-point hop-size p = 1/
√
40 that

provide a good description of frequency responses of a number of resins with different archi-
tectures and chemistry(Das et al., 2006a,b; Chambon et al., 2008; Hutchings et al., 2012).
For the HDPE sample, we use Me = 1120 g/mol and τe = 1.1×10−8 s at 155◦ C. The weight
average molar mass MW = 68000 g/mol and the average number of branches/molecule
bm = 0.34 uniquely determine the HDPE resin. These parameters were determined in ear-
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lier work (Das et al., 2006a), where the molecular weight and branching parameters were
found uniquely from the GPC and NMR measurements respectively. The rheological pa-
rameters provided an excellent fit to the linear rheology of a series of HDB resins.

Presence of comonomer and short-chain branches not accounted in our scheme affect
Me and τe (Chen et al., 2010) and we expect them to be quite different for LDPE and
HDPE resins. In our data analysis, we heuristically found that Me = 1600 g/mol and
τe = 5.8 × 10−8 s at 150◦ C provide a good description of the small angle oscillatory shear
data for six different LDPE resins. By fitting the low-molecular weight tail of the molar mass
distribution, we fix the termination rate parameter τ = 1.1× 10−3. We consider the scission
rate constant Cs = 0. We can fit the full molar mass distribution and the g-factor with
different combinations of the other parameters. We found that fits of similar quality to the
molar mass distribution and the g-factor naturally gave rise to a distribution of predictions
of linear rheology. This is to be expected, since relaxation times of branched molecules
depend exponentially on their branching length, so rheology is more sensitive to branching
levels than the g-factor. The predicted terminal viscosity, for example, could vary within
approximately half a decade. While this was sufficient to rank the LDPE resins in order of
terminal viscosity, an imprecise prediction of linear rheology is not a good basis for non-linear
rheology prediction. So, we further constrain the fitting by comparison with the measured
linear rheology. We use two sets of such parameters that give equally good fit to the molar
mass distribution, the g-factor and linear rheology. One of the sets (set1) considers the
combination rate constant β = 1.2× 10−4 and branching rate constant Cb = 5× 10−3. The
other set (set2) considers β = 1.6×10−4 and Cb = 1.8×10−2. In set1, we use three different
final conversions xf : 74% of the material with xf = 0.62, 13% with xf = 0.25 and the rest
with xf = 0.05. In set2, we use two different final conversions with 80% of the resin having
xf = 0.185 and the rest having xf = 0.032. We use set1 to compare with experimental data.
In the final part of this section, we compare between the predictions of the two sets in the
linear and non-linear flow.
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FIG. 6. Geometric (lines) and flow priorities at indicated rates (symbols) for LDPE2 (a) and HDB6

(b) resins.

The highly branched nature of LDPE2 is captured by comparing the distribution of the
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priorities of LDPE2 with that of HDB6 (fig. 6). The lines in the plot indicate the weight
fraction of segments with different geometric priorities. In both resins, the higher priority
material accounts for a small fraction (priority one and priority two together account for
98.8% weight for HDB6 and 88.5% weight for LDPE2). For HDB6, the highest priority
segment generated is 10. For LDPE2, the maximum priority is 280. We also plot flow mod-
ified priorities (symbols). As the flow rate is lowered, the effective priority of the segments
change. At 0.001/s flow rate, the maximum of effective priority for LDPE2 is just 6.

From following the relaxation numerically after a small step strain, we calculate the
frequency dependent visco-elastic moduli. Fig. 7 shows comparisons of our predictions with
experimental data. Similar quantitative predictions are obtained using the same Me and τe
for a set of six LDPE (Read et al., 2011) and seven HDPE samples (Das et al., 2006a) having
different molar masses, zero-shear viscosities and melt indices. At the lowest frequencies, our
prediction for the elastic modulus is higher than the experimental data. The low frequency
response is from the stress relaxation in a few highly branched molecules in our calculations.
Our modelling assumes that the molecules remain entangled at all stages of relaxation. The
discrepancy at low frequencies reflect breakdown of this approximation.
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FIG. 7. Visco-elastic moduli and complex viscosity from small angle oscillatory shear experiments

(symbols) and predictions (lines) for LDPE2 (filled symbols and solid lines) and HDB6 (open

symbols and dashed lines).

Fig. 8 shows the start-up stress growth coefficients (transient viscosities) in extension and
shear at several rates (symbols) along with predictions from our calculations (solid lines) for
LDPE2 and HDB6 resins. We note here that the predictions for LDPE2 are slightly lower
than Read et al. (2011). In the previous publication, a bug in the code erroneously assigned
exactly equal weights to both the constraint release and tube escape modes. The predictions
here, and the publicly released version of the code, correct that bug and follow the weight
distribution assigned from Eq. 6. The corrected code consistently produces slightly lower
predictions than reported in Read et al. (2011), with the differences for the LDPE2 resin
being typical. For the LDPE2 resin, our calculations represent the linear relaxation with
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55 Maxwell modes. At each of these Maxwell modes, separate pom-pom modes account
for the distribution in priority and stretch time. For flow rate 0.003/s, we used in total
4587 pom-pom modes to describe the non-linear flow properties. The typical CPU time for
predictions at each flow rate is of order one hour (on a single node of a Linux machine with
Intel Xenon processor).

For LDPE2 resin (fig. 8a,b), we also show predictions at selected rates where we use
geometric priorities (dashed lines) or fully snipped priority (dotted lines) considered in
Read and McLeish (2001) to calculate the stress response. The stress response in extensional
flow is highly sensitive to the assignment of priority. The geometric priority over-predicts
the stress by a large amount, while the fully snipped priority significantly under-predicts
the stress. With the LDPE samples containing highly branched structure, the differences
in the predictions from the different schemes for assigning the priorities are dramatic. The
predictions made using the stretch-based assignment of priority, as detailed in this paper,
are superior to either the geometric priority or fully snipped priority predictions (a similar
observation can be made for the shear predictions). They also capture well the differences
in overall extension hardening behaviour between the high-density and low-density resins.
Nevertheless, it is clear from figures 8(a,c) that the predictions are not perfect, and in par-
ticular there is a small underprediction of the degree of hardening at the lower extension
rates. Discrepancies between our predictions and the data could be due to errors either
in our values for stretch relaxation times, or in our prediction of flow-dependent priority.
Since the geometric priority calculations result in consistent over-prediction, we consider it
likely that the priority prediction is the likely source of remaining error. Thus, although the
stretch-based assignment of priority detailed in this paper (and the approximate algorithm
proposed to evaluate internal stretch equilibration times within a molecule) represents an
improvement on previous suggested criteria, the scheme remains approximate and open to
improvements. We discuss several possible options for this in the concluding section of the
paper.

To predict the flow properties of the LDPE resin, we created the molecules by fitting
the molar mass distribution and the g-factor. Fig. 9(a) shows that similar quality of fit can
be obtained by quite different reaction parameters. However, despite the use of different
reaction rate parameters to achieve the fit, the frequency dependent visco-elastic moduli
are virtually indistinguishable for the two ensembles (fig. 9 b). The start-up stress growth
coefficients in shear and extension also behave very similarly (fig. 9 c). The distributions of
the priorities also are similar (fig. 9 d). This suggests that there is a degree of redundancy in
the reaction model parameters: the decrease in conversion xf in set2 as compared to set1 is
largely compensated by the increase in Cb and β. There is also a degree of redundancy in the
precise choice of conversions, and their respective weights, for the (up to three) superposed
batch processes. Fortunately, as we show here (Fig. 9), different choices of fitting parameters
that match GPC-MALLS data and linear rheology give rise to similar predictions for the
non-linear rheology and have similar distributions of molecular architecture.

VII. OUTLOOK

We have described the details of a numerical scheme to compute the non-linear flow
behaviour of arbitrarily branched entangled polymer melt by mapping the in silico molecular
representation of the resin to a set of pom-pom modes. This mapping requires separate
modes associated with relaxation by tube escape and constraint release. We generalise the
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geometric priority (dashed lines) and fully snipped priority (dot-dashed lines) at rates 0.01, 0.1, 1.0

and 3.0 s−1 for uniaxial extension (a) and at rates 0.1, 1.0 and 10.0 s−1 for shear (b).

topological concept of priority variables to a flow-dependent priority, which essentially counts
the branch points that do not have enough time for relaxation of chain tension, i.e. it is
a stretch-based criterion. This depends both on segmental stretch and orientation times
and on the timescale of equilibration through coherent oscillation of segments with localised
drags.

We validate our scheme by comparing with flow response of two very different commercial
resins: a highly branched LDPE and a sparsely branched HDPE resin. The agreement with
flow response in both the linear and the non-linear regime suggests that one can in principle
use computational schemes to decide on the synthesis parameters that generate resins with
desired flow properties.

The assignment of the priority variables in this work exploits the broad distribution of
relaxation times in industrial resins. We use this when considering, at an approximate
level, the internal dynamics of stretch propagation within a randomly branched molecule.
This approximation is evident in the calculation of a local stretch equilibration time, τeq,
for a given side branch in section IV(C), which exploits a hypothesised wide separation
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indicated flow rates. (d) Priority distributions for set1 (symbols) and set2 (dashed lines) behave

similarly at the different flow rates.

in relaxation times of nearby side branches. As noted above, the scheme is expected to
break down for regular comb-like molecules and similar well defined structures in which all
side arms have similar lengths. Correction of this requires a more detailed consideration of
stretch dynamics in such regular molecules. Such work might also lead to improvements to
our proposed scheme, and in turn to improvements in predictions for industrial resins, for
example by increasing priority predictions at low flow rates.

An alternative avenue for further investigation concerns the effect of dynamic dilution
upon branch-point withdrawal processes and flow-rate dependent priority. Whilst the lin-
ear rheology calculation explicitly considers different tube diameters operating at different
timescales via the dynamic dilution hypothesis, these considerations are not so explicit in
our priority calculation as presented above. In fact, our scheme corresponds to the maximum
stretch (priority) being defined in a “flow-tube” whose diameter corresponds to the dilution
at the flow time τF, the inverse of flow-rate. The reason is that constraint release modes,
corresponding to structure on lengthscales smaller than this “flow-tube”, relax much faster
than the flow time, and so are not stretched; only modes corresponding to structure on
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scales larger than the “flow-tube” are stretched. However, recent investigations into bimodal
blends (Auhl et al., 2009; Read et al., 2012) indicate that stretch relaxation dynamics in the
presence of constraint release can give rise to complicated and non-intuitive dynamics. The
question arises as to whether branch-point withdrawal, leading to maximum stretch, should
be considered within the flow tube, or perhaps within some smaller tube. Considering a
pom-pom like model, Wagner and Rolón-Garrido (2008) assumed branch-point withdrawal
should occur in the undiluted tube, giving rise to a larger effective maximum stretch in the
diluted tube, and so larger stresses. It is possible that similar physics might be another
source of our underprediction of stress at low flow rates. Detailed investigation into this
would require a consideration of stretch dynamics in the presence of a broad range of con-
straint release rates, in particular focusing on force balance and dynamics in the vicinity of
branchpoints.

Finally, we note that recent experiments on branched polyethylene resins have indi-
cated that there may be stress overshoots prior to the steady state in extensional flow
(Wagner and Rolón-Garrido, 2008; Alvarez et al., 2013; Hoyle et al., 2013), though others
dispute these findings (Münstedt and Starý, 2013). To date, a detailed molecular explana-
tion of the stress overshoots appears to be lacking (for example, the model in Hoyle et al.

(2013) is phenomenological). In this work our focus has been on developing non-linear
rheology predictions based on molecular structure. We have chosen to use the established
pom-pom model in our calculations, since this has a molecular basis for each of its pa-
rameters. As a result, this present work does not address directly the existence of stress
overshoots.

The scheme detailed here is computationally intensive. Thus, we do not envisage the
current approach to be used to predict flow properties in a complex flow geometry. Instead,
the generated pom-pom modes can be coarse-grained to a more manageable numbers that
predicts the same flow property as the original modes but loses the connection to the molec-
ular architecture. Some work along this line has been done for describing large amplitude
oscillatory shear experiments (Hoyle, 2010). These coarse-grained pom-pom modes in turn
can be used to predict the flow properties in more complex geometries (Hassell et al., 2008).
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