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Abstract 32 
Climate change is expected to substantially reduce agricultural yields, as reported in the by 33 

the Intergovernmental Panel on Climate Change (IPCC). In Sub-Saharan Africa and (to a 34 

lesser extent) in South Asia, limited data availability and institutional networking constrain 35 

agricultural research and development. Here we performed a review of relevant aspects in 36 

relation to coupling agriculture-climate predictions, and a three-step analysis of the 37 

importance of climate data for agricultural impact assessment. First, using meta-data from the 38 

scientific literature we examined trends in the use of climate and weather data in agricultural 39 

research, and we found that despite agricultural researchers’   preference   for field-scale 40 

weather data (50.4% of cases in the assembled literature), large-scale datasets coupled with 41 

weather generators can be useful in the agricultural context. Using well-known interpolation 42 

techniques, we then assessed the sensitivities of the weather station network to the lack of 43 

data and found high sensitivities to data loss only over mountainous areas in Nepal and 44 

Ethiopia (random removal of data impacted precipitation estimates by ±1,300 mm/year and 45 

temperature estimates by ±3°C). Finally, we numerically compared IPCC Fourth Assessment 46 

Report climate models’   representation of mean climates and interannual variability with 47 

different observational datasets. Climate models were found inadequate for field-scale 48 

agricultural studies in West Africa and South Asia, as their ability to represent mean climates 49 

and climate variability was limited: more than 50% of the country-model combinations 50 

showed <50% adjustment for annual mean rainfall (mean climates), and there were large 51 

rainfall biases in GCM outputs (1,000 to 2,500 mm/year), although this varied on a GCM 52 

basis (climate variability). Temperature biases were also large for certain areas (5-10°C in the 53 

Himalayas and Sahel). All this is  expected  to  improve  with  IPCC’s  Fifth  Assessment  Report; 54 

hence, appropriate usage of even these new climate models is still required. This improved 55 

usage entails bias reduction (weighting of climate models or bias-correcting the climate 56 

change signals), the implementation of methods to match the spatial scales, and the 57 

quantification of uncertainties to the maximum extent possible. 58 

 59 

Keywords: Sub-Saharan Africa; South Asia; climate modelling; climate model; skill; 60 

uncertainty; CMIP3; CMIP5. 61 

  62 



1. Introduction 63 
Agriculture is expected to play an important role in the context of climate change, not only 64 

because it is considered amongst the most vulnerable sectors, but also because it is part of the 65 

solution (i.e. potential to mitigate greenhouse gases [GHGs] emissions) (FAO, 2009; IPCC, 66 

2007). Agriculture will likely be severely affected over the next hundred years due to 67 

unprecedented rates of changes in the climate system (IPCC, 2007; Jarvis et al., 2010; Lobell 68 

et al., 2008; Thornton et al., 2011). Some of these impacts have already been observed 69 

(Battisti and Naylor, 2009; Schlenker and Lobell, 2010). To help cope with such impacts, a 70 

framework to assess the effects of climate change on agriculture and food security and to aid 71 

with adaptation was established in 2008, as described by Jarvis et al. (2011): The 72 

Consultative Group of International Agricultural Research (CGIAR) Research Program on 73 

Climate Change, Agriculture and Food Security (CCAFS). 74 

 75 

For adaptation to be successful, agricultural and climate data are crucial, and these are scarce 76 

in their basic forms (data from research and weather stations, respectively) or not very well 77 

managed and/or maintained in certain parts of the world. Most importantly, climate databases 78 

and their derived products are sometimes inaccurate, or else lack the documentation 79 

necessary to facilitate their use within the agricultural research community. In some 80 

instances, this may be indicative of the gap between the agricultural and climate research 81 

communities (Pielke et al., 2007; Thornton et al., 2011). Even when the two do collaborate, 82 

agricultural researchers face critical constraints when accessing basic sources of climate data 83 

(i.e. weather stations) due to a number of factors, from access to data, to weather maintenance 84 

and data quality checks, to the weather itself (DeGaetano, 2006).  85 

 86 

In the last 10 years, various datasets have been developed by different institutions, usually 87 

based on either a combination of weather station data, satellite data, and numerical weather 88 

prediction models in addition to interpolation methods, or on the sole application of climate 89 

models. The usage of these datasets for agricultural modelling purposes is rather limited for 90 

one or more of the following reasons: (1) their time step is long (monthly in the best case); 91 

(2) their temporal coverage is limited to an average of several years (Hijmans et al., 2005; 92 

New et al., 2002); (3) their spatial resolution is too coarse (Adler et al., 2003; Schneider et al., 93 

2010); (4) their geographic coverage is not wide enough (Di Luzio et al., 2008); and (5) only 94 

certain variables (i.e. temperatures, rainfall) are reported whereas other agriculturally relevant 95 

measures (e.g. potential and/or reference evapotranspiration, relative humidity, solar 96 

radiation) are rarely reported (Di Luzio et al., 2008; Hijmans et al., 2005). Moreover, 97 

assessments of these data (particularly climate models) have been done only under a climate-98 

science perspective (Gleckler et al., 2008; Pierce et al., 2009), for a limited number of 99 

variables (Jun et al., 2008; Reifen and Toumi, 2009),  or for a reduced realm (Walsh et al., 100 

2008). 101 

 102 

In this paper, we sought to improve the general knowledge on the available climate data for 103 

agricultural research using a three-step thorough analysis on fundamental aspects related to 104 

agricultural modelling. First, we perform a meta-analysis on the usage of various data sources 105 

for agricultural applications; second, we assess the quality and distribution of weather station 106 



records by exploring both the ability of these data to fill geographic information gaps by 107 

means of interpolation, and the sensitivities of the different regions to data loss; and finally, 108 

we assess the accuracy of climate model outputs against different observational datasets using 109 

various metrics reported in previous literature (Gleckler et al., 2008; Pierce et al., 2009). We 110 

finally analyse the main implications of our findings on agricultural impact assessment. 111 

 112 

2. Review of knowledge and data 113 

2.1.Understanding of processes and crop modelling 114 
Mechanisms to fix carbon in plants (i.e. photosynthesis) are affected by a number of factors 115 

(El-Sharkawy, 2005; Prasad et al., 2002), although responses strongly depend on the type of 116 

mechanism used by the plant to produce biomass (i.e. C4, C3, CAM) and on any other stresses 117 

to which the plant could be subjected simultaneously. In crop production, apart from 118 

appropriate plant growth it is the amount of biomass accumulated in fruits and seeds and the 119 

nutrients in them that matters most (Thuzar et al., 2010). Yields are a direct consequence of 120 

photosynthesis and biomass accumulation, and these are directly or indirectly affected by 121 

environmental conditions [see (Challinor et al., 2009b) for a review]. Well-watered crops 122 

grown under optimal temperature and solar radiation ranges develop to their full production 123 

potential (van Ittersum et al., 2003), but growth potential reduces if the crop is stressed during 124 

the growing season (Hew et al., 1969; Huntingford et al., 2005).  125 

 126 

Therefore, modelling crop growth depends on (1) correct formulation of the simulation 127 

model, (2) our ability to understand the effects of environmental factors on growth, and (3) 128 

correct measurement of the relevant environmental factors for correct mapping of their 129 

interactions (Boote et al., 1996; El-Sharkawy, 2005). Hence, crop modelling largely benefits 130 

from accurate measurements of temperatures, rainfall, and solar radiation, as the main factors 131 

acting on photosynthesis (Challinor and Wheeler, 2008; Hoogenboom et al., 1994), but even 132 

these basic data are often unavailable, messy, or of limited quality. The more available data 133 

there exists, the better calibration and evaluation of crop models can be (Adam et al., 2011; 134 

Niu et al., 2009; Xiong et al., 2008).  135 

 136 

Additionally, most crop models simulate growth of individual plants and then scale out the 137 

modelling results to the plot-scale, based on management decisions such as plant and row 138 

distances, and plot size (Aggarwal et al., 2006; Boote et al., 1996; Hoogenboom et al., 1994). 139 

On the other hand, available weather data (when not measured in the field) is only available 140 

at coarse spatial scales. Matching these two spatial scales is not an easy task [see (Challinor 141 

et al., 2009a; Jagtap and Jones, 2002; Trnka et al., 2004) for a review]. The challenge is thus 142 

to increase the knowledge of the interactions between atmospheric and crop-growth processes 143 

(Boote et al., 1996) whilst avoiding model over-parameterisation (Challinor et al., 2009b), 144 

improving the accuracy of inputs (Adam et al., 2011), and matching both spatial scales 145 

(Challinor et al., 2009a). All this requires closing the gap between crop and climate scientists. 146 

 147 

2.2.Weather data 148 
Measurements of weather for a given site are often unavailable because (1) there is no 149 

weather station; (2) weather stations are not well maintained so data are either only available 150 



for a short period or contain gaps, (3) collected data are not properly stored; (4) data do not 151 

pass basic quality checks; and/or (5) access to data is restricted by holding institutions (Figure 152 

1). This all further constrains agricultural impact assessment, highlighting the importance of 153 

making data public. 154 

 155 

<Insert Figure 1 here> 156 
 157 

Apart from the constraints related to access and weather station locations, probably the most 158 

important issue regarding weather data is quality (Begert et al., 2008; DeGaetano, 2006) 159 

(Figure 1), which also greatly affects the performance of impact models. Therefore, the 160 

climate and agricultural community has partly focused on developing methods for either 161 

temporal or spatial data gap filling, and on using such methods for developing global or 162 

regional datasets with public access (Hijmans et al., 2005; Jones and Thornton, 1999; Soltani 163 

et al., 2004).  164 

 165 

However, uncertainties in global datasets derived from interpolation methods have been only 166 

barely (if at all) estimated (Buytaert et al., 2009; Challinor and Wheeler, 2008; Soria-Auza et 167 

al., 2010). Researchers using global datasets and any weather station source need to be aware 168 

of these problems and ought to take this into account by testing the sensitivities of their 169 

approaches to accuracy issues (i.e. inhomogeneities, discontinuities) and (if possible) 170 

providing results within the range of uncertainty in input data (i.e. such as the outputs of cross 171 

validated interpolation methods) (Challinor et al., 2005). 172 

 173 

2.3.Climate model data 174 
General Circulation Models (GCMs) are currently the best way to model the complex 175 

processes   that   occur   at   the   earth   system’s   level   (Huntingford et al., 2005; IPCC, 2007). 176 

However, as CGMs are highly complex, they are computationally expensive, so they have 177 

only been used for predictions at coarse spatial scales. These predictions therefore involve a 178 

number of uncertainties relevant to agriculture [see (Challinor et al., 2009b; Jarvis et al., 179 

2010; Quiggin, 2008) for reviews on the topic].  180 

 181 

In short, uncertainty in climate modelling arises from the impossibility of modelling the 182 

climate system with complete determinism (Walker et al., 2003). This uncertainty can arise 183 

from: context (boundaries of the system modelled), model, inputs, and parameters (Walker et 184 

al., 2003). Model uncertainty can be structural or technical: structural uncertainty in models is 185 

associated with our lack of understanding of the system, whereas technical uncertainty relates 186 

to our inability to implement mathematical formulations in computational systems. Other 187 

uncertainties in climate modelling arise from variable driving forces (greenhouse gas 188 

emissions and concentrations), initial conditions and parameterised physics (Challinor et al., 189 

2009b; Walker et al., 2003). Rationalisation and quantification of all these uncertainties under 190 

the context of agriculture is possible (see Challinor et al., 2009b for a review).  191 

 192 

Crop modellers are thus challenged to understand the broad concepts of climate modelling 193 

uncertainties and detect the sensitivities of crop models to them, whilst also having a basic 194 



understanding of earth processes in order to identify major flaws in climate models and 195 

decide the best ways to couple them with crop models. 196 

 197 

3. Materials and methods 198 
Throughout this paper, we built upon existing knowledge of agricultural and climate 199 

modelling (Sect. 2) and: 200 

1. Performed a meta-analysis on the usage of climate and weather data for agricultural 201 

modelling purposes and summarised the desirable characteristics sought when 202 

modelling crop production. 203 

2. Analysed the robustness of the existing weather station network by assessing both the 204 

ability of these data to correctly fill information gaps via interpolation methods, and 205 

the network’s sensitivities to information loss. 206 

3. Assessed the accuracy of climate model outputs from the Fourth Assessment Report 207 

of the IPCC (IPCC, 2007) against different observational datasets, using metrics and 208 

methods reported in the climate-science literature that are also familiar to agricultural 209 

researchers. 210 

 211 

All calculations were done by means of the software packages R-2.13.1 (available at 212 

http://www.r-project.org) and GRASS-GIS 6.4.0 (available at http://grass.fbk.edu) in a 64-bit 213 

Red Hat Enterprise Linux 5 box. 214 

 215 

3.1.Study area 216 
We focused on the geographic area of Africa and South Asia, where several studies have 217 

identified that significant vulnerabilities exist (Aggarwal, 2008; Aggarwal et al., 2004; 218 

Barrios et al., 2008; Byjesh et al., 2010; Challinor et al., 2007a; Chipanshi et al., 2003; Jones 219 

and Thornton, 2003; Lane and Jarvis, 2007; Liu et al., 2008; Lobell et al., 2008; Thornton et 220 

al., 2009; Thornton et al., 2011; Washington et al., 2006). In particular, we concentrate our 221 

efforts on West Africa (Senegal, Mali, Burkina Faso, Ghana and Niger), East Africa 222 

(Ethiopia, Tanzania, Uganda and Kenya) and the Indo-Gangetic Plains countries (India, 223 

Nepal, and Bangladesh), hereafter referred to as WAF, EAF and IGP, respectively (Figure 2). 224 

 225 

<Insert Figure 2> 226 

 227 

3.2.Analysing the usage of climate data in agricultural studies 228 

3.2.1. Meta-data from agricultural studies 229 
We gathered data from a number of publications on any topic that made use of climate data 230 

for any sort of agricultural modelling. We conducted searches using various search engines 231 

and downloaded only peer-reviewed publications. Review papers and the Fourth Assessment 232 

report of the IPCC were particularly useful in identifying additional published studies. We 233 

analysed all publications that in any way involved the usage of climate data for agricultural 234 

modelling purposes. As the selection of the impact assessment model is the first decision that 235 

any researcher needs to make, we focus on the driving factors of this decision. We recorded 236 

different variables from the studies as follows:  237 



(1) Problem and/or topic in question: classified in categories such as impact assessment, 238 

seasonal yield forecasting, sole crop modelling, and climate attribution, among others. 239 

Each study was classified into only one category by taking into account only the main 240 

issue addressed by the paper; 241 

(2) Scale of the approach: includes site, sub-national, country, regional (group of 242 

countries), and global; 243 

(3) Use of weather generators: for both present and future, we recorded whether the study 244 

did or did not use a weather generator; 245 

(4) Climate dataset (current): GCM when a GCM (regardless of which one) was used, 246 

RCM when an RCM (regardless of which one) was used, weather station, satellite (no 247 

further discrimination), and important datasets (i.e. CRU, WorldClim, GPCP, among 248 

others); 249 

(5) Climate dataset (future): the nature of used future projections was recorded here 250 

including the downscaling method, if applicable. Classifications were:  GCM  “as   is”  251 

when studies used raw GCM outputs as inputs, pattern scaled GCMs (Mitchell et al., 252 

2004), RCMs, systematic changes to current climate data, statistical downscaling 253 

(Wilby et al., 2009), and weather generator downscaled GCM (Jones et al., 2009). 254 

 255 

For further details on the above categories the reader is referred to our supplementary 256 

material (part 1). We revised a total of 205 peer-reviewed publications (See supplementary 257 

material part 2), printed between the years 1983 and 2011. Most of the studies were published 258 

immediately before or after the IPCC 4AR was released in 2007. When a certain study made 259 

use of two different sources of present-day climate data, it was considered twice (totalling 260 

247 cases).  261 

 262 

3.2.2. Analysing the usage of climate data in agricultural studies 263 
We analysed the recent trends in the use of climate data for agriculture: the obvious 264 

constraints in the studies, the type of approaches used and the climate data inputs used to 265 

drive the chosen agricultural models. By doing this, we ensured that we covered all the main 266 

factors driving  an  agricultural  researcher’s decision to select a particular approach for a given 267 

problem. 268 

 269 

3.3.Analysis of weather station data 270 

3.3.1. Worldwide weather station network data 271 
Long term climatological means of monthly precipitation and mean, maximum and minimum 272 

temperatures were assembled, as described by Hijmans et al. (2005). However, it is important 273 

to note that at the global level the sources of these data are large in number and differ in 274 

coverage, availability and quality (Table 1), and thorough quality checks were done only in a 275 

sub-set of the sources by original distributing institutions. 276 

 277 

<Insert Table 1 here> 278 
 279 

Additional sources such as R-Hydronet (http://www.r-hydronet.sr.unh.edu/english/) and 280 

Oldeman (1988) database for Madagascar were also included. We discarded any weather 281 



station with less than 10 years of data. The final dataset (after quality control and duplicates 282 

removal, see Hijmans et al. 2005 for more details) comprised 13,141 locations with monthly 283 

precipitation data, 3,744 locations with monthly mean temperature, and 2,684 locations with 284 

diurnal temperature range within our study region. This dataset is hereafter referred to as 285 

WCL-WS. 286 

 287 

3.3.2. Analysing robustness of existing weather station networks 288 
Many methods exist that allow the user to determine (interpolate) the value of a parameter 289 

(e.g., monthly rainfall) in a given condition (i.e. in a given site, at a given time, or both), 290 

where it had never been measured before. Some of these methods are already popular with 291 

researchers using climate data (Hijmans et al., 2005; Hutchinson, 1995; Jones and Thornton, 292 

1999; New et al., 2002) either on a regional or on a global basis. For climate-variable 293 

interpolations, the robustness of weather records is critical for an accurate result.  294 

 295 

We assessed the robustness of the weather station network by testing both the ability of 296 

weather records to yield accurate interpolation results, and the sensitivities of the network to 297 

information loss. Towards those ends, we used the WCL-WS dataset to fit a thin plate spline 298 

interpolation algorithm (Hutchinson, 1995) for our study region. We investigated the effect of 299 

weather station availability by using 100 cross validated folds for four variables (monthly 300 

maximum, minimum and mean temperatures and total precipitation) using similar methods as 301 

in Hijmans et al. (2005) and New et al. (2002) for each fold. We used longitude, latitude and 302 

elevation as independent variables. We used 85% randomly selected data points for fitting the 303 

splines and the remaining 15% for evaluating the result for each variable and month. For the 304 

evaluation, we calculated the R2 and the Root Mean Square Error (RMSE) and produced 305 

boxplots of the 100-fold-by-12-month interpolations for each of the four variables. As the 306 

number of stations considerably exceeded the amount of available memory for processing, 307 

we divided the whole region of study in 5 tiles, each with an equivalent number of locations. 308 

We then projected the fitted splines onto 30-arc-second gridded datasets of latitude, longitude 309 

and altitude (Jarvis et al., 2008), thus producing a total of 4,800 interpolated surfaces (12 310 

months times 4 variables times 100 folds). Finally, we analysed the spatial variability of 311 

standard deviations and the performance of the interpolation technique as proxies for 312 

sufficient distribution and geographic density of weather stations. 313 

 314 

3.4.Assessment of IPCC Fourth Assessment Report (4AR) model data 315 

3.4.1. Long-term observed mean climatology from weather stations 316 
Three different long term climatology datasets were assembled: (1) the Global Historical 317 

Climatology Network (GHCN, as in Sect. 3.3.1) version 2 (Peterson and Vose, 1997), 318 

available at http://www.ncdc.noaa.gov/pub/data/ghcn/v2. We used GHCN as an independent 319 

source because it is a global resource that contributed significantly to WCL-WS and also 320 

because it is available at more temporally disaggregated levels (i.e. monthly), thus allowing 321 

uniformity with analyses on Sect. 3.4.3 and 3.4.6. This database includes monthly historical 322 

totals (1900-2010) of precipitation (20,590 stations), and means of maximum, minimum 323 

(4,966) and mean (7,280) temperatures. GHCN data have been subject to quality checks and 324 

to  a  process  of  “homogenisation”  or  “adjustment”  (Peterson and Easterling, 1994); however, 325 



the   available   data  within   our   analysis   domain   consisted   primarily   of   “unadjusted”   stations.  326 

For each location (6,393 stations for rainfall, 1,278 for mean temperature and 549 for 327 

minimum and maximum temperature) within our study area, we averaged historical monthly 328 

time series for the period 1961-1990 for maximum, minimum and mean temperatures and 329 

total rainfall, resulting in a time-averaged dataset of 6,393 locations for rainfall, 1,278 for 330 

mean temperature and 549 for minimum and maximum temperature.  This dataset will be 331 

hereafter referred to as GHCN-CL. 332 

 333 

(2) WCL-WS (Sect. 3.3.1); and (3) the Global Surface Summary of the Day (GSOD) was 334 

accessed at http://www.ncdc.noaa.gov/cgi-bin/res40.pl. This database contains daily data 335 

from ~9,000 weather stations worldwide for 18 variables, including, mean, maximum, 336 

minimum and dew point temperature, sea level and location pressure, visibility, wind speed 337 

and gust, precipitation, snow depth, and specifications on the occurrence of rain, snow, fog, 338 

tornado, thunder, or hail (NOAA, 2011; ftp://ftp.ncdc.noaa.gov/pub/data/gsod/readme.txt). 339 

We selected weather stations within our study area (1,999); aggregated daily rainfall, mean, 340 

maximum and minimum temperatures to a monthly time scale; and then averaged over the 341 

period 1961-1990. This dataset will be hereafter referred to as GSOD-CL. 342 

 343 

3.4.2. Long-term observed mean climatology from interpolated surfaces 344 
We gathered high-resolution climatology from two different sources: (1) the high resolution 345 

climate surfaces in WorldClim (Hijmans et al., 2005), available at http://www.worldclim.org. 346 

WorldClim is a 30 arc-seconds (~1km at the equator) global dataset produced from the 347 

interpolation of long-term climatology as measured in weather stations. Global gridded data 348 

were downloaded at the 30 arc-second resolution, then masked to our analysis domain, and 349 

aggregated to 10 arc-minute using bilinear interpolation in order to reduce computational and 350 

storage time; and (2) the University of East Anglia Climatic Research Unit (CRU) dataset 351 

(New et al., 2002), available through http://www.cru.uea.ac.uk/cru/data/hrg/ (CRU-CL-2.0). 352 

This dataset was developed using the same interpolation method as WorldClim, with the 353 

main difference  that WorldClim includes many more weather stations, sometimes at the 354 

expense of input data quality. CRU-CL-2.0 resolution is 10 arc-minute (~20km at the 355 

equator). Data were downloaded at the global level and masked to our analysis domain. 356 

WorldClim and CRU-CL-2.0 are hereafter referred to as WCL-IS and CRU-IS (interpolated 357 

surfaces), respectively. We used these sources because (1) they are flag products that most 358 

researchers use for impact studies; (2) they are much higher resolution than GCMs (and other 359 

products such as the Global Precipitation Climatology Project [GPCP] and the Global 360 

Precipitation Climatology Centre [GPCC]) and hence permit the capture of small-scale 361 

weather patterns (important to agriculture) as well as a direct comparison of their within-362 

GCM-gridcell mean with the actual GCM value; (3) are based only on ground observations of 363 

weather and do not incorporate side-products such as reanalysis (Uppala et al., 2005) or 364 

satellite data (Huffman et al., 2007), both of whose accuracy is not as good. 365 

 366 

3.4.3. Long-term observed time series 367 
Two sources of weather time series were used: (1) long term (1961-1990) series of monthly 368 

weather conditions were gathered from GHCN version 2 (Peterson and Vose, 1997). Again, 369 



we used mainly unadjusted stations. Mean monthly temperature and total monthly historical 370 

rainfall data were used without any further processing; and (2) long-term (1961-1990) series 371 

of daily weather as in GSOD (NCDC, 2011). For GSOD, daily precipitation and monthly 372 

temperature were aggregated to the monthly level only if all days were reported with data (for 373 

rainfall) and if at least 50% of the days had data (for temperatures). This resulted in 1,999 374 

stations within our analysis domain, although not all stations had data for all months and all 375 

years. These two data sources are hereafter referred to as GHCN-TS and GSOD-TS, 376 

respectively. Lack of data prevented us from including maximum and minimum temperatures 377 

in the GHCN-TS and the GSOD-TS datasets. In contrast to GHCN-CL and GSOD-CL, 378 

GHCN-TS and GSOD-TS include every month and every year, thus allowing the analysis of 379 

inter-annual variability. 380 

 381 

3.4.4. Global climate model output 382 
The latest IPCC report (Fourth Assessment Report, 4AR) comprises the sole state-of-the-art 383 

public and official source of climate data for use in impact studies (IPCC, 2007; Jarvis et al., 384 

2010). We therefore decided to use IPCC 4AR results.  385 

 386 

We downloaded present day (1961-1990) simulations of global climate at original GCM 387 

resolution (~100 km) from the CMIP3 (Coupled Model Intercomparison Project phase 3) web 388 

data portal at https://esg.llnl.gov:8443/index.jsp (PCMDI, 2007). We downloaded monthly 389 

time series of mean, maximum, minimum temperature and precipitation flux in NetCDF 390 

format for 24 coupled GCMs (Table 2). Separately for each GCM, we calculated diurnal 391 

temperature range for each month and year as the difference between maximum and 392 

minimum temperatures and calculated total monthly rainfall as the product between the 393 

precipitation rate, the water density at sea level pressure and the number of seconds in a 394 

month. We used the each climate model monthly time series (GCM-TS hereafter) and also 395 

calculated average 1961-1990 climatology by averaging, for each variable (mean 396 

temperature, diurnal temperature range and total rainfall), every month for the whole 1961-397 

1990 period (GCM-CL hereafter). The final datasets (i.e. GCM-TS and GCM-CL, 398 

respectively) consisted of three variables (mean temperature, diurnal temperature range and 399 

total monthly rainfall) for 24 different GCMs. 400 

 401 

<Insert Table 2 here> 402 

 403 

3.4.5. Ability to represent long-term climatology 404 
The extent to which GCM predictions are accurate has not been fully explored for some parts 405 

of the world, particularly in the context of agriculture (Gleckler et al., 2008; Pierce et al., 406 

2009; Walsh et al., 2008). As previously stated (Sect. 2.1), we compared the most readily 407 

available variables from both ground observations and climate models: rainfall, mean 408 

temperature and diurnal temperature range. Data for other variables are not available for our 409 

study regions in observational datasets. As per our stated objective (Sect. 3), we performed 410 

two sets of comparisons: 411 

x First, we compared the GCM-CL dataset with the interpolated climatology in CRU-IS, 412 

WCL-IS (Sect. 3.4.2). We performed comparisons on a country basis in order to yield 413 



country-specific results. For each GCM gridcell, the mean, maximum and minimum 414 

values of all lower scale (CRU-IS, WCL-IS) cells was first calculated and then compared 415 

to the GCM value through the determination coefficient (R2) and corresponding p-value, 416 

the slope of a origin-forced (so that a 1:1 relationship was sought) regression curve (S) 417 

and the root mean square error (RMSE). 418 

x Second, using the same procedure, we compared the GCM-CL dataset with observed 419 

climatology in WCL-WS (Sect. 3.3.1), GHCN-CL and GSOD-CL (Sect. 3.4.1). 420 

 421 

We analysed total rainfall, mean temperatures and diurnal temperature ranges over three 422 

periods: December-January-February (DJF), June-July-August (JJA) and the whole year 423 

(ANN). These months represent the most critical seasons for agriculture in our study regions, 424 

and are also the most often assessed in the existing literature (Gleckler et al., 2008; Pierce et 425 

al., 2009). Due to space constraints, we present only the results of comparisons between 426 

GCM gridcell values and mean values within gridcells, unless otherwise stated. We do, 427 

however, discuss other relevant results in more general terms. 428 

 429 

3.4.6. Ability to represent long-term monthly climate time series 430 
CMIP3-related GCMs are known to misrepresent certain inter-annual and/or within-decade 431 

variations that are important for agricultural systems (Govindan et al., 2002). However, 432 

specific aspects of these errors have not been explored in all CMIP3 models in the context of 433 

agriculture. Therefore, in order to test the consistency of GCM predictions across time, we 434 

compared the GCM-TS (Sect. 3.4.4) dataset against the GHCN-TS and GSOD-TS (Sect. 435 

3.4.3). The comparison was done for three periods (JJA, DJF and ANN, Sect. 3.4.4) by 436 

calculating the R2 and corresponding p-value, the slope of the regression curve as forced to 437 

the origin and the RMSE between the two time series (GCM-TS vs. GHCN-TS and GCM-TS 438 

vs. GSOD-TS). As a GCM cell contains one or more weather stations, we averaged the 439 

monthly time series as needed before comparing the two pairs of series. Finally, we compared 440 

the performance of all GCMs across the geographic space of our study area. 441 

 442 

4. Results 443 

4.1. Usage of climate data in agricultural studies 444 

4.1.1. Topics of study 445 
The most addressed topic (41.4% of the studies) in our literature review was climate change 446 

impact assessment (Figure 3), followed by crop growth simulation (18.5%). Water resources-447 

impact studies round out the top three topics studied (8.1%), followed by climate attribution 448 

(6.9%), crop yield forecasting (6.1%), and model assessment (5.7%). Surprisingly, formal 449 

studies addressing adaptation were rather scarce (3.6%). Pests and diseases, soils, abiotic 450 

stresses and climate risks appeared to be a lot less addressed than impact assessment and crop 451 

growth simulation studies, which together accounted for more than 50% of the total 452 

publications.  453 

 454 

<Insert Figure 3 here> 455 

 456 

4.1.2. Scale of studies and type of models 457 



Most of the studies performed their models at a scale less than the size of a country; site-458 

specific or sub-national level together comprised 55% of the studies. Very few (7%) of the 459 

studies were performed at the global level, likely because of the type of models used: field-460 

scale mechanistic crop growth models were the most utilised overall (69.2%); followed by 461 

statistical and/or empirical approaches (S/E, 21.4%), which most of the crop growth 462 

modellers criticise for not being accurate enough (Lobell and Burke, 2010; Lobell et al., 463 

2008); and finally by hydrological models (10%). The frequent use of field-based crop 464 

growth models suggests that the time step requirement for input data is rather high (El-465 

Sharkawy, 2005), also confirmed by the usage of weather generators (8.5 and 11.2% for 466 

present and future climates, respectively). 467 

 468 

4.1.3. Climate data sources 469 
Unlike the model types, which were quite similar, the sources of present climate data varied 470 

substantially, with a total of 32 different sources being used for present climate data (Figure 471 

4A). On average, a different present-day-climate dataset was used for every 7 agricultural 472 

studies. The most commonly used data source was local (non-public) weather stations (50.4% 473 

of the cases), followed by University of East Anglia Climatic Research Unit (CRU) datasets 474 

with 13.7% (10.9% for CRU-TS [monthly time series], and 2.8% for CRU-CL [monthly 475 

climatology]). Climate model outputs were used in 14.5% of the cases: within this group, 476 

10.5% used GCM data, 4% RCM [Regional Climate Model] data, 3.6% satellite imagery, and 477 

2.8% WorldClim, followed by other less relevant sources. The Global Precipitation 478 

Climatology Project (GPCP) (Adler et al., 2003; Huffman et al., 2009), the Global 479 

Precipitation Climatology Centre (GPCC) (Schneider et al., 2010) and the Global Historical 480 

Climatology Network (GHCN, (Peterson and Vose, 1997)) were rarely reported overall 481 

(0.4% each). 482 

 483 

<Insert Figure 4 here> 484 
 485 

The future climate data used was found to be less variable overall, with only 7 different types 486 

of data employed in the 125 cases citing some type of future climate data (Figure 4B). Out of 487 

these 125, only one study did not clearly state which type of climate data was used. The vast 488 

majority of cases (42. 9%) used GCM data  “as   is”  (AI  GCM), meaning that predictions on 489 

agricultural yields were based on predicted changes at coarse resolution (~100 km). All other 490 

studies involved some type of downscaling, except those that employed the systematic 491 

changes approach (SC variables), which can be assumed to be sensitivity analyses rather than 492 

impact studies. RCMs (Regional Climate Models) were the most common way of 493 

downscaling GCMs, cited in 19% of the studies, followed by statistical downscaling with 494 

17.5% (SD GCM, (Tabor and Williams, 2010)), and pattern scaling with 8.7% (PS GCM, 495 

(Mitchell et al., 2004)) (Figure 4B). 496 

 497 

Uncertainty, as measured by the number of different future scenarios used (combinations of 498 

emissions scenarios and climate models) was explored in only 36.5% of the studies. 499 

Additionally, the average number of scenarios per study (rounded to the closest integer) was 500 

3, indicating that climate uncertainties are barely (if at all) studied in agricultural science and 501 



highlighting a knowledge gap in agricultural research, an issue previously raised and 502 

discussed by other authors (Challinor et al., 2009b; Challinor and Wheeler, 2008), although 503 

some studies addressing this aspect are underway (C. Rosenzweig, personal communication).  504 

 505 

4.2.Robustness of existing weather station networks 506 
The sensitivities of the network to information loss were found overall to be low. 507 

Nevertheless, certain areas, variables and months were found highly sensitive. Agricultural 508 

lands (Ramankutty et al., 2008), as visually inspected, are in general less sensitive to data loss 509 

than non-agricultural lands. Interpolations’ performance varied depending upon the variable, 510 

month and parameter used to evaluate them (i.e. R2, RMSE, and S), but were consistent, 511 

statistically significant (p<0.0001) and with variability (of R2, RMSE, and S) between 10–512 

15% in the worst cases. Rainfall presented the lowest R2 values (Figure 5), particularly in the 513 

months of April to August, during which there was a higher variability in the R2 value and the 514 

values reached the absolute minima (0.8). Although it is possible that a high number of 515 

weather stations per unit area can improve accuracy, it does not seem to happen in all 516 

variables, areas and/or months. 517 

 518 

<Insert Figure 5 here> 519 
 520 

The DJF period presented significantly lower variability and more predictive power, probably 521 

due to overall low climate variability (Cooper et al., 2008). Interestingly, maximum and 522 

minimum temperatures showed different interpolation accuracies, even though they were 523 

measured in the same places. Maximum RMSE for temperatures was up to 1.7°C, whilst for 524 

precipitation it was up to 100 mm/year, as seen in the evaluation data. The effect of 525 

geography and the difficulty of fitting unique and complex landscape features cause errors, 526 

leading to high standard deviations in some areas (Figure 6). In the highlands of Eastern 527 

Africa, particularly in the states of Benshangul-Gumaz, Addis Ababa and Southern Nations in 528 

Ethiopia, the central areas of the Eastern and Coast States in Kenya, and the very centre of 529 

Tanzania (i.e. regions of Morogoro, Dodoma and Manyara) between-fold variability was 530 

found to be high (above 150 mm/year). 531 

 532 

<Insert Figure 6 here> 533 
 534 

Over IGP, the largest variability was found in the coastal areas of Maharashtra, Karnataka 535 

and Kerala in India, where rainfall deviation was up to 600 mm/year, and in Nepal (districts 536 

of Gorka, Dhawalagiri, and Lumbini), where rainfall variability can go up to 1,000 mm/year, 537 

and temperature uncertainties up to 3°C, probably due to the combined effect of a more 538 

complex climate in the Himalayas and low weather station density.  539 

 540 

4.3.Accuracy of climate model outputs 541 

4.3.1. Ability to represent mean climate 542 
As expected, the climate models’ skill varied on a variable, country and region basis, with 543 

certain identifiable patterns (Figure 7, 8). The GCMs represent the observed climatology 544 

from weather stations (i.e. WCL-WS, GHCN-CL and GSOD-CL) more poorly than they do 545 



interpolated climatology (i.e. WCL-IS, CRU-IS), mainly because GCMs do not account for 546 

local-scale variability (Boo et al., 2011). In a broad sense, we found that the more complex 547 

the topography, the lower the skill of the GCMs (Gallée et al., 2004; Joubert et al., 1999). We 548 

also observed that GCM skill decreased according to the complexity of the variable, with the 549 

maximum skill displayed for mean temperatures, followed by temperature range and finally 550 

by precipitation. These results agree with those of other studies (Gleckler et al., 2008; 551 

Masson and Knutti, 2011; Pierce et al., 2009).  552 

 553 

Annual precipitation fit in IGP and WAF was observed to dip as low as 0 in some cases, with 554 

a considerable number of cases (23% for WCL-WS, 27% for GHCN-CL and 63% for GSOD-555 

CL) presenting very low adjustment (R2 < 0.5) (Figure 7). In Mali, Niger, India and 556 

Bangladesh, model skill in representing precipitation, compared to weather station 557 

measurements, was consistently low, an issue also reported in other studies (Douglass et al., 558 

2008; Gleckler et al., 2008; Reichler and Kim, 2008). The Bergen Climate Model (BCCR-559 

BCM2.0) and the INM-CM3.0 model showed very poor performance (R2<0.5) in more than 560 

25% of the countries when compared with WCL-WS, GHCN-CL and GSOD-CL, while the 561 

climate model GISS-ModelE (Hansen et al., 2007) presented the poorest performance. 562 

 563 

<Insert Figure 7 here> 564 
 565 

When compared with interpolated climatology (i.e. WCL-IS, CRU-IS), annual precipitation 566 

R2 values varied from 0.383 (GISS-ModelE-R in Uganda) to 0.998 (IAP-FGOALS1.0-G in 567 

Burkina Faso), whilst for mean temperatures the R2 varied from 0.195 (GISS-ModelE-R in 568 

Nepal) to 0.999 (MIUB-ECHO-G in Burkina Faso), and for temperature range the values 569 

were observed between 0.386 (CCCMA-CGCM3.1-T47 in Senegal) to 0.9998 (MPI-570 

ECHAM5 in Burkina Faso) (Figure 7).  571 

 572 

<Insert Figure 8 here> 573 
 574 

In Ethiopia, mean temperature correlations were lower compared to other countries, despite 575 

the relative high density of stations in that area (data not shown). In Senegal, diurnal 576 

temperature range was found to be very poorly fitted, particularly for the CCCMA models 577 

(Figure 8). This result contrasts with that of other studies, which have marked the CCCMA 578 

models as the most skilled (Gleckler et al., 2008; Jun et al., 2008). The ability of GCMs to 579 

represent mean climate patterns over a year was neither uniform nor consistent (Table 3), 580 

with the lowest performance being observed for precipitation in the DJF period (large number 581 

of cases with R2<0.5, and few cases with R2>0.8). Performance for temperature range showed 582 

almost no cases with R2<0.5, but fewer cases with R2>0.8 than for mean temperatures (Table 583 

3). 584 

 585 

<Insert Table 3 here> 586 

 587 

4.3.2. Ability to represent interannual variability 588 



R square values were above 0.8 in a large number of gridcells (>50%) for all GCMs for both 589 

variables (rainfall, mean temperature) (data not shown); however, there were large rainfall 590 

biases in GCM outputs (Figure 9, 10), in some cases between 1,000 and 2,500 mm/year, 591 

depending on the GCM. These areas were located in Nepal, northern India and EAF. Most of 592 

the   models’ biases were wet-biases (Figure 10) which were found throughout the whole 593 

analysis domain, but they were particularly strong over IGP in the models CCCMA-594 

CGCM3.1-T47, CSIRO-Mk3.0 and –Mk3.5, GFDL-CM2.0, all NASA-GISS models, and 595 

both UKMO-HadCM3 and –HadGEM1, whereas the opposite signal was observed over the 596 

same area for the models MIROC3.2.-HIRES, NCAR-CCSM3.0, INGV-ECHAM4, CNRM-597 

CM3, and GFDL-CM2.1. Over WAF and EAF, almost all GCMs showed a dry-bias, with 598 

underestimations of up to 250 mm/year in some cases. Responses varied for seasonal means 599 

and totals, with the wet-season (JJA) being more sensitive to wet biases in most GCMs. 600 

 601 

Temperature biases were also large for certain areas. In some cases, annual mean temperature 602 

biases were greater than 5°C and were observed to go up to 10°C, particularly in the Sahel 603 

and in the areas surrounding the Himalayas and the Tibetan Plateau in Nepal (Figure 11). The 604 

most evident temperature biases were found in the NASA-GISS models (GISS-AOM, GISS-605 

ModelE-H and GISS-ModelE-R), and in INM-CM3.0, probably due to their coarse 606 

resolution. The quality of higher resolution models was in general better, but geographic 607 

trends were difficult to identify, as the locations with mean temperature were scant (7,280 608 

locations for the whole study area). The smallest biases were observed in WAF, northern 609 

EAF and central India, where temperature biases were below 1.5°C, particularly for the 610 

models BCCR-BCM2.0, UKMO-HadCM3, NCAR-PCM1, CCCMA-CGCM3.1-T47 and 611 

MIUB-ECHO-G, some of which have been reported to perform well in tropical areas before 612 

(Gleckler et al., 2008; Jun et al., 2008). These biases were mostly concentrated in lowlands 613 

and were mostly warm-biases, except for UKMO-HadCM3 (Figure 12). Cold-biased models 614 

were usually the GISS-NASA models, MIROC3.2-MEDRES, UKMO-HadCM3, IPSL-CM4, 615 

MRI-CGCM2.3.2A and IAP-FGOALS1.0-G both for seasons (i.e. JJA, DJF, maps not 616 

shown) and for the annual mean (Figure 11, 12). 617 

 618 

5. Discussion 619 

5.1.Climate data and agricultural research 620 
Although climate  model  data  (“as  is”)  are often preferred for impact studies, crop modellers 621 

and agricultural scientists should be cautious when developing future adaptation strategies 622 

based on crop models applied using future predictions of different (and sometimes unknown) 623 

nature (Jarvis et al., 2011), given the large uncertainties regarding the agricultural system and 624 

plant responses, the underlying uncertainty related to parameterised processes, and the 625 

differences in scales, all of which are reported in the impact-assessment literature [e.g. 626 

(Challinor and Wheeler, 2008)]. This, however, does not necessarily imply that climate 627 

model data cannot or should not be used, but rather means that an adequate treatment of 628 

biases needs to be done before climate and crop models can be properly used together 629 

(Challinor et al., 2010; Osborne et al., 2007). 630 

 631 



Our findings demonstrate that, for regional assessments where large area process-based crop 632 

models, statistical, or empirical models are to be used, products such as WorldClim (Jones 633 

and Thornton, 2003; Thornton et al., 2009) and CRU (Challinor et al., 2004) coupled with 634 

weather generation routines appear to be the best-bet approach (Challinor et al., 2004; Jones 635 

and Thornton, 2003), although climate model data can also be used with proper bias 636 

treatment (Challinor et al., 2010; Osborne et al., 2007). However, if studies are to be carried 637 

out on a site-specific scale (Parry et al., 2005), weather station data is the best means by 638 

which to calibrate the modelling approaches. While partnerships are constantly being built 639 

and this allows researchers to share data, currently global weather station data such as GSOD 640 

and GHCN seem to be good options in cases when no other data is available, particularly 641 

when coupled with satellite data or other (country specific) historical weather records 642 

(Álvarez-Villa et al., 2010). 643 

 644 

Agricultural research requires high quality and high resolution climatological data to yield 645 

accurate results, but to date this has been impossible to achieve at detailed scales and with 646 

sufficient coverage, partly due to the difficulty in compiling and revising field data and partly 647 

due to the limited climatology knowledge of agricultural researchers (with some exceptions). 648 

Large-scale datasets can be matched to certain crop models, mostly when these models can 649 

be applied at large scales (Challinor et al., 2010) or do not rely on a detailed calibration of 650 

varietal-level crop parameters (Lobell et al., 2011; Lobell et al., 2008). However, matching 651 

different modelling scales is not a trivial matter (Baron et al., 2005; Challinor et al., 2009a). 652 

Two options are available for matching two differing scales: 653 

(1) Decreasing the resolution of the crop model from plot scale to large regions, at the 654 

expense of loss of detail in some processes [see (Challinor et al., 2007b; Challinor et 655 

al., 2004; Yao et al., 2007)], or 656 

(2) Disaggregating the coarse-resolution climate data, at the expense of introducing noise 657 

and possibly propagating uncertainties present in the original climate model data 658 

(Tabor and Williams, 2010). 659 

 660 

These two choices yield different results that need to be assessed and coupled. Climate data 661 

can be aggregated up to any scale to match any intended use (Masson and Knutti, 2011), but 662 

agricultural impacts need to be informed at an scale such that information can be used for 663 

decision making and adaptation (Jarvis et al., 2011). Hence, governments and international 664 

agencies should support common platforms through which data can be shared without 665 

restrictions between members of the research community. Best-bet methods can then be 666 

applied over such data to produce useable datasets that can be further shared, used and 667 

assessed in multidisciplinary and transdisciplinary approaches. 668 

 669 

5.2.Robustness of existing weather station network 670 
It is tacitly acknowledged that the use of interpolated surfaces can lead to errors and biases 671 

when these data are used for impact assessment (A. Jarvis, pers. comm.). However, we have 672 

demonstrated here that the effects on uncertainty are actually rather low in most of the cases, 673 

with very few exceptions (highlands of Ethiopia, the Himalayas, and some parts of the Sahara 674 

and Southern Africa, Figure 6). 675 



 676 

The results of this research suggest that, despite weather station density being important, it 677 

may not be the only determining factor for a good ability to fill information gaps (Hijmans et 678 

al., 2005). Based on our results, we suggest that, in selecting locations to measure weather, 679 

the following factors be taken into account: (1) the nature of the variable (e.g. precipitation 680 

might be much more difficult to monitor than temperature), (2) the area where it is measured 681 

(topographically complex areas are much more variable), (3) the values of the variable in the 682 

areas where it is measured (high values are subjected to larger absolute errors, assuming 683 

relative errors are relatively uniform), (4) the relevance of the area for different subjects (i.e. 684 

the Sahara might be irrelevant for agriculture but can be of high relevance for other fields 685 

such as climate science, ecology or biodiversity and conservation), (5) possible errors in 686 

measurements and other underlying factors that can influence the measurability or 687 

correctness of estimates of a particular variable, and (6) possible political or social constraints 688 

on access to the site. Improving weather station distribution and status, as well as improving 689 

the cross-checking, correction and validation of data collected at the different sites, is 690 

fundamental for improving climate data for agricultural impact assessment. 691 

 692 

5.3.Global climate model accuracy and performance 693 

5.3.1. CMIP3 climate model skill 694 
GCM performance is highly reliant on the type of comparisons performed, on the GCM 695 

formulation and on the nature of climate conditions in the analysed areas (Gleckler et al., 696 

2008; Masson and Knutti, 2011). Underlying factors driving GCM performance are indeed 697 

difficult to track, given the complexity of the models. IPCC 4AR (CMIP3) models showed 698 

varied performance, with a high tendency to being wet-biased and no general trend for 699 

temperature. These responses reportedly have their origin in different factors: first, some 700 

GCMs have weak forcing on sea surface temperatures (SSTs), whereas climate in Africa and 701 

Asia is strongly coupled with the Atlantic and Indian Ocean and with inland water bodies 702 

(Gallée et al., 2004; Lebel et al., 2000); second, models do not properly account for the 703 

relation between inter-annual variability, ENSO and the monsoonal winds (Gallée et al., 704 

2004; Hulme et al., 2001); third, the resolution of the models prevents acknowledgement of 705 

local-scale land use, orographic patterns and small water bodies (Hudson and Jones, 2002); 706 

fourth, cloud thickness and latent heat and moisture flux between clouds has not been 707 

properly resolved in the models (Gallée et al., 2004); and fifth, convective parameterisations 708 

produce an early onset of the seasonal rains and over-prediction of wet days and high-rainfall 709 

events (Gallée et al., 2004). 710 

 711 

The NASA models GISS-ModelE (-R and -H) consistently presented very low predictive 712 

ability, mainly because of the   models’   coarse spatial resolution in conjunction with the 713 

reasons mentioned above (Hansen et al., 2007). These results agree with those of Gleckler et 714 

al. (2008), who reported that NCAR-PCM1, GISS-ModelE (-R and –H) and GISS-AOM 715 

models are the worst performing in the 24 GCMs of the CMIP3 ensemble. Similar results are 716 

reported by other authors that have assessed this or similar model ensembles (Jun et al., 2008; 717 

Pierce et al., 2009). Lack of detail in land use and land use changes (Eltahir and Gong, 1996), 718 

monsoon winds (Eltahir and Gong, 1996; Gallée et al., 2004), and sea surface temperature 719 



anomalies (SSTs) of the Atlantic and the Indian Oceans (Lebel et al., 2000; Sun et al., 1999) 720 

also causes the scales at which climate model information is robust to be varied (Masson and 721 

Knutti, 2011), and prevents local scale seasonal weather patterns from being modelled 722 

consistently (Douglass et al., 2008; Hansen et al., 2007). 723 

 724 

5.3.2. Plugging climate model data into agricultural research 725 
GCMs do not provide realistic representations of climate conditions in a particular site, but 726 

rather provide estimated conditions for a large area. Our results, in agreement with those from 727 

the agricultural community (Baron et al., 2005; Challinor et al., 2003) and the climate 728 

community (Jun et al., 2008; Masson and Knutti, 2011), indicate that climate model outputs 729 

cannot be input directly into plot-scale (agricultural) models, but support the idea that higher 730 

resolution climate modelling largely improves results. Either the CMIP3 (assessed here) or 731 

the upcoming CMIP5 (being released at the moment) (Moss et al., 2010) climate model 732 

outputs can be adequately used in agricultural modelling if: (1) the scales between the models 733 

are matched (see Sect. 5.1), (2) skill of models is assessed and ways to create robust model 734 

ensembles are defined, (3) uncertainty and model spread are quantified in a robust way, and 735 

(4) decision making in the context of uncertainty is fully understood. 736 

 737 

Producing robust (i.e. skilled and certain) ensembles for agriculture is not an easy task, 738 

mainly because of the scales at which these have been found to be robust (Masson and 739 

Knutti, 2011). Opinions are contrasting: some authors support sub-selecting models based 740 

upon performance under present conditions (Matsueda and Palmer, 2011; Pierce et al., 2009), 741 

calculating a mean ensemble by weighting models based on skill (Matsueda and Palmer, 742 

2011; Walsh et al., 2008), while others advocate using all available models with no-weighting 743 

at all (Reifen and Toumi, 2009). We suggest that until sensitivities of agricultural models to 744 

ensemble spread are fully explored (Baigorria et al., 2007), the full CMIP3 (or CMIP5) 745 

ensembles should be used. 746 

 747 

Strategies for combining plot-scale and large-scale models and for optimising the overall 748 

result (including estimation of uncertainties derived from the scale-matching process) need to 749 

be further researched. The potential of high-quality and less uncertain climate predictions of 750 

current and future climate conditions for agricultural research is expected to have a direct 751 

impact on decision-making at different levels and for different purposes: to improve yields on 752 

the farm, to direct country level policies and investment, to define research foci, to direct 753 

international agencies’ investments, and to clarify global greenhouse emissions limits and 754 

commitments (Challinor et al., 2009a; Funke and Paetz, 2011; IPCC, 2007).  755 

 756 

6. Conclusions 757 
A thorough analysis of different aspects of climate data for agricultural applications was 758 

performed. All topics addressed here are of high relevance to agricultural applications, 759 

particularly in the global tropics. Several important points were raised: (1) spatial scale is the 760 

most important issue for agricultural researchers, as they prefer to use monthly products with 761 

higher resolution rather than daily products with very low spatial resolution, or else limit their 762 

areas of study to field plots; (2) the sensitivities of Sub-Saharan African and Southeast Asian 763 



climate to data loss and poor availability were found to not be limiting factors for the region, 764 

with the exceptions of mountainous areas in Nepal and Ethiopia; and (3) climate modelling, 765 

although constantly improving and useful, still requires considerable future development. 766 

 767 

As such, CMIP3 GCMs can be used with a certain degree of confidence to represent large-768 

area climate conditions for some areas and periods. In areas where predictions lack enough 769 

skill for agricultural modelling, models can be bias-corrected using different methods [see 770 

(Challinor et al., 2009a; Hawkins et al., 2011; Reifen and Toumi, 2009)]. Whilst model skill 771 

is expected to improve with the upcoming IPCC Fifth Assessment Report, climate model 772 

ensembles as well as different methods for ‘calibrating’ (i.e. pre-processing for input into 773 

crop models) climate model data both need to be used, as uncertainties go beyond those 774 

derived from emissions scenarios (Hawkins et al., 2011). The proper usage of climate 775 

projections for agricultural impact assessment is of paramount importance in order to 776 

properly inform adaptation. 777 

 778 

Finally, it is critical to understand the implications of all this to agriculture. Crops are 779 

sensitive to shortages in water and heat stresses during key periods during their development 780 

(i.e. flowering, fruit filling). Therefore, lack of skill in representing seasonal and inter-annual 781 

variability is expected to produce a significant obstacle to agricultural impact assessment of 782 

climate change; several examples in the literature exist that illustrate this (Baigorria et al., 783 

2008; Baigorria et al., 2007). The importance of this factor depends on the strength of the 784 

climate signal on yields and the variables that drive this signal. Future impact assessments 785 

need to take into account input data and climate model data inaccuracies, sensitivities and 786 

uncertainties; make their own assessments of the inaccuracies and uncertainties; and 787 

comprehensively quantify and report uncertainties in the impact assessment process. 788 
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Figure captions 1094 

 1095 
Figure 1 Cascade of constraints to climate data, as normally observed in agricultural impact 1096 

assessment 1097 

 1098 

Figure 2 Areas of study. Bold-outlined areas indicate the areas on which the study focused 1099 

(SN: Senegal, ML: Mali, NE: Niger, BF: Burkina Faso, GH: Ghana, UG: Uganda, ET: 1100 

Ethiopia, KE: Kenya, TZ: Tanzania, NP: Nepal, BD: Bangladesh, IN: India) 1101 

 1102 

Figure 3 Topics treated in the analysed agricultural studies. WG: weather generators. 1103 

 1104 

Figure 4 Frequency of use of the different data sources in agricultural studies. A. Present-day 1105 

climates. B. Future climates. Datasets acronyms are as follows: CRU-TS: Climatic Research 1106 

Unit monthly time series product at 0.5 degree, GCM: global climate model output, RCM: 1107 

regional climate model, CRU-CL: CRU monthly climatology product at 10 arc-minute, 1108 

MARS: Data from the MARS European project, GSOD: Global summary of the day, 1109 

ARTES: Africa rainfall and temperature evaluation system, VEMAP: United States 1110 

comprehensive dataset, ATEAM: Advanced Terrestrial Ecosystem Analysis and Modelling, 1111 

PRISM: United States dataset, GPCP: Global Precipitation Climatology Project, GPCC: 1112 

Global Precipitation Climatology Centre, GHCN: Global Historical Climatology Network, AI 1113 

GCM:  GCM  data  “as  is”,  SD  GCM:  statistically  downscaled  GCM,  PS  GCM:  pattern  scaled  1114 

GCM, WG GCM: GCM data through a weather generator, SC Variables: systematic changes 1115 

in target key variables, Unclear: not specified clearly in study, ARPEGE: the ARPEGE 1116 

Atmospheric GCM (Déqué et al., 1994). 1117 

 1118 

Figure 5 Performance of the interpolations for all variables and months as measured by the 1119 

R-square value. A. Rainfall, B. Mean temperature, C. Maximum temperature, D. Minimum 1120 

temperature 1121 

 1122 
 Figure 6 Uncertainties in WorldClim expressed as standard deviations from the mean of the 1123 

100 cross-validated folds for (A) total annual rainfall (in mm), and (B) annual mean 1124 

temperature (in ºC). 1125 

 1126 
Figure 7 Comparison (R-square based) of observed climatology (CL-WS [w], GHCN-CL [g] 1127 

and GSOD-CL [o]) and each of the GCMs (GCM-CL) for each of the countries in the study 1128 

area for mean temperature (top), temperature range (middle) and precipitation (bottom), for 1129 

the annual and two seasonal (DJF, JJA) means or totals. All R2 values were statistically 1130 

significant at p<0.0001 1131 

 1132 
Figure 8 Comparison (R-square based) of interpolated climatology (i.e. CRU-IS [c], WCL-IS 1133 

[w]), and each of the GCMs (GCM-CL) for each of the countries in the study area for mean 1134 

temperature (top), temperature range (middle) and precipitation (bottom) for the annual mean 1135 

or total and two seasons (DJF, JJA). All R2 values were statistically significant at p<0.001.  1136 



 1137 

Figure 9 Root mean squared error (RMSE), in millimetres, between observed (GHCN-TS) 1138 

and GCM (GCM-TS) time series, for the 24 GCMs in Table 2, for annual total rainfall 1139 

between the years 1961-1990. 1140 

 1141 

Figure 10 Mean bias of GCM (GCM-TS) time series compared to observed time series 1142 

(GHCN-TS), for the 24 GCMs in Table 2, for annual total rainfall between the years 1961-1143 

1990. Bias is expressed as the slope of the regression curve between observed and climate-1144 

model series. Values below 1 (light grey areas) indicate that GCMs are wet-biased, whereas 1145 

values above 1 (dark grey areas) indicate that GCMs are dry-biased. 1146 

 1147 

Figure 11 Root mean squared error (RMSE), in Celsius degree, between observed (GHCN-1148 

TS) and GCM (GCM-TS) time series, for the 24 GCMs in Table 2, for annual mean 1149 

temperature between the years 1961-1990 1150 

 1151 

Figure 12 Mean bias of GCM (GCM-TS) time series compared to observed time series 1152 

(GHCN-TS), for the 24 GCMs in Table 2, for annual mean temperature between the years 1153 

1961-1990. Bias is expressed as the slope of the regression curve between observed and 1154 

climate-model series. Values below 1 (light grey areas) indicate that GCMs are warm-biased, 1155 

whereas values above 1 (dark grey areas) indicate that GCMs are cold-biased. 1156 
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 1160 

 1161 

 1162 

 1163 

 1164 

Table 1 Number of locations per data source (global) 1165 

Source* Precipitation 
stations 

Mean 
temperature 

stations 

Min., Max. 
temperature 

stations 
Period 

GHCN v2 20,590 7,280 4,966 1950-
2000 

WMO 
CLINO 4,261 3,084 2,504 1961-

1990 
FAOCLIM 

2.0 27,372 20,825 11,543 1960-
1990 

CIAT 18,895 13,842 5,321 1950-
2000 

*GHCN v2: Global Historical Climatology Network version 2 (Peterson and Vose, 1997); 1166 

WMO CLINO: World Meteorological Organization Climatology Normals; FAOCLIM 2.0: 1167 

Food and Agriculture Organization of the United Nations Agro-Climatic database (FAO, 1168 

2001); CIAT: Database assembled by Peter J. Jones at the International Center for Tropical 1169 

Agriculture (CIAT). 1170 

  1171 



 1172 

 1173 

 1174 

 1175 

Table 2 Available GCMs, resolutions, and main references 1176 
Model Country Atmosphere Ocean Reference 

BCCR-BCM2.0 Norway T63, L31 1.5x0.5, L35 (Furevik et al., 2003) 
CCCMA-CGCM3.1 (T47) Canada T47 (3.75x3.75), L31 1.85x1.85, L29 (Scinocca et al., 2008) 
CCCMA-CGCM3.1 (T63) Canada T63 (2.8x2.8), L31 1.4x0.94, L29 (Scinocca et al., 2008) 
CNRM-CM3 France T63 (2.8x2.8), L45 1.875x(0.5-2), L31 (Salas-Mélia et al., 2005) 
CSIRO-Mk3.0 Australia T63, L18 1.875x0.84, L31 (Gordon et al., 2002) 
CSIRO-Mk3.5 Australia T63, L18 1.875x0.84, L31 (Gordon et al., 2002) 
GFDL-CM2.0 USA 2.5x2.0, L24 1.0x(1/3-1), L50 (Delworth et al., 2006) 
GFDL-CM2.1 USA 2.5x2.0, L24 1.0x(1/3-1), L50 (Delworth et al., 2006) 
GISS-AOM USA 4x3, L12 4x3, L16 (Russell et al., 1995) 
GISS-MODEL-EH USA 5x4, L20 5x4, L13 (Schmidt et al., 2006) 
GISS-MODEL-ER USA 5x4, L20 5x4, L13 (Schmidt et al., 2006) 
IAP-FGOALS1.0-G China 2.8x2.8, L26 1x1, L16 (Yongqiang et al., 2004) 
INGV-ECHAM4 Italy T42, L19 2x(0.5-2), L31 (Gualdi et al., 2008) 
INM-CM3.0 Russia 5x4, L21 2.5x2, L33 (Diansky and Zalensky, 2002) 
IPSL-CM4 France 2.5x3.75, L19 2x(1-2), L30 (Marti et al., 2005) 
MIROC3.2-HIRES Japan T106, L56 0.28x0.19, L47 (Hasumi and Emori, 2004) 
MIROC3.2-MEDRES Japan T42, L20 1.4x(0.5-1.4), L43 (Hasumi and Emori, 2004) 
MIUB-ECHO-G Germany/Korea T30, L19 T42, L20 (Grötzner et al., 1996) 
MPI-ECHAM5 Germany T63, L32 1x1, L41 (Jungclaus et al., 2006) 
MRI-CGCM2.3.2A Japan T42, L30 2.5x(0.5-2.0) (Yukimoto et al., 2001) 
NCAR-CCSM3.0 USA T85L26, 1.4x1.4 1x(0.27-1), L40 (Collins et al., 2006) 
NCAR-PCM1 USA T42 (2.8x2.8), L18 1x(0.27-1), L40 (Washington et al., 2000) 
UKMO-HADCM3 UK 3.75x2.5, L19 1.25x1.25, L20 (Gordon et al., 2000) 
UKMO-HADGEM1 UK 1.875x1.25, L38 1.25x1.25, L20 (Johns et al., 2006) 
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 1179 

 1180 

Table 3 Summarised performance of all GCMs with available data for each of the variables 1181 

and periods in the study countries for different ranges of the R2 skill evaluation parameter. 1182 

Variable Period Dataset* R2<0.5 
(%)* 

0.5<R2<0.7 
(%)* 

R2>0.8  
(%)* 

R2>0.9 
(%)* 

R
ai

nf
al

l 
Annual 

IS 2.8 6.6 77.8 54.3 
WS 37.5 19.4 30.8 17.0 
ALL 23.6 14.3 49.6 31.9 

DJF 
IS 17.7 19.3 49.1 25.9 

WS 38.1 17.2 31.4 15.7 
ALL 29.9 18.1 38.5 19.8 

JJA 
IS 12.8 17.2 58.9 40.1 

WS 15.2 19.1 52.1 34.5 
ALL 14.2 18.3 54.8 36.7 

D
iu

rn
al

 te
m

pe
ra

tu
re

 
ra

ng
e 

Annual 
IS 0.4 2.2 81.8 73.1 

WS 0.4 1.2 54.5 46.1 
ALL 0.4 1.7 68.1 59.6 

DJF 
IS 0.4 2.2 80.4 71.2 

WS 0.4 2.4 53.1 47.7 
ALL 0.4 2.3 66.8 59.4 

JJA 
IS 0.4 2.0 80.7 67.2 

WS 0.4 1.2 54.5 46.1 
ALL 0.4 1.6 67.6 56.6 

M
ea

n 
te

m
pe

ra
tu

re
 Annual 

IS 0.7 1.2 96.4 95.7 
WS 2.4 1.9 93.5 91.0 
ALL 1.7 1.6 94.7 92.8 

DJF 
IS 3.5 1.9 93.2 91.5 

WS 2.3 2.3 93.9 91.2 
ALL 2.8 2.2 93.6 91.3 

JJA 
IS 0.0 0.0 100.0 98.8 

WS 0.0 0.1 99.8 98.5 
ALL 0.0 0.1 99.9 98.6 

* Values are expressed as percent of country-GCM combinations for comparisons of GCM-1183 

CL and different observational datasets: interpolated surfaces (IS), namely, WCL-IS and 1184 

CRU-IS; weather stations (WS), namely, GHCN-CL, WCL-WS, GSOD-CL; and as the 1185 

average of IS and WS (ALL) 1186 
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Abstract 32 
Climate change is expected to substantially reduce agricultural yields, as reported in the by 33 

the Intergovernmental Panel on Climate Change (IPCC). In Sub-Saharan Africa and (to a 34 

lesser extent) in South Asia, limited data availability and institutional networking constrain 35 

agricultural research and development. Here we performed a review of relevant aspects in 36 

relation to coupling agriculture-climate predictions, and a three-step analysis of the 37 

importance of climate data for agricultural impact assessment. First, using meta-data from the 38 

scientific literature we examined trends in the use of climate and weather data in agricultural 39 

research, and we found that despite agricultural researchers’   preference   for field-scale 40 

weather data (50.4% of cases in the assembled literature), large-scale datasets coupled with 41 

weather generators can be useful in the agricultural context. Using well-known interpolation 42 

techniques, we then assessed the sensitivities of the weather station network to the lack of 43 

data and found high sensitivities to data loss only over mountainous areas in Nepal and 44 

Ethiopia (random removal of data impacted precipitation estimates by ±1,300 mm/year and 45 

temperature estimates by ±3°C). Finally, we numerically compared IPCC Fourth Assessment 46 

Report climate models’   representation of mean climates and interannual variability with 47 

different observational datasets. Climate models were found inadequate for field-scale 48 

agricultural studies in West Africa and South Asia, as their ability to represent mean climates 49 

and climate variability was limited: more than 50% of the country-model combinations 50 

showed <50% adjustment for annual mean rainfall (mean climates), and there were large 51 

rainfall biases in GCM outputs (1,000 to 2,500 mm/year), although this varied on a GCM 52 

basis (climate variability). Temperature biases were also large for certain areas (5-10°C in the 53 

Himalayas and Sahel). All this is  expected  to  improve  with  IPCC’s  Fifth  Assessment  Report; 54 

hence, appropriate usage of even these new climate models is still required. This improved 55 

usage entails bias reduction (weighting of climate models or bias-correcting the climate 56 

change signals), the implementation of methods to match the spatial scales, and the 57 

quantification of uncertainties to the maximum extent possible. 58 

 59 

Keywords: Sub-Saharan Africa; South Asia; climate modelling; climate model; skill; 60 

uncertainty; CMIP3; CMIP5. 61 

  62 



1. Introduction 63 
Agriculture is expected to play an important role in the context of climate change, not only 64 

because it is considered amongst the most vulnerable sectors, but also because it is part of the 65 

solution (i.e. potential to mitigate greenhouse gases [GHGs] emissions) (FAO, 2009; IPCC, 66 

2007). Agriculture will likely be severely affected over the next hundred years due to 67 

unprecedented rates of changes in the climate system (IPCC, 2007; Jarvis et al., 2010; Lobell 68 

et al., 2008; Thornton et al., 2011). Some of these impacts have already been observed 69 

(Battisti and Naylor, 2009; Schlenker and Lobell, 2010). To help cope with such impacts, a 70 

framework to assess the effects of climate change on agriculture and food security and to aid 71 

with adaptation was established in 2008, as described by Jarvis et al. (2011): The 72 

Consultative Group of International Agricultural Research (CGIAR) Research Program on 73 

Climate Change, Agriculture and Food Security (CCAFS). 74 

 75 

For adaptation to be successful, agricultural and climate data are crucial, and these are scarce 76 

in their basic forms (data from research and weather stations, respectively) or not very well 77 

managed and/or maintained in certain parts of the world. Most importantly, climate databases 78 

and their derived products are sometimes inaccurate, or else lack the documentation 79 

necessary to facilitate their use within the agricultural research community. In some 80 

instances, this may be indicative of the gap between the agricultural and climate research 81 

communities (Pielke et al., 2007; Thornton et al., 2011). Even when the two do collaborate, 82 

agricultural researchers face critical constraints when accessing basic sources of climate data 83 

(i.e. weather stations) due to a number of factors, from access to data, to weather maintenance 84 

and data quality checks, to the weather itself (DeGaetano, 2006).  85 

 86 

In the last 10 years, various datasets have been developed by different institutions, usually 87 

based on either a combination of weather station data, satellite data, and numerical weather 88 

prediction models in addition to interpolation methods, or on the sole application of climate 89 

models. The usage of these datasets for agricultural modelling purposes is rather limited for 90 

one or more of the following reasons: (1) their time step is long (monthly in the best case); 91 

(2) their temporal coverage is limited to an average of several years (Hijmans et al., 2005; 92 

New et al., 2002); (3) their spatial resolution is too coarse (Adler et al., 2003; Schneider et al., 93 

2010); (4) their geographic coverage is not wide enough (Di Luzio et al., 2008); and (5) only 94 

certain variables (i.e. temperatures, rainfall) are reported whereas other agriculturally relevant 95 

measures (e.g. potential and/or reference evapotranspiration, relative humidity, solar 96 

radiation) are rarely reported (Di Luzio et al., 2008; Hijmans et al., 2005). Moreover, 97 

assessments of these data (particularly climate models) have been done only under a climate-98 

science perspective (Gleckler et al., 2008; Pierce et al., 2009), for a limited number of 99 

variables (Jun et al., 2008; Reifen and Toumi, 2009),  or for a reduced realm (Walsh et al., 100 

2008). 101 

 102 

In this paper, we sought to improve the general knowledge on the available climate data for 103 

agricultural research using a three-step thorough analysis on fundamental aspects related to 104 

agricultural modelling. First, we perform a meta-analysis on the usage of various data sources 105 

for agricultural applications; second, we assess the quality and distribution of weather station 106 



records by exploring both the ability of these data to fill geographic information gaps by 107 

means of interpolation, and the sensitivities of the different regions to data loss; and finally, 108 

we assess the accuracy of climate model outputs against different observational datasets using 109 

various metrics reported in previous literature (Gleckler et al., 2008; Pierce et al., 2009). We 110 

finally analyse the main implications of our findings on agricultural impact assessment. 111 

 112 

2. Review of knowledge and data 113 

2.1.Understanding of processes and crop modelling 114 
Mechanisms to fix carbon in plants (i.e. photosynthesis) are affected by a number of factors 115 

(El-Sharkawy, 2005; Prasad et al., 2002), although responses strongly depend on the type of 116 

mechanism used by the plant to produce biomass (i.e. C4, C3, CAM) and on any other stresses 117 

to which the plant could be subjected simultaneously. In crop production, apart from 118 

appropriate plant growth it is the amount of biomass accumulated in fruits and seeds and the 119 

nutrients in them that matters most (Thuzar et al., 2010). Yields are a direct consequence of 120 

photosynthesis and biomass accumulation, and these are directly or indirectly affected by 121 

environmental conditions [see (Challinor et al., 2009b) for a review]. Well-watered crops 122 

grown under optimal temperature and solar radiation ranges develop to their full production 123 

potential (van Ittersum et al., 2003), but growth potential reduces if the crop is stressed during 124 

the growing season (Hew et al., 1969; Huntingford et al., 2005).  125 

 126 

Therefore, modelling crop growth depends on (1) correct formulation of the simulation 127 

model, (2) our ability to understand the effects of environmental factors on growth, and (3) 128 

correct measurement of the relevant environmental factors for correct mapping of their 129 

interactions (Boote et al., 1996; El-Sharkawy, 2005). Hence, crop modelling largely benefits 130 

from accurate measurements of temperatures, rainfall, and solar radiation, as the main factors 131 

acting on photosynthesis (Challinor and Wheeler, 2008; Hoogenboom et al., 1994), but even 132 

these basic data are often unavailable, messy, or of limited quality. The more available data 133 

there exists, the better calibration and evaluation of crop models can be (Adam et al., 2011; 134 

Niu et al., 2009; Xiong et al., 2008).  135 

 136 

Additionally, most crop models simulate growth of individual plants and then scale out the 137 

modelling results to the plot-scale, based on management decisions such as plant and row 138 

distances, and plot size (Aggarwal et al., 2006; Boote et al., 1996; Hoogenboom et al., 1994). 139 

On the other hand, available weather data (when not measured in the field) is only available 140 

at coarse spatial scales. Matching these two spatial scales is not an easy task [see (Challinor 141 

et al., 2009a; Jagtap and Jones, 2002; Trnka et al., 2004) for a review]. The challenge is thus 142 

to increase the knowledge of the interactions between atmospheric and crop-growth processes 143 

(Boote et al., 1996) whilst avoiding model over-parameterisation (Challinor et al., 2009b), 144 

improving the accuracy of inputs (Adam et al., 2011), and matching both spatial scales 145 

(Challinor et al., 2009a). All this requires closing the gap between crop and climate scientists. 146 

 147 

2.2.Weather data 148 
Measurements of weather for a given site are often unavailable because (1) there is no 149 

weather station; (2) weather stations are not well maintained so data are either only available 150 



for a short period or contain gaps, (3) collected data are not properly stored; (4) data do not 151 

pass basic quality checks; and/or (5) access to data is restricted by holding institutions (Figure 152 

1). This all further constrains agricultural impact assessment, highlighting the importance of 153 

making data public. 154 

 155 

<Insert Figure 1 here> 156 
 157 

Apart from the constraints related to access and weather station locations, probably the most 158 

important issue regarding weather data is quality (Begert et al., 2008; DeGaetano, 2006) 159 

(Figure 1), which also greatly affects the performance of impact models. Therefore, the 160 

climate and agricultural community has partly focused on developing methods for either 161 

temporal or spatial data gap filling, and on using such methods for developing global or 162 

regional datasets with public access (Hijmans et al., 2005; Jones and Thornton, 1999; Soltani 163 

et al., 2004).  164 

 165 

However, uncertainties in global datasets derived from interpolation methods have been only 166 

barely (if at all) estimated (Buytaert et al., 2009; Challinor and Wheeler, 2008; Soria-Auza et 167 

al., 2010). Researchers using global datasets and any weather station source need to be aware 168 

of these problems and ought to take this into account by testing the sensitivities of their 169 

approaches to accuracy issues (i.e. inhomogeneities, discontinuities) and (if possible) 170 

providing results within the range of uncertainty in input data (i.e. such as the outputs of cross 171 

validated interpolation methods) (Challinor et al., 2005). 172 

 173 

2.3.Climate model data 174 
General Circulation Models (GCMs) are currently the best way to model the complex 175 

processes   that   occur   at   the   earth   system’s   level   (Huntingford et al., 2005; IPCC, 2007). 176 

However, as CGMs are highly complex, they are computationally expensive, so they have 177 

only been used for predictions at coarse spatial scales. These predictions therefore involve a 178 

number of uncertainties relevant to agriculture [see (Challinor et al., 2009b; Jarvis et al., 179 

2010; Quiggin, 2008) for reviews on the topic].  180 

 181 

In short, uncertainty in climate modelling arises from the impossibility of modelling the 182 

climate system with complete determinism (Walker et al., 2003). This uncertainty can arise 183 

from: context (boundaries of the system modelled), model, inputs, and parameters (Walker et 184 

al., 2003). Model uncertainty can be structural or technical: structural uncertainty in models is 185 

associated with our lack of understanding of the system, whereas technical uncertainty relates 186 

to our inability to implement mathematical formulations in computational systems. Other 187 

uncertainties in climate modelling arise from variable driving forces (greenhouse gas 188 

emissions and concentrations), initial conditions and parameterised physics (Challinor et al., 189 

2009b; Walker et al., 2003). Rationalisation and quantification of all these uncertainties under 190 

the context of agriculture is possible (see Challinor et al., 2009b for a review).  191 

 192 

Crop modellers are thus challenged to understand the broad concepts of climate modelling 193 

uncertainties and detect the sensitivities of crop models to them, whilst also having a basic 194 



understanding of earth processes in order to identify major flaws in climate models and 195 

decide the best ways to couple them with crop models. 196 

 197 

3. Materials and methods 198 
Throughout this paper, we built upon existing knowledge of agricultural and climate 199 

modelling (Sect. 2) and: 200 

1. Performed a meta-analysis on the usage of climate and weather data for agricultural 201 

modelling purposes and summarised the desirable characteristics sought when 202 

modelling crop production. 203 

2. Analysed the robustness of the existing weather station network by assessing both the 204 

ability of these data to correctly fill information gaps via interpolation methods, and 205 

the network’s sensitivities to information loss. 206 

3. Assessed the accuracy of climate model outputs from the Fourth Assessment Report 207 

of the IPCC (IPCC, 2007) against different observational datasets, using metrics and 208 

methods reported in the climate-science literature that are also familiar to agricultural 209 

researchers. 210 

 211 

All calculations were done by means of the software packages R-2.13.1 (available at 212 

http://www.r-project.org) and GRASS-GIS 6.4.0 (available at http://grass.fbk.edu) in a 64-bit 213 

Red Hat Enterprise Linux 5 box. 214 

 215 

3.1.Study area 216 
We focused on the geographic area of Africa and South Asia, where several studies have 217 

identified that significant vulnerabilities exist (Aggarwal, 2008; Aggarwal et al., 2004; 218 

Barrios et al., 2008; Byjesh et al., 2010; Challinor et al., 2007a; Chipanshi et al., 2003; Jones 219 

and Thornton, 2003; Lane and Jarvis, 2007; Liu et al., 2008; Lobell et al., 2008; Thornton et 220 

al., 2009; Thornton et al., 2011; Washington et al., 2006). In particular, we concentrate our 221 

efforts on West Africa (Senegal, Mali, Burkina Faso, Ghana and Niger), East Africa 222 

(Ethiopia, Tanzania, Uganda and Kenya) and the Indo-Gangetic Plains countries (India, 223 

Nepal, and Bangladesh), hereafter referred to as WAF, EAF and IGP, respectively (Figure 2). 224 

 225 

<Insert Figure 2> 226 

 227 

3.2.Analysing the usage of climate data in agricultural studies 228 

3.2.1. Meta-data from agricultural studies 229 
We gathered data from a number of publications on any topic that made use of climate data 230 

for any sort of agricultural modelling. We conducted searches using various search engines 231 

and downloaded only peer-reviewed publications. Review papers and the Fourth Assessment 232 

report of the IPCC were particularly useful in identifying additional published studies. We 233 

analysed all publications that in any way involved the usage of climate data for agricultural 234 

modelling purposes. As the selection of the impact assessment model is the first decision that 235 

any researcher needs to make, we focus on the driving factors of this decision. We recorded 236 

different variables from the studies as follows:  237 



(1) Problem and/or topic in question: classified in categories such as impact assessment, 238 

seasonal yield forecasting, sole crop modelling, and climate attribution, among others. 239 

Each study was classified into only one category by taking into account only the main 240 

issue addressed by the paper; 241 

(2) Scale of the approach: includes site, sub-national, country, regional (group of 242 

countries), and global; 243 

(3) Use of weather generators: for both present and future, we recorded whether the study 244 

did or did not use a weather generator; 245 

(4) Climate dataset (current): GCM when a GCM (regardless of which one) was used, 246 

RCM when an RCM (regardless of which one) was used, weather station, satellite (no 247 

further discrimination), and important datasets (i.e. CRU, WorldClim, GPCP, among 248 

others); 249 

(5) Climate dataset (future): the nature of used future projections was recorded here  250 

including the downscaling method, if applicable. Classifications were:  GCM  “as   is”  251 

when studies used raw GCM outputs as inputs, pattern scaled GCMs (Mitchell et al., 252 

2004), RCMs, systematic changes to current climate data, statistical downscaling 253 

(Wilby et al., 2009), and weather generator downscaled GCM (Jones et al., 2009). 254 

 255 

For further details on the above categories the reader is referred to our supplementary 256 

material (part 1). We revised a total of 205 peer-reviewed publications (See supplementary 257 

material part 2), printed between the years 1983 and 2011. Most of the studies were published 258 

immediately before or after the IPCC 4AR was released in 2007. When a certain study made 259 

use of two different sources of present-day climate data, it was considered twice (totalling 260 

247 cases).  261 

 262 

3.2.2. Analysing the usage of climate data in agricultural studies 263 
We analysed the recent trends in the use of climate data for agriculture: the obvious 264 

constraints in the studies, the type of approaches used and the climate data inputs used to 265 

drive the chosen agricultural models. By doing this, we ensured that we covered all the main 266 

factors driving  an  agricultural  researcher’s decision to select a particular approach for a given 267 

problem. 268 

 269 

3.3.Analysis of weather station data 270 

3.3.1. Worldwide weather station network data 271 
Long term climatological means of monthly precipitation and mean, maximum and minimum 272 

temperatures were assembled, as described by Hijmans et al. (2005). However, it is important 273 

to note that at the global level the sources of these data are large in number and differ in 274 

coverage, availability and quality (Table 1), and thorough quality checks were done only in a 275 

sub-set of the sources by original distributing institutions. 276 

 277 

<Insert Table 1 here> 278 
 279 

Additional sources such as R-Hydronet (http://www.r-hydronet.sr.unh.edu/english/) and 280 

Oldeman (1988) database for Madagascar were also included. We discarded any weather 281 



station with less than 10 years of data. The final dataset (after quality control and duplicates 282 

removal, see Hijmans et al. 2005 for more details) comprised 13,141 locations with monthly 283 

precipitation data, 3,744 locations with monthly mean temperature, and 2,684 locations with 284 

diurnal temperature range within our study region. This dataset is hereafter referred to as 285 

WCL-WS. 286 

 287 

3.3.2. Analysing robustness of existing weather station networks 288 
Many methods exist that allow the user to determine (interpolate) the value of a parameter 289 

(e.g., monthly rainfall) in a given condition (i.e. in a given site, at a given time, or both), 290 

where it had never been measured before. Some of these methods are already popular with 291 

researchers using climate data (Hijmans et al., 2005; Hutchinson, 1995; Jones and Thornton, 292 

1999; New et al., 2002) either on a regional or on a global basis. For climate-variable 293 

interpolations, the robustness of weather records is critical for an accurate result.  294 

 295 

We assessed the robustness of the weather station network by testing both the ability of 296 

weather records to yield accurate interpolation results, and the sensitivities of the network to 297 

information loss. Towards thaoset ends, we used the WCL-WS dataset to fit a thin plate 298 

spline interpolation algorithm (Hutchinson, 1995) for our study region. We investigated the 299 

effect of weather station availability by using 100 cross validated folds for four variables 300 

(monthly maximum, minimum and mean temperatures and total precipitation) using similar 301 

methods as in Hijmans et al. (2005) and New et al. (2002) for each fold. We used longitude, 302 

latitude and elevation as independent variables. We used 85% randomly selected data points 303 

for fitting the splines and the remaining 15% for evaluating the result for each variable and 304 

month. For the evaluation, we calculated the R2 and the Root Mean Square Error (RMSE) 305 

and produced boxplots of the 100-fold-by-12-month interpolations for each of the four 306 

variables. As the number of stations considerably exceeded the amount of available memory 307 

for processing, we divided the whole region of study in 5 tiles, each with an equivalent 308 

number of locations. We then projected the fitted splines onto 30-arc-second gridded datasets 309 

of latitude, longitude and altitude (Jarvis et al., 2008), thus producing a total of 4,800 310 

interpolated surfaces (12 months times 4 variables times 100 folds). Finally, we analysed the 311 

spatial variability of standard deviations and the performance of the interpolation technique 312 

as proxies for sufficient distribution and geographic density of weather stations. 313 

 314 

3.4.Assessment of IPCC Fourth Assessment Report (4AR) model data 315 

3.4.1. Long-term observed mean climatology from weather stations 316 
Three different long term climatology datasets were assembled: (1) the Global Historical 317 

Climatology Network (GHCN, as in Sect. 3.3.1) version 2 (Peterson and Vose, 1997), 318 

available at http://www.ncdc.noaa.gov/pub/data/ghcn/v2. We used GHCN as an independent 319 

source because it is a global resource that contributed significantly to WCL-WS and also 320 

because it is available at more temporally disaggregated levels (i.e. monthly), thus allowing 321 

uniformity with analyses on Sect. 3.4.3 and 3.4.6. This database includes monthly historical 322 

totals (1900-2010) of precipitation (20,590 stations), and means of maximum, minimum 323 

(4,966) and mean (7,280) temperatures. GHCN data have been subject to quality checks and 324 

to  a  process  of  “homogenisation”  or  “adjustment”  (Peterson and Easterling, 1994); however, 325 



the available data within our analysis domain consisted primarily of   “unadjusted”   stations.  326 

For each location (6,393 stations for rainfall, 1,278 for mean temperature and 549 for 327 

minimum and maximum temperature) within our study area, we averaged historical monthly 328 

time series for the period 1961-1990 for maximum, minimum and mean temperatures and 329 

total rainfall, resulting in a time-averaged dataset of 6,393 locations for rainfall, 1,278 for 330 

mean temperature and 549 for minimum and maximum temperature.  This dataset will be 331 

hereafter referred to as GHCN-CL. 332 

 333 

(2) WCL-WS (Sect. 3.3.1); and (3) the Global Surface Summary of the Day (GSOD) was 334 

accessed at http://www.ncdc.noaa.gov/cgi-bin/res40.pl. This database contains daily data 335 

from ~9,000 weather stations worldwide for 18 variables, including, mean, maximum, 336 

minimum and dew point temperature, sea level and location pressure, visibility, wind speed 337 

and gust, precipitation, snow depth, and specifications on the occurrence of rain, snow, fog, 338 

tornado, thunder, or hail (NOAA, 2011; ftp://ftp.ncdc.noaa.gov/pub/data/gsod/readme.txt). 339 

We selected weather stations within our study area (1,999); aggregated daily rainfall, mean, 340 

maximum and minimum temperatures to a monthly time scale; and then averaged over the 341 

period 1961-1990. This dataset will be hereafter referred to as GSOD-CL. 342 

 343 

3.4.2. Long-term observed mean climatology from interpolated surfaces 344 
We gathered high-resolution climatology from two different sources: (1) the high resolution 345 

climate surfaces in WorldClim (Hijmans et al., 2005), available at http://www.worldclim.org. 346 

WorldClim is a 30 arc-seconds (~1km at the equator) global dataset produced from the 347 

interpolation of long-term climatology as measured in weather stations. Global gridded data 348 

were downloaded at the 30 arc-second resolution, then masked to our analysis domain, and 349 

aggregated to 10 arc-minute using bilinear interpolation in order to reduce computational and 350 

storage time; and (2) the University of East Anglia Climatic Research Unit (CRU) dataset 351 

(New et al., 2002), available through http://www.cru.uea.ac.uk/cru/data/hrg/ (CRU-CL-2.0). 352 

This dataset was developed using the same interpolation method as WorldClim, with the 353 

main difference  that WorldClim includes many more weather stations, sometimes at the 354 

expense of input data quality. CRU-CL-2.0 resolution is 10 arc-minute (~20km at the 355 

equator). Data were downloaded at the global level and masked to our analysis domain. 356 

WorldClim and CRU-CL-2.0 are hereafter referred to as WCL-IS and CRU-IS (interpolated 357 

surfaces), respectively. We used these sources because (1) they are flag products that most 358 

researchers use for impact studies; (2) they are much higher resolution than GCMs (and other 359 

products such as the Global Precipitation Climatology Project [GPCP] and the Global 360 

Precipitation Climatology Centre [GPCC]) and hence permit the capture of small-scale 361 

weather patterns (important to agriculture) as well as a direct comparison of their within-362 

GCM-gridcell mean with the actual GCM value; (3) are based only on ground observations of 363 

weather and do not incorporate side-products such as reanalysis (Uppala et al., 2005) or 364 

satellite data (Huffman et al., 2007), both of whose accuracy is not as good. 365 

 366 

3.4.3. Long-term observed time series 367 
Two sources of weather time series were used: (1) long term (1961-1990) series of monthly 368 

weather conditions were gathered from GHCN version 2 (Peterson and Vose, 1997). Again, 369 



we used mainly unadjusted stations. Mean monthly temperature and total monthly historical 370 

rainfall data were used without any further processing; and (2) long-term (1961-1990) series 371 

of daily weather as in GSOD (NCDC, 2011). For GSOD, daily precipitation and monthly 372 

temperature were aggregated to the monthly level only if all days were reported with data (for 373 

rainfall) and if at least 50% of the days had data (for temperatures). This resulted in 1,999 374 

stations within our analysis domain, although not all stations had data for all months and all 375 

years. These two data sources are hereafter referred to as GHCN-TS and GSOD-TS, 376 

respectively. Lack of data prevented us from including maximum and minimum temperatures 377 

in the GHCN-TS and the GSOD-TS datasets. In contrast to GHCN-CL and GSOD-CL, 378 

GHCN-TS and GSOD-TS include every month and every year, thus allowing the analysis of 379 

inter-annual variability. 380 

 381 

3.4.4. Global climate model output 382 
The latest IPCC report (Fourth Assessment Report, 4AR) comprises the sole state-of-the-art 383 

public and official source of climate data for use in impact studies (IPCC, 2007; Jarvis et al., 384 

2010). We therefore decided to use IPCC 4AR results.  385 

 386 

We downloaded present day (1961-1990) simulations of global climate at original GCM 387 

resolution (~100 km) from the CMIP3 (Coupled Model Intercomparison Project phase 3) web 388 

data portal at https://esg.llnl.gov:8443/index.jsp (PCMDI, 2007). We downloaded monthly 389 

time series of mean, maximum, minimum temperature and precipitation flux in NetCDF 390 

format for 24 coupled GCMs (Table 2). Separately for each GCM, wWe calculated diurnal 391 

temperature range for each month and year as the difference between maximum and 392 

minimum temperatures and calculated total monthly rainfall as the product between the 393 

precipitation rate, the water density at sea level pressure and the number of seconds in a 394 

month. We used the each climate model monthly time series (GCM-TS hereafter) and also 395 

calculated average 1961-1990 climatology by averaging, for each variable (mean 396 

temperature, diurnal temperature range and total rainfall), every month for the whole 1961-397 

1990 period (GCM-CL hereafter). The final datasets (i.e. GCM-TS and GCM-CL, 398 

respectively) consisted of three variables (mean temperature, diurnal temperature range and 399 

total monthly rainfall) for 24 different GCMs. 400 

 401 

<Insert Table 2 here> 402 

 403 

3.4.5. Ability to represent long-term climatology 404 
The extent to which GCM predictions are accurate has not been fully explored for some parts 405 

of the world, particularly in the context of agriculture (Gleckler et al., 2008; Pierce et al., 406 

2009; Walsh et al., 2008). As previously stated (Sect. 2.1), we compared the most readily 407 

available variables from both ground observations and climate models: rainfall, mean 408 

temperature and diurnal temperature range. Data for other variables are not available for our 409 

study regions in observational datasets. As per our stated objective (Sect. 3), we performed 410 

two sets of comparisons: 411 

x First, we compared the GCM-CL dataset with the interpolated climatology in CRU-IS, 412 

WCL-IS (Sect. 3.4.2). We performed comparisons on a country basis in order to yield 413 



country-specific results. For each GCM gridcell, the mean, maximum and minimum 414 

values of all lower scale (CRU-IS, WCL-IS) cells was first calculated and then compared 415 

to the GCM value through the determination coefficient (R2) and corresponding p-value, 416 

the slope of a origin-forced (so that a 1:1 relationship was sought) regression curve (S) 417 

and the root mean square error (RMSE). 418 

x Second, using the same procedure, we compared the GCM-CL dataset with observed 419 

climatology in WCL-WS (Sect. 3.3.1), GHCN-CL and GSOD-CL (Sect. 3.4.1). 420 

 421 

We analysed total rainfall, mean temperatures and diurnal temperature ranges over three 422 

periods: December-January-February (DJF), June-July-August (JJA) and the whole year 423 

(ANN). These months represent the most critical seasons for agriculture in our study regions, 424 

and are also the most often assessed in the existing literature (Gleckler et al., 2008; Pierce et 425 

al., 2009). Due to space constraints, we present only the results of comparisons between 426 

GCM gridcell values and mean values within gridcells, unless otherwise stated. We do, 427 

however, discuss other relevant results in more general terms. 428 

 429 

3.4.6. Ability to represent long-term monthly climate time series 430 
CMIP3-related GCMs are known to misrepresent certain inter-annual and/or within-decade 431 

variations that are important for agricultural systems (Govindan et al., 2002). However, 432 

specific aspects of these errors have not been explored in all CMIP3 models in the context of 433 

agriculture. Therefore, in order to test the consistency of GCM predictions across time, we 434 

compared the GCM-TS (Sect. 3.4.4) dataset against the GHCN-TS and GSOD-TS (Sect. 435 

3.4.3). The comparison was done for three periods (JJA, DJF and ANN, Sect. 3.4.4) by 436 

calculating the R2 and corresponding p-value, the slope of the regression curve as forced to 437 

the origin and the RMSE between the two time series (GCM-TS vs. GHCN-TS and GCM-TS 438 

vs. GSOD-TS). As a GCM cell contains one or more weather stations, we averaged the 439 

monthly time series as needed before comparing the two pairs of series. Finally, we compared 440 

the performance of all GCMs across the geographic space of our study area. 441 

 442 

4. Results 443 

4.1. Usage of climate data in agricultural studies 444 

4.1.1. Topics of study 445 
The most addressed topic (41.4% of the studies) in our literature review was climate change 446 

impact assessment (Figure 3), followed by crop growth simulation (18.5%). Water resources-447 

impact studies round out the top three topics studied (8.1%), followed by climate attribution 448 

(6.9%), crop yield forecasting (6.1%), and model assessment (5.7%). Surprisingly, formal 449 

studies addressing adaptation were rather scarce (3.6%). Pests and diseases, soils, abiotic 450 

stresses and climate risks appeared to be a lot less important addressed than impact 451 

assessment and crop growth simulation studies, which together accounted for more than 50% 452 

of the total publications.  453 

 454 

<Insert Figure 3 here> 455 

 456 

4.1.2. Scale of studies and type of models 457 



Most of the studies performed their models at a scale less than the size of a country; site-458 

specific or sub-national level together comprised 55% of the studies. Very few (7%) of the 459 

studies were performed at the global level, likely because of the type of models used: field-460 

scale mechanistic crop growth models were the most utilised overall (69.2%); followed by 461 

statistical and/or empirical approaches (S/E, 21.4%), which most of the crop growth 462 

modellers criticise for not being accurate enough (Lobell and Burke, 2010; Lobell et al., 463 

2008); and finally by hydrological models (10%). The frequent use of field-based crop 464 

growth models suggests that the time step requirement for input data is rather high (El-465 

Sharkawy, 2005), also confirmed by the usage of weather generators (8.5 and 11.2% for 466 

present and future climates, respectively). 467 

 468 

4.1.3. Climate data sources 469 
Unlike the model types, which were quite similar, the sources of present climate data varied 470 

substantially, with a total of 32 different sources being used for present climate data (Figure 471 

4A). On average, a different present-day-climate dataset was used for every 7 agricultural 472 

studies. The most commonly used data source was local (non-public) weather stations (50.4% 473 

of the cases), followed by University of East Anglia Climatic Research Unit (CRU) datasets 474 

with 13.7% (10.9% for CRU-TS [monthly time series], and 2.8% for CRU-CL [monthly 475 

climatology]). Climate model outputs were used in 14.5% of the cases: within this group, 476 

10.5% used GCM data, 4% RCM [Regional Climate Model] data, 3.6% satellite imagery, and 477 

2.8% WorldClim, followed by other less relevant sources. The Global Precipitation 478 

Climatology Project (GPCP) (Adler et al., 2003; Huffman et al., 2009), the Global 479 

Precipitation Climatology Centre (GPCC) (Schneider et al., 2010) and the Global Historical 480 

Climatology Network (GHCN, (Peterson and Vose, 1997)) were rarely reported overall 481 

(0.4% each). 482 

 483 

<Insert Figure 4 here> 484 
 485 

The future climate data used was found to be less variable overall, with only 7 different types 486 

of data employed in the 125 cases citing some type of future climate data (Figure 4B). Out of 487 

these 125, only one study did not clearly state which type of climate data was used. The vast 488 

majority of cases (42. 9%) used GCM data  “as   is”  (AI  GCM), meaning that predictions on 489 

agricultural yields were based on predicted changes at coarse resolution (~100 km). All other 490 

studies involved some type of downscaling, except those that employed the systematic 491 

changes approach (SC variables), which can be assumed to be sensitivity analyses rather than 492 

impact studies. RCMs (Regional Climate Models) were the most common way of 493 

downscaling GCMs, cited in 19% of the studies, followed by statistical downscaling with 494 

17.5% (SD GCM, (Tabor and Williams, 2010)), and pattern scaling with 8.7% (PS GCM, 495 

(Mitchell et al., 2004)) (Figure 4B). 496 

 497 

Uncertainty, as measured by the number of different future scenarios used (combinations of 498 

emissions scenarios and climate models) was explored in only 36.5% of the studies. 499 

Additionally, the average number of scenarios per study (rounded to the closest integer) was 500 

3, indicating that climate uncertainties are barely (if at all) studied in agricultural science and 501 



highlighting a knowledge gap in agricultural research, an issue previously raised and 502 

discussed by other authors (Challinor et al., 2009b; Challinor and Wheeler, 2008), although 503 

some studies addressing this aspect are underway (C. Rosenzweig, personal communication).  504 

 505 

4.2.Robustness of existing weather station networks 506 
The sensitivities of the network to information loss were found overall to be low. 507 

Nevertheless, certain areas, variables and months were found highly sensitive. Agricultural 508 

lands (Ramankutty et al., 2008), as visually inspected, are in general less sensitive to data loss 509 

than non-agricultural lands. Interpolations’ performance varied depending upon the variable, 510 

month and parameter used to evaluate them (i.e. R2, RMSE, and S), but were consistent, 511 

statistically significant (p<0.0001) and with variability (of R2, RMSE, and S) between 10–512 

15% in the worst cases. Rainfall presented the lowest R2 values (Figure 5), particularly in the 513 

months of April to August, during which there was a higher variability in the R2 value and the 514 

values reached the absolute minima (0.8). Although it is possible that a high number of 515 

weather stations per unit area can improve accuracy, it does not seem to happen in all 516 

variables, areas and/or months. 517 

 518 

<Insert Figure 5 here> 519 
 520 

The DJF period presented significantly lower variability and more predictive power, probably 521 

due to overall low climate variability (Cooper et al., 2008). Interestingly, maximum and 522 

minimum temperatures showed different interpolation accuracies, even though they were 523 

measured in the same places. Maximum RMSE for temperatures was up to 1.7°C, whilst for 524 

precipitation it was up to 100 mm/year, as seen in the evaluation data. The effect of 525 

geography and the difficulty of fitting unique and complex landscape features cause errors, 526 

leading to high standard deviations in some areas (Figure 6). In the highlands of Eastern 527 

Africa, particularly in the states of Benshangul-Gumaz, Addis Ababa and Southern Nations in 528 

Ethiopia, the central areas of the Eastern and Coast States in Kenya, and the very centre of 529 

Tanzania (i.e. regions of Morogoro, Dodoma and Manyara) between-fold variability was 530 

found to be high (above 150 mm/year). 531 

 532 

<Insert Figure 6 here> 533 
 534 

Over IGP, the largest variability was found in the coastal areas of Maharashtra, Karnataka 535 

and Kerala in India, where rainfall deviation was up to 600 mm/year, and in Nepal (districts 536 

of Gorka, Dhawalagiri, and Lumbini), where rainfall variability can go up to 1,000 mm/year, 537 

and temperature uncertainties up to 3°C, probably due to the combined effect of a more 538 

complex climate in the Himalayas and low weather station density.  539 

 540 

4.3.Accuracy of climate model outputs 541 

4.3.1. Ability to represent mean climate 542 
As expected, the climate models’ skill varied on a variable, country and region basis, with 543 

certain identifiable patterns (Figure 7, 8). The GCMs represent the observed climatology 544 

from weather stations (i.e. WCL-WS, GHCN-CL and GSOD-CL) more poorly than they do 545 



interpolated climatology (i.e. WCL-IS, CRU-IS), mainly because GCMs do not account for 546 

local-scale variability (Boo et al., 2011). In a broad sense, we found that the more complex 547 

the topography, the lower the skill of the GCMs (Gallée et al., 2004; Joubert et al., 1999). We 548 

also observed that GCM skill decreased according to the complexity of the variable, with the 549 

maximum skill displayed for mean temperatures, followed by temperature range and finally 550 

by precipitation. These results agree with those of other studies (Gleckler et al., 2008; 551 

Masson and Knutti, 2011; Pierce et al., 2009).  552 

 553 

Annual precipitation fit in IGP and WAF was observed to dip as low as 0 in some cases, with 554 

a considerable number of cases (23% for WCL-WS, 27% for GHCN-CL and 63% for GSOD-555 

CL) presenting very low adjustment (R2 < 0.5) (Figure 7). In Mali, Niger, India and 556 

Bangladesh, model skill in representing precipitation, compared to weather station 557 

measurements, was consistently low, an issue also reported in other studies (Douglass et al., 558 

2008; Gleckler et al., 2008; Reichler and Kim, 2008). The Bergen Climate Model (BCCR-559 

BCM2.0) and the INM-CM3.0 model showed very poor performance (R2<0.5) in more than 560 

25% of the countries when compared with WCL-WS, GHCN-CL and GSOD-CL, while the 561 

climate model GISS-ModelE (Hansen et al., 2007) presented the poorest performance. 562 

 563 

<Insert Figure 7 here> 564 
 565 

When compared with interpolated climatology (i.e. WCL-IS, CRU-IS), annual precipitation 566 

R2 values varied from 0.383 (GISS-ModelE-R in Uganda) to 0.998 (IAP-FGOALS1.0-G in 567 

Burkina Faso), whilst for mean temperatures the R2 varied from 0.195 (GISS-ModelE-R in 568 

Nepal) to 0.999 (MIUB-ECHO-G in Burkina Faso), and for temperature range the values 569 

were observed between 0.386 (CCCMA-CGCM3.1-T47 in Senegal) to 0.9998 (MPI-570 

ECHAM5 in Burkina Faso) (Figure 7).  571 

 572 

<Insert Figure 8 here> 573 
 574 

In Ethiopia, mean temperature correlations were lower compared to other countries, despite 575 

the relative high density of stations in that area (data not shown). In Senegal, diurnal 576 

temperature range was found to be very poorly fitted, particularly for the CCCMA models 577 

(Figure 8). This result contrasts with that of other studies, which have marked the CCCMA 578 

models as the most skilled (Gleckler et al., 2008; Jun et al., 2008). The ability of GCMs to 579 

represent mean climate patterns over a year was neither uniform nor consistent (Table 3), 580 

with the lowest performance being observed for precipitation in the DJF period (large number 581 

of cases with R2<0.5, and few cases with R2>0.8). Performance for temperature range showed 582 

almost no cases with R2<0.5, but fewer cases with R2>0.8 than for mean temperatures (Table 583 

3). 584 

 585 

<Insert Table 3 here> 586 

 587 

4.3.2. Ability to represent interannual variability 588 



R square values were above 0.8 in a large number of gridcells (>50%) for all GCMs for both 589 

variables (rainfall, mean temperature) (data not shown); however, there were large rainfall 590 

biases in GCM outputs (Figure 9, 10), in some cases between 1,000 and 2,500 mm/year, 591 

depending on the GCM. These areas were located in Nepal, northern India and EAF. Most of 592 

the   models’ biases were wet-biases (Figure 10) which were found throughout the whole 593 

analysis domain, but they were particularly strong over IGP in the models CCCMA-594 

CGCM3.1-T47, CSIRO-Mk3.0 and –Mk3.5, GFDL-CM2.0, all NASA-GISS models, and 595 

both UKMO-HadCM3 and –HadGEM1, whereas the opposite signal was observed over the 596 

same area for the models MIROC3.2.-HIRES, NCAR-CCSM3.0, INGV-ECHAM4, CNRM-597 

CM3, and GFDL-CM2.1. Over WAF and EAF, almost all GCMs showed a dry-bias, with 598 

underestimations of up to 250 mm/year in some cases. Responses varied for seasonal means 599 

and totals, with the wet-season (JJA) being more sensitive to wet biases in most GCMs. 600 

 601 

Temperature biases were also large for certain areas. In some cases, annual mean temperature 602 

biases were greater than 5°C and were observed to go up to 10°C, particularly in the Sahel 603 

and in the areas surrounding the Himalayas and the Tibetan Plateau in Nepal (Figure 11). The 604 

most evident temperature biases were found in the NASA-GISS models (GISS-AOM, GISS-605 

ModelE-H and GISS-ModelE-R), and in INM-CM3.0, probably due to their coarse 606 

resolution. The quality of higher resolution models was in general better, but geographic 607 

trends were difficult to identify, as the locations with mean temperature were scant (7,280 608 

locations for the whole study area). The smallest biases were observed in WAF, northern 609 

EAF and central India, where temperature biases were below 1.5°C, particularly for the 610 

models BCCR-BCM2.0, UKMO-HadCM3, NCAR-PCM1, CCCMA-CGCM3.1-T47 and 611 

MIUB-ECHO-G, some of which have been reported to perform well in tropical areas before 612 

(Gleckler et al., 2008; Jun et al., 2008). These biases were mostly concentrated in lowlands 613 

and were mostly warm-biases, except for UKMO-HadCM3 (Figure 12). Cold-biased models 614 

were usually the GISS-NASA models, MIROC3.2-MEDRES, UKMO-HadCM3, IPSL-CM4, 615 

MRI-CGCM2.3.2A and IAP-FGOALS1.0-G both for seasons (i.e. JJA, DJF, maps not 616 

shown) and for the annual mean (Figure 11, 12). 617 

 618 

5. Discussion 619 

5.1.Climate data and agricultural research 620 
Although climate  model  data  (“as  is”)  are often preferred for impact studies, crop modellers 621 

and agricultural scientists should be cautious when developing future adaptation strategies 622 

based on crop models applied over using future predictions of different (and sometimes 623 

unknown) nature (Jarvis et al., 2011), given the large uncertainties regarding the agricultural 624 

system and plant responses, the underlying uncertainty related to parameterised processes, 625 

and the differences in scales, all of which are reported in the impact-assessment literature 626 

[e.g. (Challinor and Wheeler, 2008)]. This, however, does not necessarily imply that climate 627 

model data cannot or should not be used, but rather means that an adequate treatment of 628 

biases needs to be done before climate and crop models can be properly used together 629 

(Challinor et al., 2010; Osborne et al., 2007). 630 

 631 



Our findings demonstrate that, for regional assessments where large area process-based crop 632 

models, statistical, or empirical models are to be used, products such as WorldClim (Jones 633 

and Thornton, 2003; Thornton et al., 2009) and CRU (Challinor et al., 2004) coupled with 634 

weather generation routines appear to be the best-bet approach (Challinor et al., 2004; Jones 635 

and Thornton, 2003), although climate model data can also be used with proper bias 636 

treatment (Challinor et al., 2010; Osborne et al., 2007). However, if studies are to be carried 637 

out on a site-specific scale (Parry et al., 2005), weather station data is the best means by 638 

which to calibrate the modelling approaches. While partnerships are constantly being built 639 

and this allows researchers to share data, Gcurrently global weather station data such as 640 

GSOD and GHCN seem to be good options in such cases when no other data is available, 641 

particularly when coupled with satellite data or other (country specific) historical weather 642 

records (Álvarez-Villa et al., 2010). 643 

 644 

Agricultural research requires high quality and high resolution climatological data to yield 645 

accurate results, but to date this has been impossible to achieve at detailed scales and with 646 

sufficient coverage, partly due to the difficulty in compiling and revising field data and partly 647 

due to the limited climatology knowledge of agricultural researchers (with some exceptions). 648 

Large-scale datasets can be matched to certain crop models, mostly when these models can 649 

be applied at large scales (Challinor et al., 2010) or do not rely on a detailed calibration of 650 

varietal-level crop parameters (Lobell et al., 2011; Lobell et al., 2008). However, matching 651 

different modelling scales is not a trivial matter (Baron et al., 2005; Challinor et al., 2009a). 652 

Two options are available for matching two differing scales: 653 

(1) Decreasing the resolution of the crop model from plot scale to large regions, at the 654 

expense of loss of detail in some processes [see (Challinor et al., 2007b; Challinor et 655 

al., 2004; Yao et al., 2007)], or 656 

(2) Disaggregating the coarse-resolution climate data, at the expense of introducing noise 657 

and possibly propagating uncertainties present in the original climate model data 658 

(Tabor and Williams, 2010). 659 

 660 

These two choices yield different results that need to be assessed and coupled. Climate data 661 

can be aggregated up to any scale to match any intended use (Masson and Knutti, 2011), but 662 

agricultural impacts need to be informed at an scale such that information can be used for 663 

decision making and adaptation (Jarvis et al., 2011). Hence, governments and international 664 

agencies should support common platforms through which data can be shared without 665 

restrictions between members of the research community. Best-bet methods can then be 666 

applied over such data to produce useable datasets that can be further shared, used and 667 

assessed in multidisciplinary and transdisciplinary approaches. 668 

 669 

5.2.Robustness of existing weather station network 670 
It is tacitly acknowledged that the use of interpolated surfaces can lead to errors and biases 671 

when these data are used for impact assessment (A. Jarvis, pers. comm.). However, we have 672 

demonstrated here that the effects on uncertainty are actually rather low in most of the cases, 673 

with very few exceptions (highlands of Ethiopia, the Himalayas, and some parts of the Sahara 674 

and Southern Africa, Figure 6). 675 



 676 

The results of this research suggest that, despite weather station density being important, it 677 

may not be the only determining factor for a good ability to fill information gaps (Hijmans et 678 

al., 2005). Based on our results, we suggest that, in selecting locations to measure weather, 679 

the following factors be taken into account: (1) the nature of the variable (e.g. precipitation 680 

might be much more difficult to monitor than temperature), (2) the area where it is measured 681 

(topographically complex areas are much more variable), (3) the values of the variable in the 682 

areas where it is measured (high values are subjected to larger absolute errors, assuming 683 

relative errors are relatively uniform), (4) the relevance of the area for different subjects (i.e. 684 

the Sahara might be irrelevant for agriculture but can be of high relevance for other fields 685 

such as climate science, ecology or biodiversity and conservation), (5) possible errors in 686 

measurements and other underlying factors that can influence the measurability or 687 

correctness of estimates of a particular variable, and (6) possible political or social constraints 688 

on access to the site. Improving weather station distribution and status, as well as improving 689 

the cross-checking, correction and validation of data collected at the different sites, is 690 

fundamental for improving climate data for agricultural impact assessment. 691 

 692 

5.3.Global climate model accuracy and performance 693 

5.3.1. CMIP3 climate model skill 694 
GCM performance is highly reliant on the type of comparisons performed, on the GCM 695 

formulation and on the nature of climate conditions in the analysed areas (Gleckler et al., 696 

2008; Masson and Knutti, 2011). Underlying factors driving GCM performance are indeed 697 

difficult to track, given the complexity of the models. IPCC 4AR (CMIP3) models showed 698 

varied performance, with a high tendency to being wet-biased and no general trend for 699 

temperature. These responses reportedly have their origin in different factors: first, some 700 

GCMs have weak forcing on sea surface temperatures (SSTs), whereas climate in Africa and 701 

Asia is strongly coupled with the Atlantic and Indian Ocean and with inland water bodies 702 

(Gallée et al., 2004; Lebel et al., 2000); second, models do not properly account for the 703 

relation between inter-annual variability, ENSO and the monsoonal winds (Gallée et al., 704 

2004; Hulme et al., 2001); third, the resolution of the models prevents acknowledgement of 705 

local-scale land use, orographic patterns and small water bodies (Hudson and Jones, 2002); 706 

fourth, cloud thickness and latent heat and moisture flux between clouds has not been 707 

properly resolved in the models (Gallée et al., 2004); and fifth, convective parameterisations 708 

produce an early onset of the seasonal rains and over-prediction of wet days and high-rainfall 709 

events (Gallée et al., 2004). 710 

 711 

The NASA models GISS-ModelE (-R and -H) consistently presented very low predictive 712 

ability, mainly because of the   models’   coarse spatial resolution in conjunction with the 713 

reasons mentioned above (Hansen et al., 2007). These results agree with those of Gleckler et 714 

al. (2008), who reported that NCAR-PCM1, GISS-ModelE (-R and –H) and GISS-AOM 715 

models are the worst performing in the 24 GCMs of the CMIP3 ensemble. Similar results are 716 

reported by other authors that have assessed this or similar model ensembles (Jun et al., 2008; 717 

Pierce et al., 2009). Lack of detail in land use and land use changes (Eltahir and Gong, 1996), 718 

monsoon winds (Eltahir and Gong, 1996; Gallée et al., 2004), and sea surface temperature 719 



anomalies (SSTs) of the Atlantic and the Indian Oceans (Lebel et al., 2000; Sun et al., 1999) 720 

also causes the scales at which climate model information is robust to be varied (Masson and 721 

Knutti, 2011), and prevents local scale seasonal weather patterns from being modelled 722 

consistently (Douglass et al., 2008; Hansen et al., 2007). 723 

 724 

5.3.2. Plugging climate model data into agricultural research 725 
GCMs do not provide realistic representations of climate conditions in a particular site, but 726 

rather provide estimated conditions for a large area. Our results, in agreement with those from 727 

the agricultural community (Baron et al., 2005; Challinor et al., 2003) and the climate 728 

community (Jun et al., 2008; Masson and Knutti, 2011), indicate that climate model outputs 729 

cannot be input directly into plot-scale (agricultural) models, but support the idea that higher 730 

resolution climate modelling largely improves results. Either the CMIP3 (assessed here) or 731 

the upcoming CMIP5 (being released at the moment) (Moss et al., 2010) climate model 732 

outputs can be adequately used in agricultural modelling if: (1) the scales between the models 733 

are matched (see Sect. 5.1), (2) skill of models is assessed and ways to create robust model 734 

ensembles are defined, (3) uncertainty and model spread are quantified in a robust way, and 735 

(4) decision making in the context of uncertainty is fully understood. 736 

 737 

Producing robust (i.e. skilled and certain) ensembles for agriculture is not an easy task, 738 

mainly because of the scales at which these have been found to be robust (Masson and 739 

Knutti, 2011). Opinions are contrasting: some authors support sub-selecting models based 740 

upon performance under present conditions (Matsueda and Palmer, 2011; Pierce et al., 2009), 741 

calculating a mean ensemble by weighting models based on skill (Matsueda and Palmer, 742 

2011; Walsh et al., 2008), while others advocate using as many asall available models with 743 

no-weighting at all (Reifen and Toumi, 2009). We suggest that until sensitivities of 744 

agricultural models to ensemble spread are fully explored (Baigorria et al., 2007), the full 745 

CMIP3 (or CMIP5) ensembles should be used. 746 

 747 

Strategies for combining plot-scale and large-scale models and for optimising the overall 748 

result (including estimation of uncertainties derived from the scale-matching process) need to 749 

be further researched. The potential of high-quality and less uncertain climate predictions of 750 

current and future climate conditions for agricultural research is expected to have a direct 751 

impact on decision-making at different levels and for different purposes: to improve yields on 752 

the farm, to direct country level policies and investment, to define research foci, to direct 753 

international agencies’ investments, and to clarify global greenhouse emissions limits and 754 

commitments (Challinor et al., 2009a; Funke and Paetz, 2011; IPCC, 2007).  755 

 756 

6. Conclusions 757 
A thorough analysis of different aspects of climate data for agricultural applications was 758 

performed. All topics addressed here are of high relevance to agricultural applications, 759 

particularly in the global tropics. Several important points were raised: (1) spatial scale is the 760 

most important issue for agricultural researchers, as they preferred to use monthly products 761 

with higher resolution rather than daily products with very low spatial resolution, or else 762 

limited their areas of study to field plots; (2) the sensitivities of Sub-Saharan African and 763 



Southeast Asian climate to data loss and poor availability were found to not be limiting 764 

factors for the region, with the exceptions of mountainous areas in Nepal and Ethiopia; and 765 

(3) climate modelling, although constantly improving and useful, still requires considerable 766 

future development. 767 

 768 

As such, CMIP3 GCMs can be used with a certain degree of confidence to represent large-769 

area climate conditions for some areas and periods. In areas where predictions lack enough 770 

skill for agricultural modelling, models can be bias-corrected using different methods [see 771 

(Challinor et al., 2009a; Hawkins et al., 2011; Reifen and Toumi, 2009)]. Whilst model skill 772 

is expected to improve with the upcoming IPCC Fifth Assessment Report, climate model 773 

ensembles as well as different methods for ‘calibrating’ (i.e. pre-processing for input into 774 

crop models) climate model data both need to be used, as uncertainties go beyond those 775 

derived from emissions scenarios (Hawkins et al., 2011). The proper usage of climate 776 

projections for agricultural impact assessment is of paramount importance in order to 777 

properly inform adaptation. 778 

 779 

Finally, it is critical to understand the implications of all this to agriculture. Crops are 780 

sensitive to shortages in water and heat stresses during key periods during their development 781 

(i.e. flowering, fruit filling). Therefore, lack of skill in representing seasonal and inter-annual 782 

variability is expected to produce a significant obstacle to agricultural impact assessment of 783 

climate change; several examples in the literature exist that illustrate this (Baigorria et al., 784 

2008; Baigorria et al., 2007). The importance of this factor depends on the strength of the 785 

climate signal on yields and the variables that drive such this signal. Future impact 786 

assessments need to take into account input data and climate model data inaccuracies, 787 

sensitivities and uncertainties; make their own assessments of the inaccuracies and 788 

uncertainties; and comprehensively quantify and report uncertainties in the impact assessment 789 

process. 790 
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Figure captions 1096 

 1097 
Figure 1 Cascade of constraints to climate data, as normally observed in agricultural impact 1098 

assessment 1099 

 1100 

Figure 2 Areas of study. Bold-outlined areas indicate the areas on which the study focused 1101 

(SN: Senegal, ML: Mali, NE: Niger, BF: Burkina Faso, GH: Ghana, UG: Uganda, ET: 1102 

Ethiopia, KE: Kenya, TZ: Tanzania, NP: Nepal, BD: Bangladesh, IN: India) 1103 

 1104 

Figure 3 Topics treated in the analysed agricultural studies. WG: weather generators. 1105 

 1106 

Figure 4 Frequency of use of the different data sources in agricultural studies. A. Present-day 1107 

climates. B. Future climates. Datasets acronyms are as follows: CRU-TS: Climatic Research 1108 

Unit monthly time series product at 0.5 degree, GCM: global climate model output, RCM: 1109 

regional climate model, CRU-CL: CRU monthly climatology product at 10 arc-minute, 1110 

MARS: Data from the MARS European project, GSOD: Global summary of the day, 1111 

ARTES: Africa rainfall and temperature evaluation system, VEMAP: United States 1112 

comprehensive dataset, ATEAM: Advanced Terrestrial Ecosystem Analysis and Modelling, 1113 

PRISM: United States dataset, GPCP: Global Precipitation Climatology Project, GPCC: 1114 

Global Precipitation Climatology Centre, GHCN: Global Historical Climatology Network, AI 1115 

GCM: GCM data  “as  is”,  SD  GCM:  statistically  downscaled  GCM,  PS  GCM:  pattern  scaled  1116 

GCM, WG GCM: GCM data through a weather generator, SC Variables: systematic changes 1117 

in target key variables, Unclear: not specified clearly in study, ARPEGE: the ARPEGE 1118 

Atmospheric GCM (Déqué et al., 1994). 1119 

 1120 

Figure 5 Performance of the interpolations for all variables and months as measured by the 1121 

R-square value. A. Rainfall, B. Mean temperature, C. Maximum temperature, D. Minimum 1122 

temperature 1123 

 1124 
 Figure 6 Uncertainties in WorldClim expressed as standard deviations from the mean of the 1125 

100 cross-validated folds for (A) total annual rainfall (in mm), and (B) annual mean 1126 

temperature (in ºC). 1127 

 1128 
Figure 7 Comparison (R-square based) of observed climatology (CL-WS [w], GHCN-CL [g] 1129 

and GSOD-CL [o]) and each of the GCMs (GCM-CL) for each of the countries in the study 1130 

area for mean temperature (top), temperature range (middle) and precipitation (bottom), for 1131 

the annual and two seasonal (DJF, JJA) means or totals. All R2 values were statistically 1132 

significant at p<0.0001 1133 

 1134 
Figure 8 Comparison (R-square based) of interpolated climatology (i.e. CRU-IS [c], WCL-IS 1135 

[w]), and each of the GCMs (GCM-CL) for each of the countries in the study area for mean 1136 

temperature (top), temperature range (middle) and precipitation (bottom) for the annual mean 1137 

or total and two seasons (DJF, JJA). All R2 values were statistically significant at p<0.001.  1138 



 1139 

Figure 9 Root mean squared error (RMSE), in millimetres, between observed (GHCN-TS) 1140 

and GCM (GCM-TS) time series, for the 24 GCMs in Table 2, for annual total rainfall 1141 

between the years 1961-1990. 1142 

 1143 

Figure 10 Mean bias of GCM (GCM-TS) time series compared to observed time series 1144 

(GHCN-TS), for the 24 GCMs in Table 2, for annual total rainfall between the years 1961-1145 

1990. Bias is expressed as the slope of the regression curve between observed and climate-1146 

model series. Values below 1 (light grey areas) indicate that GCMs are wet-biased, whereas 1147 

values above 1 (dark grey areas) indicate that GCMs are dry-biased. 1148 

 1149 

Figure 11 Root mean squared error (RMSE), in Celsius degree, between observed (GHCN-1150 

TS) and GCM (GCM-TS) time series, for the 24 GCMs in Table 2, for annual mean 1151 

temperature between the years 1961-1990 1152 

 1153 

Figure 12 Mean bias of GCM (GCM-TS) time series compared to observed time series 1154 

(GHCN-TS), for the 24 GCMs in Table 2, for annual mean temperature between the years 1155 

1961-1990. Bias is expressed as the slope of the regression curve between observed and 1156 

climate-model series. Values below 1 (light grey areas) indicate that GCMs are warm-biased, 1157 

whereas values above 1 (dark grey areas) indicate that GCMs are cold-biased. 1158 
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 1166 

Table 1 Number of locations per data source (global) 1167 

Source* Precipitation 
stations 

Mean 
temperature 

stations 

Min., Max. 
temperature 

stations 
Period 

GHCN v2 20,590 7,280 4,966 1950-
2000 

WMO 
CLINO 4,261 3,084 2,504 1961-

1990 
FAOCLIM 

2.0 27,372 20,825 11,543 1960-
1990 

CIAT 18,895 13,842 5,321 1950-
2000 

*GHCN v2: Global Historical Climatology Network version 2 (Peterson and Vose, 1997); 1168 

WMO CLINO: World Meteorological Organization Climatology Normals; FAOCLIM 2.0: 1169 

Food and Agriculture Organization of the United Nations Agro-Climatic database (FAO, 1170 

2001); CIAT: Database assembled by Peter J. Jones at the International Center for Tropical 1171 

Agriculture (CIAT). 1172 
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 1177 

Table 2 Available GCMs, resolutions, and main references 1178 
Model Country Atmosphere Ocean Reference 

BCCR-BCM2.0 Norway T63, L31 1.5x0.5, L35 (Furevik et al., 2003) 
CCCMA-CGCM3.1 (T47) Canada T47 (3.75x3.75), L31 1.85x1.85, L29 (Scinocca et al., 2008) 
CCCMA-CGCM3.1 (T63) Canada T63 (2.8x2.8), L31 1.4x0.94, L29 (Scinocca et al., 2008) 
CNRM-CM3 France T63 (2.8x2.8), L45 1.875x(0.5-2), L31 (Salas-Mélia et al., 2005) 
CSIRO-Mk3.0 Australia T63, L18 1.875x0.84, L31 (Gordon et al., 2002) 
CSIRO-Mk3.5 Australia T63, L18 1.875x0.84, L31 (Gordon et al., 2002) 
GFDL-CM2.0 USA 2.5x2.0, L24 1.0x(1/3-1), L50 (Delworth et al., 2006) 
GFDL-CM2.1 USA 2.5x2.0, L24 1.0x(1/3-1), L50 (Delworth et al., 2006) 
GISS-AOM USA 4x3, L12 4x3, L16 (Russell et al., 1995) 
GISS-MODEL-EH USA 5x4, L20 5x4, L13 (Schmidt et al., 2006) 
GISS-MODEL-ER USA 5x4, L20 5x4, L13 (Schmidt et al., 2006) 
IAP-FGOALS1.0-G China 2.8x2.8, L26 1x1, L16 (Yongqiang et al., 2004) 
INGV-ECHAM4 Italy T42, L19 2x(0.5-2), L31 (Gualdi et al., 2008) 
INM-CM3.0 Russia 5x4, L21 2.5x2, L33 (Diansky and Zalensky, 2002) 
IPSL-CM4 France 2.5x3.75, L19 2x(1-2), L30 (Marti et al., 2005) 
MIROC3.2-HIRES Japan T106, L56 0.28x0.19, L47 (Hasumi and Emori, 2004) 
MIROC3.2-MEDRES Japan T42, L20 1.4x(0.5-1.4), L43 (Hasumi and Emori, 2004) 
MIUB-ECHO-G Germany/Korea T30, L19 T42, L20 (Grötzner et al., 1996) 
MPI-ECHAM5 Germany T63, L32 1x1, L41 (Jungclaus et al., 2006) 
MRI-CGCM2.3.2A Japan T42, L30 2.5x(0.5-2.0) (Yukimoto et al., 2001) 
NCAR-CCSM3.0 USA T85L26, 1.4x1.4 1x(0.27-1), L40 (Collins et al., 2006) 
NCAR-PCM1 USA T42 (2.8x2.8), L18 1x(0.27-1), L40 (Washington et al., 2000) 
UKMO-HADCM3 UK 3.75x2.5, L19 1.25x1.25, L20 (Gordon et al., 2000) 
UKMO-HADGEM1 UK 1.875x1.25, L38 1.25x1.25, L20 (Johns et al., 2006) 
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 1181 

 1182 

Table 3 Summarised performance of all GCMs with available data for each of the variables 1183 

and periods in the study countries for different ranges of the R2 skill evaluation parameter. 1184 

Variable Period Dataset* R2<0.5 
(%)* 

0.5<R2<0.7 
(%)* 

R2>0.8  
(%)* 

R2>0.9 
(%)* 

R
ai

nf
al

l 
Annual 

IS 2.8 6.6 77.8 54.3 
WS 37.5 19.4 30.8 17.0 
ALL 23.6 14.3 49.6 31.9 

DJF 
IS 17.7 19.3 49.1 25.9 

WS 38.1 17.2 31.4 15.7 
ALL 29.9 18.1 38.5 19.8 

JJA 
IS 12.8 17.2 58.9 40.1 

WS 15.2 19.1 52.1 34.5 
ALL 14.2 18.3 54.8 36.7 

D
iu

rn
al

 te
m

pe
ra

tu
re

 
ra

ng
e 

Annual 
IS 0.4 2.2 81.8 73.1 

WS 0.4 1.2 54.5 46.1 
ALL 0.4 1.7 68.1 59.6 

DJF 
IS 0.4 2.2 80.4 71.2 

WS 0.4 2.4 53.1 47.7 
ALL 0.4 2.3 66.8 59.4 

JJA 
IS 0.4 2.0 80.7 67.2 

WS 0.4 1.2 54.5 46.1 
ALL 0.4 1.6 67.6 56.6 

M
ea

n 
te

m
pe

ra
tu

re
 Annual 

IS 0.7 1.2 96.4 95.7 
WS 2.4 1.9 93.5 91.0 
ALL 1.7 1.6 94.7 92.8 

DJF 
IS 3.5 1.9 93.2 91.5 

WS 2.3 2.3 93.9 91.2 
ALL 2.8 2.2 93.6 91.3 

JJA 
IS 0.0 0.0 100.0 98.8 

WS 0.0 0.1 99.8 98.5 
ALL 0.0 0.1 99.9 98.6 

* Values are expressed as percent of country-GCM combinations for comparisons of GCM-1185 

CL and different observational datasets: interpolated surfaces (IS), namely, WCL-IS and 1186 

CRU-IS; weather stations (WS), namely, GHCN-CL, WCL-WS, GSOD-CL; and as the 1187 

average of IS and WS (ALL) 1188 
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Figure 4a
Click here to download high resolution image



Figure 4b
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Figure 5d
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Figure 7
Click here to download high resolution image



Figure 8
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