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Linear surface roughness growth and flow smoothening in a three-dimensional biofilm model
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The sessile microbial communities known as biofilms exhibit varying architectures as environmental factors

are varied, which for immersed biofilms includes the shear rate of the surrounding flow. Here we modify an

established agent-based biofilm model to include affine flow and employ it to analyze the growth of surface

roughness of single-species, three-dimensional biofilms. We find linear growth laws for surface geometry in

both horizontal and vertical directions and measure the thickness of the active surface layer, which is shown to

anticorrelate with roughness. Flow is shown to monotonically reduce surface roughness without affecting the

thickness of the active layer. We argue that the rapid roughening is due to nonlocal surface interactions mediated

by the nutrient field, which are curtailed when advection competes with diffusion. We further argue the need for

simplified models to elucidate the underlying mechanisms coupling flow to growth.

DOI: 10.1103/PhysRevE.88.032702 PACS number(s): 87.18.Fx, 87.17.Aa, 61.43.Hv

I. INTRODUCTION

Biofilms are surface-associated sessile microbial commu-

nities encased in a protective polymeric matrix at least partly

of their own production [1,2]. Part of the healthy human

microbiome [3,4], they can also be deleterious when har-

boring pathogenic species and protecting them from biocidal

treatment, such as in water distribution systems or medical

implants [5,6]. Biofilm architectures take a variety of forms,

including flat, rough, rippled and columnar, depending on

both environmental (e.g., shear flow and nutrient supply) and

intrinsic (e.g., cell motility and intracellular communication)

factors [7–9]. Structure can affect function, such as the fre-

quently observed channels that are thought to permit nutrient

penetration deep into the film [10]. A deep, quantitative

understanding into the relationship between biofilm structure

and flow would therefore suggest strategies for eradicating or

otherwise modulating biofilm formation, but no theory with

predictive capability currently exists.

The quantitative description of the growth of rough sur-

faces, both biotic and abiotic, is an established field in statis-

tical physics, in particular when the surface geometry is scale

invariant or fractal [11]. Analytical and numerical treatments

of model systems have demonstrated that their large length-

scale behavior can typically be grouped into a small number of

so-called universality classes. Which class a specific system

falls into depends on invariant intrinsic properties, such as

dimension, symmetries, and conserved quantities, and also the

nature of the interactions between separated surface points,

i.e., whether such interactions are local (strictly short-ranged)

or nonlocal. In the latter case, growth at one surface point

depends (in principle) on the current geometry of the entire

surface. Such nonlocality is known to drastically alter the

fractal surface growth picture [11,12].
Bacterial [13,14] and fungal [15,16] colonies have been

investigated within the framework of fractal surface growth
[17]. However, the relevance of these findings to biofilms,
and to which (if any) universality class biofilms belong,
remains unclear. A recent two-dimensional study employing
a somewhat realistic model for biofilm growth found complex
behavior that could not be facilely interpreted using established
paradigms [18]. In addition, none of the aforementioned

models incorporate flow, despite the significant effect of
biofilm architecture this is known to have [7]. Some models
have been designed that do incorporate fluid-structure coupling
but not for growing films represented on the cellular scale
as here: The model of Alpkvist and Klapper, which uses
the immersed boundary method to couple the biomass to
Navier-Stokes equations, does not include scalar fields or
biofilm growth [19]. Biofilm growth is also absent in the two-
dimensional model of Picioreanu et al. [20], and this also repre-
sents the biofilm on the continuum level, which is inappropriate
for studying cell-scale features. Other two-dimensional con-
tinuum models also have been developed [21,22] which may
be relevant at larger length scales than those considered here.

In this article, we introduce an agent-based biofilm model in
which both the nutrient field and the biofilm itself is coupled
to the flow and analyze it within the framework of fractal
surface growth. Our model extends the individual-based model
(IbM) [23–26] by incorporating adhesive links between nearby
particles, replacing the purely repulsive “pushing” rules that
such models typically employ. This small but far-reaching
extension generates a mechanically consistent biofilm that
can react to shear stresses applied by the flow. A snapshot
of our model, which we dub the mechanical IbM model or
m-IbM, is shown in Fig. 1 and Ref. [27]. Analysis reveals a
rapid growth of surface roughness, both parallel and normal
to the direction of mean surface growth, that is far more rapid
than the scaling obeyed by canonical models [11], which we
attribute to a nonlocal surface interaction deriving from the
long-range effects of nutrient depletion. Switching on flow,
we observe a similar growth law but with a smaller coefficient,
corresponding to smoother biofilms. We argue this is due to
the competition between nutrient diffusion and advection and
that high advection modulates the nonlocal surface interactions
resulting in a less rough film.

This paper is arranged as follows. In Sec. II we detail

the modules in our model, how they are coupled, and the

algorithms employed to iterate them during growth. In Sec. III

we describe analysis of growing films in the presence of

nutrient fields of varying concentrations, taking care to control

the finite-size effects that are ever present in scale-invariant

systems. Starting without flow, we quantify the growth of

surface roughness parallel and perpendicular to the mean
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FIG. 1. (Color online) Snapshot of system state for γ̇ = 0.

Particle brightness is proportional to their metabolic reaction rates

ri . The system size is Lx = Ly = 40 dmax and the bulk nutrient

concentration is c0 = 10K1/2 (see text for details). A full color

version with the nutrient field also displayed is available from the

supplementary information [27].

direction of growth using standard metrics, in both cases

finding the aforementioned linear growth laws. We also relate

the depth of actively growing particles near the surface to the

roughness, confirming previous findings [28]. Repeating the

analysis with flow reveals a systematic reduction in roughness

as the flow rate increases, while not affecting the thickness

of this active layer. In Sec. IV we attempt to place our

findings into the broader context of fractal surface growth. Two

appendices are reserved for technical details. In Appendix A

we derive analytical expressions for the growth of a flat film,

which is used to compare to the numerical results. Finally, in

Appendix B we explain how the surface heights were extracted

from our off-lattice simulations.

II. MODEL DEFINITION

The simulation model employed here is based on the IbM,

which is an established agent-based method for the mathemati-

cal modeling of biofilms [23–26]. This hybrid scheme couples

discrete entities representing cells or cell aggregates to one

or more continuous scalar fields, representing soluble factors

such as nutrients or metabolites. In our scheme, we introduce

a single vector field corresponding to the fluid velocity that

couples to both the scalar fields and the biofilm, the latter

through the requirement of mechanical stability as explained

below. We also associate a mass of extracellular polymeric sub-

stances (EPS) (that make up the biofilm matrix [29]) with each

particle, and this is used to determine the elastic interactions

between particles. We first present an overview of the central

variables in each component of the model before describing

the time evolution of each in detail. A summary of the physical

parameters and variables for each module is given in Table I.

A. Variables and parameters

Our model contains three components or modules, referred

to as biomass, scalars, and fluid, sharing the same spatial

TABLE I. Variables and parameters. The first four are treated as

variables here, while the remaining were kept fixed with the values

quoted, which were chosen to be representative of oral bacteria taking

simple sugars as a nutrient [31–33].

Label Meaning Value

c0 Bulk nutrient concentration –

γ̇ Fluid shear rate –

Lx Box length in direction of flow –

Ly Box width in vorticity direction –

dmax Division diameter 5 µm

Lz Height from solid surface to bulk 80 dmax

ρc Cell density (excluding water) 0.2 pg/µm3

ρe EPS density (excluding water) 4 × 10−2 pg/µm3

K1/2 Reaction saturation concentration 10−6 pg/µm3

D Nutrient diffusion coefficient 103 µm2/s

kmax Base reaction rate 0.5/h

Y c Yield factor for cell mass 0.2

Y e
rel Relative yield factor for EPS 0.4

σ div Width of relative mass division 0.1

ν Fluid viscosity 10−3 Pa s

kanc Anchor spring stiffness 50 pN/µm

κe EPS spring stiffness per mass 5 pN µm−1 pg−1

ρIC Initial surface number density 10−2 µm−2

domain of a rectangular box with dimensions (Lx,Ly,Lz). See

Fig. 2 for a schematic diagram of the system geometry. The

solid surface to which the biofilm is attached corresponds to the

z = 0 plane, and the bulk fluid corresponds to the upper plane

z = Lz. Fluid flow (if present) is parallel to the x axis. Periodic

boundary conditions are assumed in the x and y directions to

avoid introducing wall or edge effects.

The biomass module consists of N (t) biomass particles i =

1 . . . N(t) at time t , each with a cellular mass mc
i and an EPS

mass me
i [see Fig. 3(a)]. The centers of the particles are denoted

xi . Each particle is regarded as spherical, with a cell diameter

dc
i that can be related to the common cell density ρc by dc

i =
3
√

6mc
i /πρc. The EPS associated with particle i is regarded as

forming a spherical shell of density ρe extending from the cell

FIG. 2. (Color online) Schematic of the model. The simulation

domain consists of the biofilm and the boundary layer, which lie

between the solid base at z = 0 and the bulk fluid at z = Lz. Periodic

boundary conditions are assumed in the x and y directions. When

flow is present, it takes the form of an affine shear parallel to the x

axis with fixed rate γ̇ .
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FIG. 3. (a) Single particle i with cell diameter dc
i and EPS

diameter de
i . (b) Schematic of redistribution of cellular and EPS

masses after particle i (dashed lines) divides into i1 and i2. Each

mass component is conserved.

surface. The outer diameter of this shell is denoted de
i and is

related to the EPS density by de
i = 3

√

6me
i /πρe + (dc

i )3.

For this application, the scalar module consists of a single

scalar field c(x) corresponding to the concentration of the

soluble nutrient. This enters the system from the bulk as per the

boundary condition c(z = Lz) = c0 (for simplicity, depletion

and replenishment of c0 with time is not considered). Cells

reduce the local nutrient to fuel their increase in mass. This

reaction is regarded as localized at the center xi of each particle

i, with a reaction rate given by the commonly employed

Michaelis-Menten form [30], which includes the particle mass

mi ,

ri = −kmaxmi[1 + K1/2/c(xi)]
−1. (1)

This form, in which a linear dependence on concentration

crosses over to a saturated rate when c ≫ K1/2, is commonly

employed for models in the IbM template [24]. Metabolic

activity is converted into an increase in both cellular and EPS

masses as ∂tm
c
i = Y c|ri | and ∂tm

e
i = Y e

rel∂tm
c
i = Y e

relY
c|ri |.

Finally, the fluid module describes the fluid velocity field

v(x). Here only a simple affine shear flow is considered, i.e.,

v(x,y,z) = (γ̇ z,0,0), with γ̇ the constant shear rate.

The initial state was taken to be a submonolayer of particles

with number density ρIC per unit surface area. Particles were

added at random uniformly over the surface, and attempted

additions that would create particles with overlapping cell radii

were rejected. Each seed particle was anchored to a point

directly beneath it (see below for the definition of anchors).

Although the three model components share the same

spatial domain, they relax on separated time scales, allowing

them to be solved sequentially: The fluid iteration relaxes on

times of the order of ms, the scalars on the order of s, and the

biomass on the order of min to h. The iteration cycle proceeds

in the order scalar → biomass → fluid → scalar → · · · , with

data extraction just before the biomass growth iteration. Each

stage in this cycle is now explained in detail.

B. Scalar iteration

The nutrient concentration c(x) obeys the steady-state

reaction-diffusion-advection equation,

0 = ∂tc = −v · ∇c + D∇2c +

N
∑

i=1

riδ(x − xi), (2)

obeying the mixed boundary conditions

c(z = Lz) = c0, (3)

∂zc|z=0 = 0. (4)

That this can be solved separately to biofilm growth is a direct

consequence of the separation of time scales mentioned in

the previous paragraph. The reaction rates ri are given by (1),

and note that diffusion is assumed to be constant. This is

solved numerically using a finite difference scheme solved on

a regular rectangular mesh using geometric multigrid [34].

To determine the reaction terms in Eq. (2), the value of c

at the particle center xi is found by trilinear interpolation

from the adjacent mesh nodes, inserting into (1), and then

distributing the resulting ri onto the same lattice nodes in a

way that conserves the total reaction rate. Here we weight the

contribution to each node by the inverse of its distance from xi .

C. Biomass iteration

Once the steady-state reaction rates ri have been determined

for each particle i, the increase in both cellular mass mc
i and

the EPS mass me
i are found by multiplying the mass growth

rates by the biomass time interval )tbio. This time step is

adaptive, so higher relative growth rates correspond to smaller

time steps and vice versa. A linear variation was employed

here, )tbio = C maxi=1...N ( 1
mi

∂tmi), with C = 0.01 to fix the

maximum particle growth at around 1% per time step. C

was varied to ensure no discernible variation of measured

quantities. Note that this biomass growth time step is distinct

from, and many orders of magnitude larger than, the time step

used during fluid stabilization described below.

After the cellular and EPS masses of each particle, and

thus their corresponding diameters, have been updated, the

system is checked for division events. Any particles whose

new diameter exceeds the division threshold, i.e., dc
i > dmax,

divides into two daughter cells i1 and i2. Mass is conserved

during division but is distributed asymmetrically between the

two daughters according to mc
i1

= mc
i − mc

i2
= λim

c
i , where

λi is a random variable chosen for each division event from

a normal distribution with mean 1
2

and width σ div. The EPS

mass is divided similarly, with the same λi . The daughter cells

are placed at opposite poles of a sphere, centered on the parent

cell, with a diameter 1
2
(dc

i1
+ de

i1
) + 1

2
(dc

i2
+ de

i2
) so their EPS

shells overlap; see Fig. 3(b). The axis of the sphere on which

the daughters are added is chosen at random to ensure division

cannot introduce anisotropy.

The links between the particles can now be determined. In

essence, this amounts to identifying pairs of particles i and j

whose EPS shells overlap, |xi − xj | < 1
2
(de

i + de
j ), and adding

a spring between their centers. In practice, this leads to the

rare instances where both daughter cells become disconnected

from the film shortly after a division event. This is ultimately

an artifact of the simplistic representation of the EPS as a

spherical shell surrounding the particle - in a real biofilm, the

EPS would deform during division to continuously enmesh

both daughter particles. To robustly maintain film integrity,

after each round of division events, all particles are sorted into

clusters, where two particles belong to the same cluster if their

EPS shells overlap. Any isolated clusters are translated into
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contact with either the film or the base at z = 0, whichever

requires the shortest motion. Note that such translations are

always small, much less than particle diameters, and can (and

typically do) include horizontal components, thus this does

not introduce any form of smoothing. Furthermore, to avoid

“knots” of springs, no particle is allowed to have more than

13 links. Any particle with more than this number of links

has its longest links removed until this maximum number is

reached. The actual maximum value does not measurably alter

the results, unless it becomes very high; 13 was chosen as the

maximum number of identical spheres that can touch a central

one in a disordered packing.

Links between particle pairs are deleted before each growth

and division cycle and recreated afterwards. They are therefore

transient links that reflect the current configuration of the film.

Links to the base at z = 0 differ in that they cannot move once

formed, else the film could drift in an uncontrolled manner in

the presence of flow. Instead, these anchor links are permanent

and do not move once formed. They are created when a particle

that does not already have an anchor link comes into contact

with the base, i.e., has a center at a height zi < 1
2
de

i . A spring

is then created between the particle and an anchor point that is

directly below the particle position at this time, i.e., at (xi,yi,0).

An anchor is not created if the particle already has three

transient links to anchored particles. These rules maintain a

stable population of anchor links that does not drift during the

biofilm evolution.

D. Fluid iteration

In a full model with a spatiotemporally varying flow

field, v(x) would need to be simultaneously solved with

the stabilization of the biomass in a momentum-conserving

manner. Since v(x) is fixed here, we need only stabilize the

film in the presence of flow. This amounts to demanding that

the net force fi on each particle i simultaneously vanishes. Two

forces contribute to fi , a drag force deriving from the flow, and

a matrix force due to the links between particles, or anchor

links to the base. The drag force is based on Stokes flow past

a sphere,

f
drag

i = 3πνdc
i v(xi), (5)

where the fluid viscosity ν is chosen to be that of water. The

matrix force fmat
i derives from the links determined in the

previous step that are now identified as Hookean springs (i.e.,

linear springs that are repulsive when contracted and adhesive

when stretched). For anchor links, the spring force is kanc(r −
1
2
dc

i ), where r is the distance of the cell center from the anchor

point on the surface and kanc is a uniform spring constant.

This scalar force is projected along the line connecting the

particle to the anchor point to give the required vector force.

For the transient EPS-mediated links between particle pairs i

and j , the force is κeme
ij (|xi − xj | − ℓ0) with a natural length

ℓ0 = 1
4
(dc

i + dc
j + de

i + de
j ) corresponding to the midpoint of

the EPS shells. Here κe is the stiffness per unit mass and me
ij

is the mass of the EPS that is attributed to this link. This is

determined by equally distributing each particle’s EPS mass to

each of its (nonanchor) links. This scalar force is projected to

the line of centers between xi and xj in an equal-and-opposite

manner.

The goal is to determine the whole film configuration {xi}

for which each fi = f
drag

i + fmat
i = 0. Two methods were used

here which gave equivalent results. Since they are standard they

will be described only briefly here. The nonlinear conjugate
gradient method [35], which was found to be most efficient for

small systems, requires repeated construction and inversion

of a large, sparse stiffness matrix giving the changes in

each component of each force for small changes in particle

positions. Block-diagonal preconditioning was also used. The

second method, which proved to be more efficient for large

systems and those with flow, was to use overdamped molecular
dynamics [36] in which particles were moved in the direction

of their unbalanced force: )xi = )t fi/3πνdc
i , where an

adaptive time step )t was used that increases as the largest

velocity decreases. For both methods, convergence tolerances

were systematically varied until there was no discernible

variation in measured quantities.

III. RESULTS

The control variables are here chosen to be those that

are also amenable to experimental control, namely the bulk

nutrient concentration c0 and the shear rate γ̇ . The horizontal

surface dimensions Lx = Ly are systematically varied to

determine finite-size effects. All other parameters are kept

fixed with the values quoted in Table I, which were taken

to be representative of oral bacteria growing in the presence

of sugars [31–33]. The theoretical predictions for flat films

referred to below are derived in Appendix A. Unless otherwise

stated, all results are presented in terms of dimensionless

quantities constructed by scaling by combinations of the length

dmax, inverse time kmax, and mass concentration K1/2.

A. Surface roughening without flow

We start with the no-flow case γ̇ = 0. The mean surface

height h̄(t) is defined by

h̄(t) =
1

LxLy

∫

dx

∫

dy h(x,y), (6)

where h(x,y) is the height of the surface vertically above the

basal coordinates (x,y) at time t . This is determined using

the procedure explained in Appendix B. Contour plots of

h(x,y) are shown in Fig. 4. For all parameters studied, the

variation of h̄(t) with time showed no significant variation with

the horizontal system size Lx = Ly . An example is given in

Fig. 5, where the analytical solution for a flat film (A10) is also

plotted. The bulk cell mass density nm (where n is the mean

number of particles per unit volume and m the mean mass per

particle) in this solution curve was measured independently,

so there are no fitting parameters. Actual growth curves

consistently exceed this theoretical prediction at late times.

Since the degree of overshoot correlates with increasing

surface roughness (as defined below; data not given), we infer

this results from the omission of surface undulations in the

calculations. Note that direct observation of the data confirms

that c(z < h) ≪ K1/2 in all cases, as per the calculations.

As the mean height h̄(t) grows nonlinearly with time, unlike

the canonical surface growth models where it grows at a

constant rate [11], we hereafter take h̄ as a surrogate time
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z/dmax

(a) (b)

y
/
d
m

a
x

x/d maxx/dmax

FIG. 4. (Color online) Contour plots showing the height h as a function of horizontal coordinates x and y of the same system at times

t = 400k−1
max (a) and t = 500k−1

max (b). The parameters are the same as in Fig. 1. The calibration bar on the right-hand size applies to both figures

and all lengths have been scaled by the maximum particle diameter dmax.

variable to permit direct comparison with other models. We

first consider the surface roughness or width w defined by

w2 =
1

LxLy

∫

dx

∫

dy [h(x,y) − h̄]2. (7)

The typical growth of w with h̄ is shown in Fig. 6. As

with fractal growth models, this increases until saturating at

a maximum value that increases with system size. Unlike

canonical models, where growth is sublinear [11], here the

growth rate is consistent with linear scaling w(t) ∝ h̄(t) as

shown in the figure. Unfortunately, the poor statistics rules out

a more precise evaluation of the growth exponent.

FIG. 5. (Color online) Mean surface height h̄ versus time t for

c0 = 5K1/2 and no flow, γ̇ = 0. The solid black line shows the flat

film prediction from (A10), which requires no fitting parameters. The

height has been scaled to the threshold diameter for particle division

dmax and t to the base reaction rate kmax. The horizontal system sizes

are given in the legend. The series for the largest system is shorter

due to computational limitations.

The influence of finite system size is expected to be due

to a horizontal correlation length ξ ∥ that grows with time,

causing w to saturate when ξ ∥ approaches Lx = Ly . ξ ∥ can be

extracted from the height-height correlation function Chh(r),

Chh(r) =

∫

dx ′
∫

dy ′[h(x ′,y ′)h(x ′ + x,y ′ + y) − h̄2], (8)

where r2 = x2 + y2 and translational symmetry in the x-y

plane has been assumed. For all plots, Chh(r) crossed from

positive at small r to negative at large r (data not shown); the

single crossing point is identified with ξ ∥. An example of the

variation of ξ ∥ and system size is given in Fig. 7 and confirms

FIG. 6. (Color online) Surface roughness versus height for

c0 = 10K1/2, γ̇ = 0 and the horizontal system sizes given in the

legend. For comparison, the solid black line segment has a slope

of ≈0.27. Bars show standard error over independent runs with

differently randomized initial conditions and mass redistribution after

division (n = 18, 10, 6 runs for Lx = Ly = 20dmax, 30dmax, 40dmax,

respectively).
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FIG. 7. (Color online) Growth of horizontal correlation length

for the system sizes given in the legend and the same parameters as

Fig. 6. The straight black line segment has a slope of 0.24.

the expected picture that ξ ∥ grows with time until reaching a

maximum value that increases with system size. The variation

of ξ ∥ with h̄ before saturation is again consistent with linear

growth as shown in the figure, and the data for other parame-

ters, although noisier, are consistent with this growth law.

In Ref. [28] it was observed that rougher films correlated

with a thinner layer of actively growing particles near the upper

(free) surface, as compared to a thick active layer that generated

flatter films. In Ref. [28] the thickness of the active layer was

quantified by an a priori function of input parameters. Here we

instead directly measure the layer thickness and compare to

the measured roughness w. The active layer is defined in terms

of the relative growth rate of particles (mc
i )

−1∂tm
c
i measured

as a function of vertical distance )z from the surface. Details

of how this was extracted from the simulations is given in

Appendix B. The penetration depth is then

ℓp =

〈(

mc
i

)−1
∂tm

c
i

〉∣

∣

)z=0
(

∂z

〈(

mc
i

)−1
∂tm

c
i

〉)∣

∣

)z=0

, (9)

where the averaging ⟨· · · ⟩ is over all particles at the same depth

)z below the surface, here restricted to the surface itself. The

variation of ℓp is plotted in Fig. 8 and demonstrates weak

variation with time. By contrast, the flat-film prediction (A6)

takes a value ℓp ≈ 1.85 dmax, 20–30% smaller than measured,

and does not increase with time. Again, the likely culprit for

the excess measured thickness is the inapplicability of the flat-

film assumption. Note that although the theoretical prediction

employs the variation of c(z) rather than the growth rate, c is

roughly proportional to growth for the considered parameters,

so these two definitions of ℓp are equivalent.

To correlate ℓp with roughness, it is convenient to reduce

both time-varying quantities to single scalars. For the rough-

ness, we focus on the linear growth regime w = ah̄ + b and

extract the slope a as a measure of roughness. By choosing

a, which is independent of time, we have a single scalar

coefficient that can be used to compare the overall increase in

surface roughness for systems with different parameters (given

each admits linear growth). For the active layer, we take the

FIG. 8. (Color online) Depth of the active layer defined by (9)

versus height for the same parameters as Fig. 6, demonstrating weak

variation with time.

average of ℓp over the region of slow growth shown in Fig. 8,

in the understanding this is just a working definition that will

weakly depend on the achievable simulation times. Plotting

these two as in Fig. 9 shows an inverse relationship between

roughness and the depth of the active layer, confirming the

finding of Ref. [28].

B. Effect of affine flow

We now turn to consider the effects of flow, γ̇ > 0, keeping

the bulk concentration fixed at c0 = 10K1/2. Although the

mean surface height grows at a slightly lower rate in the

presence of flow, much more striking is the significant decrease

in surface roughness demonstrated in Fig. 10. Although

the growth law remains approximately linear, the slope is

FIG. 9. (Color online) Surface roughness versus depth of the

active layer. Closed symbols correspond to γ̇ = 0, with increasing

c0/K1/2 = 1, 5, 10, to 20 as indicated by the upper arrow. Open

symbols correspond to c0 = 10K1/2 and increasing γ̇ = 0, 0.072 kmax

to 0.72 kmax as indicated by the lower arrow (the γ̇ = 0 point belongs

to the connecting point in the first data set).

032702-6



LINEAR SURFACE ROUGHNESS GROWTH AND FLOW . . . PHYSICAL REVIEW E 88, 032702 (2013)

FIG. 10. (Color online) Growth of roughness for the shear rates

given in the legend, for system size Lx = Ly = 20 dmax. Note that

the data sets are shorter for the fastest flow rate considered here

as the mechanical stabilization algorithm stalled for thick films,

necessitating premature termination of the simulation. The solid

black lines correspond to the same γ̇ , in the same order from top

to bottom, but with a 2:1 aspect ratio in the direction of flow, i.e.,

Lx = 2Ly = 20
√

2 (errors bars not shown for clarity but similar to

the corresponding 1:1 data).

noticeably reduced compared to the no-flow case. It might

be postulated that the reduction in roughness is due to some

change in the depth of the active layer. However, as shown

in Fig. 9, flow affects the roughness but not the depth of

the surface layer. Instead, this appears to be some long-range

interaction, as can be inferred from the data in the figure for

systems with the same horizontal area LxLy but a 2:1 aspect

ratio in the direction of flow. For zero and low flow rates the

curves systematically deviate from the 1:1 aspect ratio data,

indicating significant system shape effects, but this modulation

vanishes for the highest flow rate considered, suggesting flow

reduces the range of this interaction. A likely candidate for the

mechanism underlying this observation is discussed in Sec. IV.

Systematically varying the system size reveals a mixed

picture. For the highest flow rate γ̇ ≈ 0.72 kmax, there is no

significant variation with Lx = Ly as shown in Fig. 11. For

the lower flow rate considered, γ̇ ≈ 0.072 kmax, the roughness

for Lx = Ly = 20 dmax significantly exceeded that for Lx =

Ly = 30 dmax, taking values close to the γ̇ = 0 case, although

the statistics are poor and this observation is not definitive. This

uncertainty is reflected in the large vertical error bar for this

point in Fig. 9. While the reduction of roughness due to shear

is clear from this figure (and outside error bars), improved

statistics and a larger range of system sizes, both requiring the

development of more advanced algorithms, will be required to

fully clarify the picture.

A final observation relates to the mean cellular mass density,

denoted nm in connection with the theory of Appendix A. This

was measured for all parameters and system sizes far from the

surface, and exhibited no significant variation with system size

or c0. It did, however, admit a slight but definite decrease for

high flow rates, dropping roughly 5% for the highest flow rate

FIG. 11. (Color online) Variation of the growth in surface rough-

ness with system size for γ̇ ≈ 0.072 kmax. Compare to the no-flow

case in Fig. 6.

considered, γ̇ ≈ 0.72 kmax, compared to γ̇ = 0. This is most

probably an expression of Reynolds’ dilation, a phenomenon

common to particulate media where shear stresses generate

system-spanning force chains that react against the solid

surface, raising the system and lowering the mean density [37].

IV. DISCUSSION

Many features common to fractal growth models [11] have

been observed in this investigation, including an algebraic

increase in surface roughness in both the horizontal and vertical

directions that saturates when the horizontal correlations

ξ ∥ become comparable to the system size. Further evidence

for fractality comes from the snapshots in Figs. 1 and 4,

comparable results for related models [18], and experiments of

growing colonies (see the references in Refs. [13,14]). Some-

what anomalous are the growth exponents themselves, which

are both consistent with linear growth, significantly faster

than the sublinear laws typically measured. An explanation

based on “freezing” of surface regions might provide a simple

explanation for the linear growth in w, but not in ξ ∥, and in any

case is not consistent with direct observation of the full surface

profiles which suggest no such freezing. Although the linear

growth of w and ξ ∥ suggests a dynamic exponent also equal

to 1 [11], our statistics are too poor to permit a meaningful

check of this additional exponent to confirm this relation.

It was postulated in Sec. III B that the reduction in

roughness with increasing flow rate reflects the existence of

long range interactions that become shorter range for the

fastest flow rate achieved, and this was supported by data

for differing system aspect ratio. Here we discuss the identity

of this interaction and why it may have such an effect on the

surface roughness. We hypothesize that the key mechanism

is nonlocality deriving from the nutrient concentration field

c(x). In this context, it is instructive to note that the sta-

tionary Green’s function (i.e., the steady solution for a point

source) for (2), in an infinite system without flow, decays

with distance |x| from the source as cGrn(x) ∝ |x|−1 [38], a
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scale-invariant, long-range decay (in 2D the same solution

does not decay at all but increases logarithmically, suggesting

an even longer range effect). Nonlocal effects therefore should

be expected. Nonetheless, we have been unable to derive a

simple explanation for the w ∝ h̄ growth law and suggest that

the construction of simplified models will allow larger systems

to be reached and generate insight into this phenomenon.

Furthermore, we cannot rule out a crossover to different scaling

at late times exceeding our simulation capabilities, as in some

other models with nonlocal surface interactions [11,12]. We

note, however, that the biofilm thickness reached in our simu-

lations, roughly 150–200 µm, are comparable to real biofilms,

therefore our findings should be regarded as biologically

relevant.

Shear flow is well known to induce waves at liquid surfaces

but can also smooth surfaces by suppressing thermal capillary

waves as observed in colloidal gas-liquid interfaces [39]. This

insight cannot be transferred to our athermal system, however;

thus, the mechanism underlying the measured reduction in

roughness is not clear. Since the elastic strains in the biofilm

were visibly very small, the observed smoothing is most likely

due to alterations to the transport of the nutrient. It is not

simply due to changes to the mean nutrient transported to

the surface, however, as this would affect the depth of the

active layer, which was not observed. Instead, we argue that

the effect of flow on roughness can be intuitively understood

as being due to the competition between diffusion, controlled

by the parameter D, and advection due to the velocity field

v(x) = (γ̇ z,0,0). The effect of diffusion over advection can be

quantified by the dimensionless Prandtl number P = D/(γ̇h2)

with h a characteristic height of the film. Taking h ≈ 100

µm as a typical biofilm thickness, the two values of γ̇

employed here, γ̇ ≈ 0.072kmax and 0.72kmax, correspond to

P ≈ 10 and P ≈ 1, respectively. This confirms the relevant

role of advection to our results. It does not, however, highlight

the microscopic mechanism underlying the smoothing, and

here again further investigation of simplified models is

desirable.

This first application of the mechanical-IbM model remains

deficient in two key respects. First, the coupling between the

fluid and the rest of the system is strictly one-way, i.e., the

fluid affects the biofilm and the nutrient field, but the biofilm

does not affect the flow. It can be argued this is valid for the

low shear rates considered here, but will likely break down for

higher rates when hydrodynamic interactions will be needed.

To see this, first note that biofilms are highly porous [40–42]. A

comparable system is therefore polymer brushes attached to a

surface. Hydrodynamic simulations of polymer brushes, where

the lowest strain rate considered was an order of magnitude

larger than the largest considered here, have shown negligible

effect on the density profile due to such low shear rates [43].

These same simulations do show a significant reduction in fluid

velocity deep within the polymeric bulk; however, since this

will only affect the transport of nutrients, the concentration of

which is anyway very low deep within the film, this omission

will make negligible difference to biofilm growth. The second

deficiency in this model is that biomass detachment due to

shear stresses has not been incorporated, although this is

known to partly control biofilm thickness [44,45]. There is

no reason why this cannot be introduced for a future work,

possibly following the particle-removal criterion of Alpkvist

and Klapper [19]. We note that the m-IbM model maintains the

primary advantages of the IbM approach, including the relative

ease of modeling multispecies films, and speculate it will

become an important tool in the quantification of biofilm-flow

coupling in the future.
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APPENDIX A: FLAT-FILM THEORY

For flat films with uniform thickness h(t), it is possible to

write down analytically tractable equations by approximating

the biofilm as a continuous body. The discrete reactions ri

in Eq. (1) are replaced by the continuous field r(z), which is

proportional to the number density of cells per unit volume, n,

and the mass per cell, m, both of which are taken as uniform

and constant. For clarity of the resulting expressions, we define

α = nmkmax. Then c(z) obeys the following one-dimensional

reaction-diffusion equation,

0 = ∂tc(z) = D∂2
z c(z) + r(z), (A1)

r(z) =

{

0 : z > h(t),

−α
c(z)

c(z)+K1/2
: z < h(t).

(A2)

Even with these simplifications, (A2) is nonlinear and no

general analytical solution is apparent. Instead we consider

limits of high and low c throughout the biofilm, i.e., c(z <

h) ≫ K1/2, and, conversely, c(z < h) ≪ K1/2, for which the

nonlinearity is removed and (A1) can be solved. The solution

for c(z < h) ≫ K1/2 is

c0 − c(z) =

{ αh
D

(Lz − z) : z > h,

αh
D

(

Lz − h
2

)

− α
2D

z2 : z < h.
(A3)

For consistency, we must also have c(0) ≫ K1/2. In the

opposite limit c(z < h) ≪ K1/2, and for clarity defining β2 =

α(K1/2D)−1,

c(z)

c0

=

⎧

⎨

⎩

1 − β(Lz−z) sinh(βh)

cosh(βh)+β(Lz−h) sinh(βh)
: z > h,

cosh(βz)

cosh(βh)+β(Lz−h) sinh(βh)
: z < h.

(A4)

Here we additionally require c(h) ≪ K1/2. For both limits,

continuity of c(z) and ∂zc(z) at z = h(t) has been imposed.

For c(z < h) ≫ K1/2 > 0 the concentration remains sig-

nificantly nonzero to the base of the film. By contrast, for

c(z < h) ≪ K1/2 the concentration can become vanishingly

small while still within the film. In this case we define the

penetration depth ℓp by

ℓp =
c(h)

∂zc(z)|z=h

, (A5)

where continuity of the first derivative means that either of the

z < h or z > h expressions in Eq. (A4) can be used, giving

ℓp =
coth(βh)

β
≈ β−1 for βh ≫ 1. (A6)
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For thick films βh ≫ 1 this increases with D and decreases for

higher reaction rates. It is thus a length scale that determines

the balance of diffusion to reaction and plays a comparable

role to the (dimensionless) Thiele modulus [46]. Conversely,

for thin films βh ≪ 1, ℓp diverges, suggesting it cannot be

identified with a physical length scale in the original discrete

system.

The time evolution of the film thickness h(t) can be

determined by considering the rate of change of the total mass

in the film and maintaining the assumption of constant nm. It is

then straightforward to derive the following integrodifferential

equation from (A1) and (A2),

dh(t)

dt
= kmaxY

c

∫ h(t)

0

dz
c(z)

c(z) + K1/2

. (A7)

It is again simpler to remove the nonlinearity in the integrand

by considering limits of c(z). For c(z < h) ≫ K1/2, when the

nutrient penetrates throughout the entire film, (A7) is readily

solved to give exponential growth,

h(t) = h(0)ekmaxY
ct . (A8)

For c(z < h) ≪ K1/2, (A4) can be used to evaluate the integral

in Eq. (A7), producing the differential equation

dh(t)

dt
=

c0DY c

nm

1

ℓp + [Lz − h(t)]
. (A9)

Note that there is implicit h dependence in the nutrient

penetration depth ℓp as per (A6). Because of this, it is

simplest to solve (A9) in the limits of shallow and deep

nutrient penetration layers relative to the boundary layer, i.e.,

ℓp ≪ Lz − h and ℓp ≫ Lz − h, respectively. For the former

case, the solution is

h(t) = Lz −
√

[Lz − h(0)]2 −
2c0DY c

nm
t. (A10)

This expression predicts the film reaches Lz at a finite time

[Lz − h(0)]2nm/(2c0DY c), but the assumption ℓp ≪ Lz −

h(t) will break down before this happens. The corresponding

solution for the deep penetration depth limit ℓp ≫ Lz − h is

h(t) = β−1arsinh

{

sinh[βh(0)] exp

(

c0kmaxY
c

K1/2

t

)}

. (A11)

Finally, note that the crossover between shallow and deep

penetration can be expressed in terms of the dimensionless

ratio ℓp/(Lz − h), which (for ℓp ≈ β−1) gives a similar

quantity to the δ employed in Ref. [28].

APPENDIX B: DATA ANALYSIS OF THE SURFACE

To determine the moments of the height distribution it is

first necessary to identify the surface. To do this, the system

box was partitioned into a cubic lattice in which each block has

dimensions dmax × dmax × dmax. Every lattice block with one

or more particle centers xi contained within it was marked

as occupied; all others are marked vacant. Lattice blocks

on the base, i.e., in the plane z = 0, are labeled k and l

in the x and y directions, respectively. The height hkl of

the film above each base block is defined as the midpoint

of the highest occupied block vertically above it. Note that

this definition ignores overhangs, but as these were rarely

observed they should represent only a small correction to our

basic findings. Moments of hjk were calculated as per any

discrete distribution. For the spatial correlations in height, the

horizontal distance r between midpoints of base lattice blocks

were used, incorporating the periodic boundary conditions in

the horizontal directions.

Metabolic activity as a function of distance from the surface

was measured using the same lattice. In this case, the mean

relative growth rate m−1∂tm of all particles in each lattice

block were calculated and assigned to that block. This was

output as a function of distance from the highest occupied site

in the same column (k,l), so a depth of 0 corresponds to the

growth rate of particles in the highest occupied block, dmax to

the block directly beneath it, and so on.
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